Properties

Label 968.6.a.p.1.3
Level $968$
Weight $6$
Character 968.1
Self dual yes
Analytic conductor $155.252$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,6,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.251537579\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-25.8955\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.2774 q^{3} -51.2310 q^{5} -25.3165 q^{7} +346.393 q^{9} -228.665 q^{13} +1243.76 q^{15} -1040.05 q^{17} -395.949 q^{19} +614.619 q^{21} -437.026 q^{23} -500.388 q^{25} -2510.12 q^{27} -2050.79 q^{29} +7467.26 q^{31} +1296.99 q^{35} +9584.87 q^{37} +5551.40 q^{39} +7727.93 q^{41} -19690.7 q^{43} -17746.0 q^{45} -12140.0 q^{47} -16166.1 q^{49} +25249.7 q^{51} -31880.3 q^{53} +9612.61 q^{57} -51200.6 q^{59} -44055.5 q^{61} -8769.45 q^{63} +11714.7 q^{65} -15640.4 q^{67} +10609.9 q^{69} -51353.9 q^{71} +69851.9 q^{73} +12148.1 q^{75} -104942. q^{79} -23234.4 q^{81} -72448.3 q^{83} +53282.8 q^{85} +49787.8 q^{87} -25728.0 q^{89} +5788.99 q^{91} -181286. q^{93} +20284.8 q^{95} -2875.42 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} + 81 q^{5} - 47 q^{7} + 1416 q^{9} + 859 q^{13} - 738 q^{15} + 1226 q^{17} + 616 q^{19} + 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} + 1613 q^{29} + 18511 q^{31} - 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.2774 −1.55740 −0.778699 0.627398i \(-0.784120\pi\)
−0.778699 + 0.627398i \(0.784120\pi\)
\(4\) 0 0
\(5\) −51.2310 −0.916447 −0.458224 0.888837i \(-0.651514\pi\)
−0.458224 + 0.888837i \(0.651514\pi\)
\(6\) 0 0
\(7\) −25.3165 −0.195280 −0.0976401 0.995222i \(-0.531129\pi\)
−0.0976401 + 0.995222i \(0.531129\pi\)
\(8\) 0 0
\(9\) 346.393 1.42549
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −228.665 −0.375268 −0.187634 0.982239i \(-0.560082\pi\)
−0.187634 + 0.982239i \(0.560082\pi\)
\(14\) 0 0
\(15\) 1243.76 1.42727
\(16\) 0 0
\(17\) −1040.05 −0.872835 −0.436418 0.899744i \(-0.643753\pi\)
−0.436418 + 0.899744i \(0.643753\pi\)
\(18\) 0 0
\(19\) −395.949 −0.251626 −0.125813 0.992054i \(-0.540154\pi\)
−0.125813 + 0.992054i \(0.540154\pi\)
\(20\) 0 0
\(21\) 614.619 0.304129
\(22\) 0 0
\(23\) −437.026 −0.172261 −0.0861306 0.996284i \(-0.527450\pi\)
−0.0861306 + 0.996284i \(0.527450\pi\)
\(24\) 0 0
\(25\) −500.388 −0.160124
\(26\) 0 0
\(27\) −2510.12 −0.662650
\(28\) 0 0
\(29\) −2050.79 −0.452820 −0.226410 0.974032i \(-0.572699\pi\)
−0.226410 + 0.974032i \(0.572699\pi\)
\(30\) 0 0
\(31\) 7467.26 1.39559 0.697794 0.716298i \(-0.254165\pi\)
0.697794 + 0.716298i \(0.254165\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1296.99 0.178964
\(36\) 0 0
\(37\) 9584.87 1.15102 0.575509 0.817796i \(-0.304804\pi\)
0.575509 + 0.817796i \(0.304804\pi\)
\(38\) 0 0
\(39\) 5551.40 0.584441
\(40\) 0 0
\(41\) 7727.93 0.717965 0.358983 0.933344i \(-0.383124\pi\)
0.358983 + 0.933344i \(0.383124\pi\)
\(42\) 0 0
\(43\) −19690.7 −1.62402 −0.812009 0.583645i \(-0.801626\pi\)
−0.812009 + 0.583645i \(0.801626\pi\)
\(44\) 0 0
\(45\) −17746.0 −1.30638
\(46\) 0 0
\(47\) −12140.0 −0.801632 −0.400816 0.916159i \(-0.631273\pi\)
−0.400816 + 0.916159i \(0.631273\pi\)
\(48\) 0 0
\(49\) −16166.1 −0.961866
\(50\) 0 0
\(51\) 25249.7 1.35935
\(52\) 0 0
\(53\) −31880.3 −1.55895 −0.779477 0.626431i \(-0.784515\pi\)
−0.779477 + 0.626431i \(0.784515\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9612.61 0.391881
\(58\) 0 0
\(59\) −51200.6 −1.91490 −0.957448 0.288606i \(-0.906808\pi\)
−0.957448 + 0.288606i \(0.906808\pi\)
\(60\) 0 0
\(61\) −44055.5 −1.51592 −0.757959 0.652302i \(-0.773804\pi\)
−0.757959 + 0.652302i \(0.773804\pi\)
\(62\) 0 0
\(63\) −8769.45 −0.278369
\(64\) 0 0
\(65\) 11714.7 0.343913
\(66\) 0 0
\(67\) −15640.4 −0.425657 −0.212829 0.977090i \(-0.568268\pi\)
−0.212829 + 0.977090i \(0.568268\pi\)
\(68\) 0 0
\(69\) 10609.9 0.268279
\(70\) 0 0
\(71\) −51353.9 −1.20900 −0.604502 0.796604i \(-0.706628\pi\)
−0.604502 + 0.796604i \(0.706628\pi\)
\(72\) 0 0
\(73\) 69851.9 1.53416 0.767080 0.641551i \(-0.221709\pi\)
0.767080 + 0.641551i \(0.221709\pi\)
\(74\) 0 0
\(75\) 12148.1 0.249377
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −104942. −1.89182 −0.945911 0.324425i \(-0.894829\pi\)
−0.945911 + 0.324425i \(0.894829\pi\)
\(80\) 0 0
\(81\) −23234.4 −0.393476
\(82\) 0 0
\(83\) −72448.3 −1.15434 −0.577169 0.816625i \(-0.695843\pi\)
−0.577169 + 0.816625i \(0.695843\pi\)
\(84\) 0 0
\(85\) 53282.8 0.799907
\(86\) 0 0
\(87\) 49787.8 0.705220
\(88\) 0 0
\(89\) −25728.0 −0.344295 −0.172147 0.985071i \(-0.555071\pi\)
−0.172147 + 0.985071i \(0.555071\pi\)
\(90\) 0 0
\(91\) 5788.99 0.0732824
\(92\) 0 0
\(93\) −181286. −2.17349
\(94\) 0 0
\(95\) 20284.8 0.230602
\(96\) 0 0
\(97\) −2875.42 −0.0310293 −0.0155146 0.999880i \(-0.504939\pi\)
−0.0155146 + 0.999880i \(0.504939\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −22960.6 −0.223964 −0.111982 0.993710i \(-0.535720\pi\)
−0.111982 + 0.993710i \(0.535720\pi\)
\(102\) 0 0
\(103\) −105365. −0.978598 −0.489299 0.872116i \(-0.662747\pi\)
−0.489299 + 0.872116i \(0.662747\pi\)
\(104\) 0 0
\(105\) −31487.5 −0.278718
\(106\) 0 0
\(107\) 65670.7 0.554514 0.277257 0.960796i \(-0.410575\pi\)
0.277257 + 0.960796i \(0.410575\pi\)
\(108\) 0 0
\(109\) 26662.1 0.214945 0.107473 0.994208i \(-0.465724\pi\)
0.107473 + 0.994208i \(0.465724\pi\)
\(110\) 0 0
\(111\) −232696. −1.79259
\(112\) 0 0
\(113\) 132872. 0.978901 0.489451 0.872031i \(-0.337197\pi\)
0.489451 + 0.872031i \(0.337197\pi\)
\(114\) 0 0
\(115\) 22389.2 0.157868
\(116\) 0 0
\(117\) −79208.0 −0.534939
\(118\) 0 0
\(119\) 26330.4 0.170447
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −187614. −1.11816
\(124\) 0 0
\(125\) 185732. 1.06319
\(126\) 0 0
\(127\) 134003. 0.737232 0.368616 0.929582i \(-0.379832\pi\)
0.368616 + 0.929582i \(0.379832\pi\)
\(128\) 0 0
\(129\) 478040. 2.52924
\(130\) 0 0
\(131\) −46383.6 −0.236149 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(132\) 0 0
\(133\) 10024.0 0.0491375
\(134\) 0 0
\(135\) 128596. 0.607284
\(136\) 0 0
\(137\) −219983. −1.00135 −0.500677 0.865634i \(-0.666915\pi\)
−0.500677 + 0.865634i \(0.666915\pi\)
\(138\) 0 0
\(139\) 68837.3 0.302195 0.151097 0.988519i \(-0.451719\pi\)
0.151097 + 0.988519i \(0.451719\pi\)
\(140\) 0 0
\(141\) 294728. 1.24846
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 105064. 0.414986
\(146\) 0 0
\(147\) 392471. 1.49801
\(148\) 0 0
\(149\) −291333. −1.07504 −0.537519 0.843252i \(-0.680638\pi\)
−0.537519 + 0.843252i \(0.680638\pi\)
\(150\) 0 0
\(151\) −85539.5 −0.305298 −0.152649 0.988280i \(-0.548780\pi\)
−0.152649 + 0.988280i \(0.548780\pi\)
\(152\) 0 0
\(153\) −360266. −1.24421
\(154\) 0 0
\(155\) −382555. −1.27898
\(156\) 0 0
\(157\) 109325. 0.353974 0.176987 0.984213i \(-0.443365\pi\)
0.176987 + 0.984213i \(0.443365\pi\)
\(158\) 0 0
\(159\) 773972. 2.42791
\(160\) 0 0
\(161\) 11063.9 0.0336392
\(162\) 0 0
\(163\) 116176. 0.342490 0.171245 0.985229i \(-0.445221\pi\)
0.171245 + 0.985229i \(0.445221\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −320008. −0.887912 −0.443956 0.896049i \(-0.646425\pi\)
−0.443956 + 0.896049i \(0.646425\pi\)
\(168\) 0 0
\(169\) −319005. −0.859174
\(170\) 0 0
\(171\) −137154. −0.358689
\(172\) 0 0
\(173\) −349469. −0.887756 −0.443878 0.896087i \(-0.646398\pi\)
−0.443878 + 0.896087i \(0.646398\pi\)
\(174\) 0 0
\(175\) 12668.1 0.0312691
\(176\) 0 0
\(177\) 1.24302e6 2.98225
\(178\) 0 0
\(179\) 703286. 1.64059 0.820294 0.571942i \(-0.193810\pi\)
0.820294 + 0.571942i \(0.193810\pi\)
\(180\) 0 0
\(181\) −172161. −0.390606 −0.195303 0.980743i \(-0.562569\pi\)
−0.195303 + 0.980743i \(0.562569\pi\)
\(182\) 0 0
\(183\) 1.06955e6 2.36089
\(184\) 0 0
\(185\) −491042. −1.05485
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 63547.3 0.129402
\(190\) 0 0
\(191\) −93405.3 −0.185263 −0.0926313 0.995700i \(-0.529528\pi\)
−0.0926313 + 0.995700i \(0.529528\pi\)
\(192\) 0 0
\(193\) 440885. 0.851985 0.425992 0.904727i \(-0.359925\pi\)
0.425992 + 0.904727i \(0.359925\pi\)
\(194\) 0 0
\(195\) −284404. −0.535610
\(196\) 0 0
\(197\) 990541. 1.81847 0.909236 0.416280i \(-0.136666\pi\)
0.909236 + 0.416280i \(0.136666\pi\)
\(198\) 0 0
\(199\) 526698. 0.942820 0.471410 0.881914i \(-0.343745\pi\)
0.471410 + 0.881914i \(0.343745\pi\)
\(200\) 0 0
\(201\) 379708. 0.662917
\(202\) 0 0
\(203\) 51918.7 0.0884267
\(204\) 0 0
\(205\) −395909. −0.657977
\(206\) 0 0
\(207\) −151383. −0.245556
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.28103e6 −1.98086 −0.990430 0.138018i \(-0.955927\pi\)
−0.990430 + 0.138018i \(0.955927\pi\)
\(212\) 0 0
\(213\) 1.24674e6 1.88290
\(214\) 0 0
\(215\) 1.00878e6 1.48833
\(216\) 0 0
\(217\) −189045. −0.272531
\(218\) 0 0
\(219\) −1.69582e6 −2.38930
\(220\) 0 0
\(221\) 237823. 0.327547
\(222\) 0 0
\(223\) −374272. −0.503993 −0.251997 0.967728i \(-0.581087\pi\)
−0.251997 + 0.967728i \(0.581087\pi\)
\(224\) 0 0
\(225\) −173331. −0.228255
\(226\) 0 0
\(227\) −513515. −0.661437 −0.330718 0.943730i \(-0.607291\pi\)
−0.330718 + 0.943730i \(0.607291\pi\)
\(228\) 0 0
\(229\) −721422. −0.909077 −0.454539 0.890727i \(-0.650196\pi\)
−0.454539 + 0.890727i \(0.650196\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 759805. 0.916880 0.458440 0.888725i \(-0.348408\pi\)
0.458440 + 0.888725i \(0.348408\pi\)
\(234\) 0 0
\(235\) 621945. 0.734653
\(236\) 0 0
\(237\) 2.54771e6 2.94632
\(238\) 0 0
\(239\) −1.67872e6 −1.90100 −0.950502 0.310718i \(-0.899430\pi\)
−0.950502 + 0.310718i \(0.899430\pi\)
\(240\) 0 0
\(241\) 476676. 0.528666 0.264333 0.964432i \(-0.414848\pi\)
0.264333 + 0.964432i \(0.414848\pi\)
\(242\) 0 0
\(243\) 1.17403e6 1.27545
\(244\) 0 0
\(245\) 828204. 0.881499
\(246\) 0 0
\(247\) 90539.6 0.0944270
\(248\) 0 0
\(249\) 1.75886e6 1.79776
\(250\) 0 0
\(251\) −850177. −0.851775 −0.425888 0.904776i \(-0.640038\pi\)
−0.425888 + 0.904776i \(0.640038\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.29357e6 −1.24577
\(256\) 0 0
\(257\) 1.74706e6 1.64997 0.824985 0.565155i \(-0.191184\pi\)
0.824985 + 0.565155i \(0.191184\pi\)
\(258\) 0 0
\(259\) −242655. −0.224771
\(260\) 0 0
\(261\) −710378. −0.645488
\(262\) 0 0
\(263\) −477494. −0.425675 −0.212838 0.977088i \(-0.568271\pi\)
−0.212838 + 0.977088i \(0.568271\pi\)
\(264\) 0 0
\(265\) 1.63326e6 1.42870
\(266\) 0 0
\(267\) 624609. 0.536204
\(268\) 0 0
\(269\) −667486. −0.562421 −0.281211 0.959646i \(-0.590736\pi\)
−0.281211 + 0.959646i \(0.590736\pi\)
\(270\) 0 0
\(271\) 374825. 0.310031 0.155016 0.987912i \(-0.450457\pi\)
0.155016 + 0.987912i \(0.450457\pi\)
\(272\) 0 0
\(273\) −140542. −0.114130
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 732728. 0.573777 0.286889 0.957964i \(-0.407379\pi\)
0.286889 + 0.957964i \(0.407379\pi\)
\(278\) 0 0
\(279\) 2.58661e6 1.98939
\(280\) 0 0
\(281\) 247045. 0.186643 0.0933213 0.995636i \(-0.470252\pi\)
0.0933213 + 0.995636i \(0.470252\pi\)
\(282\) 0 0
\(283\) −1.63552e6 −1.21392 −0.606960 0.794732i \(-0.707611\pi\)
−0.606960 + 0.794732i \(0.707611\pi\)
\(284\) 0 0
\(285\) −492463. −0.359138
\(286\) 0 0
\(287\) −195644. −0.140204
\(288\) 0 0
\(289\) −338152. −0.238159
\(290\) 0 0
\(291\) 69807.7 0.0483249
\(292\) 0 0
\(293\) 1.20598e6 0.820672 0.410336 0.911935i \(-0.365412\pi\)
0.410336 + 0.911935i \(0.365412\pi\)
\(294\) 0 0
\(295\) 2.62306e6 1.75490
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 99932.5 0.0646441
\(300\) 0 0
\(301\) 498500. 0.317138
\(302\) 0 0
\(303\) 557423. 0.348802
\(304\) 0 0
\(305\) 2.25701e6 1.38926
\(306\) 0 0
\(307\) −1.99198e6 −1.20625 −0.603126 0.797646i \(-0.706079\pi\)
−0.603126 + 0.797646i \(0.706079\pi\)
\(308\) 0 0
\(309\) 2.55800e6 1.52407
\(310\) 0 0
\(311\) 1.70723e6 1.00090 0.500451 0.865765i \(-0.333168\pi\)
0.500451 + 0.865765i \(0.333168\pi\)
\(312\) 0 0
\(313\) 2.38519e6 1.37614 0.688070 0.725644i \(-0.258458\pi\)
0.688070 + 0.725644i \(0.258458\pi\)
\(314\) 0 0
\(315\) 449267. 0.255111
\(316\) 0 0
\(317\) 1.16958e6 0.653704 0.326852 0.945076i \(-0.394012\pi\)
0.326852 + 0.945076i \(0.394012\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.59432e6 −0.863598
\(322\) 0 0
\(323\) 411807. 0.219628
\(324\) 0 0
\(325\) 114421. 0.0600895
\(326\) 0 0
\(327\) −647286. −0.334755
\(328\) 0 0
\(329\) 307343. 0.156543
\(330\) 0 0
\(331\) 2.07627e6 1.04163 0.520816 0.853669i \(-0.325628\pi\)
0.520816 + 0.853669i \(0.325628\pi\)
\(332\) 0 0
\(333\) 3.32013e6 1.64076
\(334\) 0 0
\(335\) 801271. 0.390092
\(336\) 0 0
\(337\) 2.75353e6 1.32073 0.660367 0.750943i \(-0.270401\pi\)
0.660367 + 0.750943i \(0.270401\pi\)
\(338\) 0 0
\(339\) −3.22580e6 −1.52454
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 834762. 0.383113
\(344\) 0 0
\(345\) −543553. −0.245864
\(346\) 0 0
\(347\) −3.57891e6 −1.59561 −0.797807 0.602913i \(-0.794006\pi\)
−0.797807 + 0.602913i \(0.794006\pi\)
\(348\) 0 0
\(349\) 2.23671e6 0.982984 0.491492 0.870882i \(-0.336452\pi\)
0.491492 + 0.870882i \(0.336452\pi\)
\(350\) 0 0
\(351\) 573976. 0.248672
\(352\) 0 0
\(353\) −1.45242e6 −0.620379 −0.310189 0.950675i \(-0.600392\pi\)
−0.310189 + 0.950675i \(0.600392\pi\)
\(354\) 0 0
\(355\) 2.63091e6 1.10799
\(356\) 0 0
\(357\) −639234. −0.265454
\(358\) 0 0
\(359\) 2.44308e6 1.00046 0.500232 0.865891i \(-0.333248\pi\)
0.500232 + 0.865891i \(0.333248\pi\)
\(360\) 0 0
\(361\) −2.31932e6 −0.936685
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.57858e6 −1.40598
\(366\) 0 0
\(367\) 841916. 0.326290 0.163145 0.986602i \(-0.447836\pi\)
0.163145 + 0.986602i \(0.447836\pi\)
\(368\) 0 0
\(369\) 2.67690e6 1.02345
\(370\) 0 0
\(371\) 807098. 0.304433
\(372\) 0 0
\(373\) −2.81790e6 −1.04870 −0.524352 0.851501i \(-0.675693\pi\)
−0.524352 + 0.851501i \(0.675693\pi\)
\(374\) 0 0
\(375\) −4.50910e6 −1.65581
\(376\) 0 0
\(377\) 468943. 0.169929
\(378\) 0 0
\(379\) −3.69372e6 −1.32089 −0.660443 0.750876i \(-0.729632\pi\)
−0.660443 + 0.750876i \(0.729632\pi\)
\(380\) 0 0
\(381\) −3.25324e6 −1.14816
\(382\) 0 0
\(383\) 1.94993e6 0.679236 0.339618 0.940563i \(-0.389702\pi\)
0.339618 + 0.940563i \(0.389702\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.82073e6 −2.31501
\(388\) 0 0
\(389\) −5.88126e6 −1.97059 −0.985296 0.170858i \(-0.945346\pi\)
−0.985296 + 0.170858i \(0.945346\pi\)
\(390\) 0 0
\(391\) 454529. 0.150356
\(392\) 0 0
\(393\) 1.12607e6 0.367778
\(394\) 0 0
\(395\) 5.37626e6 1.73376
\(396\) 0 0
\(397\) −222102. −0.0707254 −0.0353627 0.999375i \(-0.511259\pi\)
−0.0353627 + 0.999375i \(0.511259\pi\)
\(398\) 0 0
\(399\) −243357. −0.0765266
\(400\) 0 0
\(401\) −2.81725e6 −0.874914 −0.437457 0.899239i \(-0.644121\pi\)
−0.437457 + 0.899239i \(0.644121\pi\)
\(402\) 0 0
\(403\) −1.70750e6 −0.523720
\(404\) 0 0
\(405\) 1.19032e6 0.360600
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −4.11546e6 −1.21649 −0.608247 0.793748i \(-0.708127\pi\)
−0.608247 + 0.793748i \(0.708127\pi\)
\(410\) 0 0
\(411\) 5.34062e6 1.55950
\(412\) 0 0
\(413\) 1.29622e6 0.373941
\(414\) 0 0
\(415\) 3.71160e6 1.05789
\(416\) 0 0
\(417\) −1.67119e6 −0.470637
\(418\) 0 0
\(419\) −3.25055e6 −0.904528 −0.452264 0.891884i \(-0.649383\pi\)
−0.452264 + 0.891884i \(0.649383\pi\)
\(420\) 0 0
\(421\) 5.31682e6 1.46200 0.730999 0.682379i \(-0.239054\pi\)
0.730999 + 0.682379i \(0.239054\pi\)
\(422\) 0 0
\(423\) −4.20522e6 −1.14271
\(424\) 0 0
\(425\) 520429. 0.139762
\(426\) 0 0
\(427\) 1.11533e6 0.296029
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −925440. −0.239969 −0.119985 0.992776i \(-0.538284\pi\)
−0.119985 + 0.992776i \(0.538284\pi\)
\(432\) 0 0
\(433\) 1.29866e6 0.332872 0.166436 0.986052i \(-0.446774\pi\)
0.166436 + 0.986052i \(0.446774\pi\)
\(434\) 0 0
\(435\) −2.55068e6 −0.646297
\(436\) 0 0
\(437\) 173040. 0.0433453
\(438\) 0 0
\(439\) 5.88898e6 1.45841 0.729203 0.684297i \(-0.239891\pi\)
0.729203 + 0.684297i \(0.239891\pi\)
\(440\) 0 0
\(441\) −5.59982e6 −1.37113
\(442\) 0 0
\(443\) −3.75792e6 −0.909785 −0.454892 0.890546i \(-0.650322\pi\)
−0.454892 + 0.890546i \(0.650322\pi\)
\(444\) 0 0
\(445\) 1.31807e6 0.315528
\(446\) 0 0
\(447\) 7.07281e6 1.67426
\(448\) 0 0
\(449\) 3.35730e6 0.785912 0.392956 0.919557i \(-0.371453\pi\)
0.392956 + 0.919557i \(0.371453\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 2.07668e6 0.475470
\(454\) 0 0
\(455\) −296576. −0.0671595
\(456\) 0 0
\(457\) −3.44841e6 −0.772374 −0.386187 0.922420i \(-0.626208\pi\)
−0.386187 + 0.922420i \(0.626208\pi\)
\(458\) 0 0
\(459\) 2.61065e6 0.578385
\(460\) 0 0
\(461\) −4.34027e6 −0.951184 −0.475592 0.879666i \(-0.657766\pi\)
−0.475592 + 0.879666i \(0.657766\pi\)
\(462\) 0 0
\(463\) 3.20500e6 0.694825 0.347413 0.937712i \(-0.387060\pi\)
0.347413 + 0.937712i \(0.387060\pi\)
\(464\) 0 0
\(465\) 9.28745e6 1.99188
\(466\) 0 0
\(467\) −236841. −0.0502533 −0.0251267 0.999684i \(-0.507999\pi\)
−0.0251267 + 0.999684i \(0.507999\pi\)
\(468\) 0 0
\(469\) 395959. 0.0831224
\(470\) 0 0
\(471\) −2.65414e6 −0.551278
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 198128. 0.0402914
\(476\) 0 0
\(477\) −1.10431e7 −2.22227
\(478\) 0 0
\(479\) −9.15886e6 −1.82391 −0.911953 0.410295i \(-0.865426\pi\)
−0.911953 + 0.410295i \(0.865426\pi\)
\(480\) 0 0
\(481\) −2.19173e6 −0.431940
\(482\) 0 0
\(483\) −268604. −0.0523896
\(484\) 0 0
\(485\) 147310. 0.0284367
\(486\) 0 0
\(487\) −6.08400e6 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(488\) 0 0
\(489\) −2.82045e6 −0.533392
\(490\) 0 0
\(491\) 1.71572e6 0.321176 0.160588 0.987022i \(-0.448661\pi\)
0.160588 + 0.987022i \(0.448661\pi\)
\(492\) 0 0
\(493\) 2.13292e6 0.395237
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.30010e6 0.236094
\(498\) 0 0
\(499\) 4.03596e6 0.725598 0.362799 0.931867i \(-0.381821\pi\)
0.362799 + 0.931867i \(0.381821\pi\)
\(500\) 0 0
\(501\) 7.76897e6 1.38283
\(502\) 0 0
\(503\) 2.97422e6 0.524146 0.262073 0.965048i \(-0.415594\pi\)
0.262073 + 0.965048i \(0.415594\pi\)
\(504\) 0 0
\(505\) 1.17629e6 0.205252
\(506\) 0 0
\(507\) 7.74462e6 1.33807
\(508\) 0 0
\(509\) 912367. 0.156090 0.0780450 0.996950i \(-0.475132\pi\)
0.0780450 + 0.996950i \(0.475132\pi\)
\(510\) 0 0
\(511\) −1.76840e6 −0.299591
\(512\) 0 0
\(513\) 993877. 0.166740
\(514\) 0 0
\(515\) 5.39796e6 0.896833
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 8.48421e6 1.38259
\(520\) 0 0
\(521\) 6.62217e6 1.06882 0.534412 0.845224i \(-0.320533\pi\)
0.534412 + 0.845224i \(0.320533\pi\)
\(522\) 0 0
\(523\) −939593. −0.150205 −0.0751027 0.997176i \(-0.523928\pi\)
−0.0751027 + 0.997176i \(0.523928\pi\)
\(524\) 0 0
\(525\) −307548. −0.0486984
\(526\) 0 0
\(527\) −7.76633e6 −1.21812
\(528\) 0 0
\(529\) −6.24535e6 −0.970326
\(530\) 0 0
\(531\) −1.77355e7 −2.72966
\(532\) 0 0
\(533\) −1.76711e6 −0.269429
\(534\) 0 0
\(535\) −3.36437e6 −0.508183
\(536\) 0 0
\(537\) −1.70740e7 −2.55505
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.64310e6 0.828943 0.414472 0.910062i \(-0.363966\pi\)
0.414472 + 0.910062i \(0.363966\pi\)
\(542\) 0 0
\(543\) 4.17963e6 0.608329
\(544\) 0 0
\(545\) −1.36592e6 −0.196986
\(546\) 0 0
\(547\) −7.06369e6 −1.00940 −0.504700 0.863295i \(-0.668397\pi\)
−0.504700 + 0.863295i \(0.668397\pi\)
\(548\) 0 0
\(549\) −1.52605e7 −2.16092
\(550\) 0 0
\(551\) 812006. 0.113941
\(552\) 0 0
\(553\) 2.65675e6 0.369435
\(554\) 0 0
\(555\) 1.19212e7 1.64282
\(556\) 0 0
\(557\) 3.88072e6 0.529998 0.264999 0.964249i \(-0.414628\pi\)
0.264999 + 0.964249i \(0.414628\pi\)
\(558\) 0 0
\(559\) 4.50258e6 0.609442
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.47325e6 0.328849 0.164425 0.986390i \(-0.447423\pi\)
0.164425 + 0.986390i \(0.447423\pi\)
\(564\) 0 0
\(565\) −6.80719e6 −0.897112
\(566\) 0 0
\(567\) 588212. 0.0768381
\(568\) 0 0
\(569\) 1.29618e7 1.67836 0.839179 0.543855i \(-0.183036\pi\)
0.839179 + 0.543855i \(0.183036\pi\)
\(570\) 0 0
\(571\) 1.05228e7 1.35065 0.675323 0.737522i \(-0.264004\pi\)
0.675323 + 0.737522i \(0.264004\pi\)
\(572\) 0 0
\(573\) 2.26764e6 0.288528
\(574\) 0 0
\(575\) 218683. 0.0275832
\(576\) 0 0
\(577\) 1.40291e7 1.75425 0.877123 0.480266i \(-0.159460\pi\)
0.877123 + 0.480266i \(0.159460\pi\)
\(578\) 0 0
\(579\) −1.07035e7 −1.32688
\(580\) 0 0
\(581\) 1.83414e6 0.225419
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 4.05790e6 0.490244
\(586\) 0 0
\(587\) −5.34821e6 −0.640639 −0.320319 0.947310i \(-0.603790\pi\)
−0.320319 + 0.947310i \(0.603790\pi\)
\(588\) 0 0
\(589\) −2.95665e6 −0.351166
\(590\) 0 0
\(591\) −2.40478e7 −2.83208
\(592\) 0 0
\(593\) 6.25465e6 0.730409 0.365205 0.930927i \(-0.380999\pi\)
0.365205 + 0.930927i \(0.380999\pi\)
\(594\) 0 0
\(595\) −1.34893e6 −0.156206
\(596\) 0 0
\(597\) −1.27869e7 −1.46835
\(598\) 0 0
\(599\) −1.62599e7 −1.85161 −0.925807 0.377997i \(-0.876613\pi\)
−0.925807 + 0.377997i \(0.876613\pi\)
\(600\) 0 0
\(601\) −3.97297e6 −0.448672 −0.224336 0.974512i \(-0.572021\pi\)
−0.224336 + 0.974512i \(0.572021\pi\)
\(602\) 0 0
\(603\) −5.41771e6 −0.606768
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.26702e6 0.470060 0.235030 0.971988i \(-0.424481\pi\)
0.235030 + 0.971988i \(0.424481\pi\)
\(608\) 0 0
\(609\) −1.26045e6 −0.137716
\(610\) 0 0
\(611\) 2.77600e6 0.300827
\(612\) 0 0
\(613\) −1.64182e7 −1.76472 −0.882359 0.470577i \(-0.844046\pi\)
−0.882359 + 0.470577i \(0.844046\pi\)
\(614\) 0 0
\(615\) 9.61165e6 1.02473
\(616\) 0 0
\(617\) 1.36165e7 1.43997 0.719985 0.693990i \(-0.244149\pi\)
0.719985 + 0.693990i \(0.244149\pi\)
\(618\) 0 0
\(619\) −5.10598e6 −0.535615 −0.267807 0.963472i \(-0.586299\pi\)
−0.267807 + 0.963472i \(0.586299\pi\)
\(620\) 0 0
\(621\) 1.09699e6 0.114149
\(622\) 0 0
\(623\) 651342. 0.0672340
\(624\) 0 0
\(625\) −7.95152e6 −0.814236
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.96875e6 −1.00465
\(630\) 0 0
\(631\) 1.18290e7 1.18270 0.591349 0.806416i \(-0.298596\pi\)
0.591349 + 0.806416i \(0.298596\pi\)
\(632\) 0 0
\(633\) 3.11001e7 3.08498
\(634\) 0 0
\(635\) −6.86509e6 −0.675634
\(636\) 0 0
\(637\) 3.69662e6 0.360957
\(638\) 0 0
\(639\) −1.77886e7 −1.72342
\(640\) 0 0
\(641\) 1.16385e6 0.111880 0.0559401 0.998434i \(-0.482184\pi\)
0.0559401 + 0.998434i \(0.482184\pi\)
\(642\) 0 0
\(643\) 4.57835e6 0.436698 0.218349 0.975871i \(-0.429933\pi\)
0.218349 + 0.975871i \(0.429933\pi\)
\(644\) 0 0
\(645\) −2.44905e7 −2.31792
\(646\) 0 0
\(647\) 9.90733e6 0.930456 0.465228 0.885191i \(-0.345972\pi\)
0.465228 + 0.885191i \(0.345972\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.58952e6 0.424439
\(652\) 0 0
\(653\) −1.54281e7 −1.41589 −0.707947 0.706266i \(-0.750378\pi\)
−0.707947 + 0.706266i \(0.750378\pi\)
\(654\) 0 0
\(655\) 2.37628e6 0.216418
\(656\) 0 0
\(657\) 2.41962e7 2.18692
\(658\) 0 0
\(659\) 4.51596e6 0.405076 0.202538 0.979274i \(-0.435081\pi\)
0.202538 + 0.979274i \(0.435081\pi\)
\(660\) 0 0
\(661\) 1.85932e7 1.65520 0.827602 0.561316i \(-0.189705\pi\)
0.827602 + 0.561316i \(0.189705\pi\)
\(662\) 0 0
\(663\) −5.77374e6 −0.510121
\(664\) 0 0
\(665\) −513540. −0.0450319
\(666\) 0 0
\(667\) 896246. 0.0780033
\(668\) 0 0
\(669\) 9.08635e6 0.784918
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.08054e7 0.919607 0.459804 0.888021i \(-0.347920\pi\)
0.459804 + 0.888021i \(0.347920\pi\)
\(674\) 0 0
\(675\) 1.25603e6 0.106106
\(676\) 0 0
\(677\) −5.16836e6 −0.433392 −0.216696 0.976239i \(-0.569528\pi\)
−0.216696 + 0.976239i \(0.569528\pi\)
\(678\) 0 0
\(679\) 72795.4 0.00605940
\(680\) 0 0
\(681\) 1.24668e7 1.03012
\(682\) 0 0
\(683\) 4.88555e6 0.400739 0.200370 0.979720i \(-0.435786\pi\)
0.200370 + 0.979720i \(0.435786\pi\)
\(684\) 0 0
\(685\) 1.12699e7 0.917688
\(686\) 0 0
\(687\) 1.75143e7 1.41579
\(688\) 0 0
\(689\) 7.28992e6 0.585025
\(690\) 0 0
\(691\) 7.63827e6 0.608555 0.304278 0.952583i \(-0.401585\pi\)
0.304278 + 0.952583i \(0.401585\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.52660e6 −0.276946
\(696\) 0 0
\(697\) −8.03744e6 −0.626665
\(698\) 0 0
\(699\) −1.84461e7 −1.42795
\(700\) 0 0
\(701\) −9.86929e6 −0.758562 −0.379281 0.925282i \(-0.623829\pi\)
−0.379281 + 0.925282i \(0.623829\pi\)
\(702\) 0 0
\(703\) −3.79512e6 −0.289626
\(704\) 0 0
\(705\) −1.50992e7 −1.14415
\(706\) 0 0
\(707\) 581280. 0.0437358
\(708\) 0 0
\(709\) 8.48410e6 0.633855 0.316928 0.948450i \(-0.397349\pi\)
0.316928 + 0.948450i \(0.397349\pi\)
\(710\) 0 0
\(711\) −3.63511e7 −2.69677
\(712\) 0 0
\(713\) −3.26339e6 −0.240406
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.07549e7 2.96062
\(718\) 0 0
\(719\) −1.41418e7 −1.02019 −0.510095 0.860118i \(-0.670390\pi\)
−0.510095 + 0.860118i \(0.670390\pi\)
\(720\) 0 0
\(721\) 2.66748e6 0.191101
\(722\) 0 0
\(723\) −1.15725e7 −0.823342
\(724\) 0 0
\(725\) 1.02619e6 0.0725075
\(726\) 0 0
\(727\) 1.03949e7 0.729429 0.364715 0.931119i \(-0.381167\pi\)
0.364715 + 0.931119i \(0.381167\pi\)
\(728\) 0 0
\(729\) −2.28564e7 −1.59290
\(730\) 0 0
\(731\) 2.04794e7 1.41750
\(732\) 0 0
\(733\) −1.22788e7 −0.844101 −0.422050 0.906572i \(-0.638689\pi\)
−0.422050 + 0.906572i \(0.638689\pi\)
\(734\) 0 0
\(735\) −2.01066e7 −1.37284
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.24896e7 −0.841271 −0.420636 0.907230i \(-0.638193\pi\)
−0.420636 + 0.907230i \(0.638193\pi\)
\(740\) 0 0
\(741\) −2.19807e6 −0.147060
\(742\) 0 0
\(743\) −2.45885e7 −1.63403 −0.817015 0.576616i \(-0.804373\pi\)
−0.817015 + 0.576616i \(0.804373\pi\)
\(744\) 0 0
\(745\) 1.49253e7 0.985216
\(746\) 0 0
\(747\) −2.50956e7 −1.64549
\(748\) 0 0
\(749\) −1.66255e6 −0.108286
\(750\) 0 0
\(751\) 2.35137e6 0.152132 0.0760660 0.997103i \(-0.475764\pi\)
0.0760660 + 0.997103i \(0.475764\pi\)
\(752\) 0 0
\(753\) 2.06401e7 1.32655
\(754\) 0 0
\(755\) 4.38227e6 0.279790
\(756\) 0 0
\(757\) 2.12314e7 1.34660 0.673301 0.739368i \(-0.264876\pi\)
0.673301 + 0.739368i \(0.264876\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.63419e7 1.02292 0.511459 0.859307i \(-0.329105\pi\)
0.511459 + 0.859307i \(0.329105\pi\)
\(762\) 0 0
\(763\) −674990. −0.0419745
\(764\) 0 0
\(765\) 1.84568e7 1.14026
\(766\) 0 0
\(767\) 1.17078e7 0.718599
\(768\) 0 0
\(769\) 9.03807e6 0.551137 0.275569 0.961281i \(-0.411134\pi\)
0.275569 + 0.961281i \(0.411134\pi\)
\(770\) 0 0
\(771\) −4.24142e7 −2.56966
\(772\) 0 0
\(773\) −1.51026e7 −0.909082 −0.454541 0.890726i \(-0.650197\pi\)
−0.454541 + 0.890726i \(0.650197\pi\)
\(774\) 0 0
\(775\) −3.73653e6 −0.223468
\(776\) 0 0
\(777\) 5.89104e6 0.350058
\(778\) 0 0
\(779\) −3.05986e6 −0.180658
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 5.14771e6 0.300061
\(784\) 0 0
\(785\) −5.60084e6 −0.324399
\(786\) 0 0
\(787\) −4.40214e6 −0.253353 −0.126677 0.991944i \(-0.540431\pi\)
−0.126677 + 0.991944i \(0.540431\pi\)
\(788\) 0 0
\(789\) 1.15923e7 0.662945
\(790\) 0 0
\(791\) −3.36386e6 −0.191160
\(792\) 0 0
\(793\) 1.00740e7 0.568876
\(794\) 0 0
\(795\) −3.96513e7 −2.22505
\(796\) 0 0
\(797\) −2.35112e7 −1.31108 −0.655540 0.755160i \(-0.727559\pi\)
−0.655540 + 0.755160i \(0.727559\pi\)
\(798\) 0 0
\(799\) 1.26262e7 0.699692
\(800\) 0 0
\(801\) −8.91199e6 −0.490787
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −566817. −0.0308285
\(806\) 0 0
\(807\) 1.62048e7 0.875913
\(808\) 0 0
\(809\) −3.02958e7 −1.62746 −0.813731 0.581242i \(-0.802567\pi\)
−0.813731 + 0.581242i \(0.802567\pi\)
\(810\) 0 0
\(811\) 9.66163e6 0.515820 0.257910 0.966169i \(-0.416966\pi\)
0.257910 + 0.966169i \(0.416966\pi\)
\(812\) 0 0
\(813\) −9.09978e6 −0.482842
\(814\) 0 0
\(815\) −5.95181e6 −0.313874
\(816\) 0 0
\(817\) 7.79652e6 0.408644
\(818\) 0 0
\(819\) 2.00527e6 0.104463
\(820\) 0 0
\(821\) −3.23821e7 −1.67667 −0.838334 0.545156i \(-0.816470\pi\)
−0.838334 + 0.545156i \(0.816470\pi\)
\(822\) 0 0
\(823\) 1.11591e7 0.574288 0.287144 0.957887i \(-0.407294\pi\)
0.287144 + 0.957887i \(0.407294\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.60904e7 −0.818093 −0.409046 0.912514i \(-0.634139\pi\)
−0.409046 + 0.912514i \(0.634139\pi\)
\(828\) 0 0
\(829\) −3.16894e7 −1.60150 −0.800751 0.598997i \(-0.795566\pi\)
−0.800751 + 0.598997i \(0.795566\pi\)
\(830\) 0 0
\(831\) −1.77887e7 −0.893599
\(832\) 0 0
\(833\) 1.68135e7 0.839550
\(834\) 0 0
\(835\) 1.63943e7 0.813725
\(836\) 0 0
\(837\) −1.87437e7 −0.924787
\(838\) 0 0
\(839\) −2.31362e6 −0.113472 −0.0567359 0.998389i \(-0.518069\pi\)
−0.0567359 + 0.998389i \(0.518069\pi\)
\(840\) 0 0
\(841\) −1.63054e7 −0.794954
\(842\) 0 0
\(843\) −5.99762e6 −0.290677
\(844\) 0 0
\(845\) 1.63429e7 0.787388
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.97062e7 1.89056
\(850\) 0 0
\(851\) −4.18883e6 −0.198276
\(852\) 0 0
\(853\) −4.69366e6 −0.220871 −0.110436 0.993883i \(-0.535225\pi\)
−0.110436 + 0.993883i \(0.535225\pi\)
\(854\) 0 0
\(855\) 7.02652e6 0.328719
\(856\) 0 0
\(857\) 3.06601e7 1.42601 0.713004 0.701160i \(-0.247334\pi\)
0.713004 + 0.701160i \(0.247334\pi\)
\(858\) 0 0
\(859\) −1.75826e7 −0.813018 −0.406509 0.913647i \(-0.633254\pi\)
−0.406509 + 0.913647i \(0.633254\pi\)
\(860\) 0 0
\(861\) 4.74973e6 0.218354
\(862\) 0 0
\(863\) 7.70340e6 0.352091 0.176046 0.984382i \(-0.443669\pi\)
0.176046 + 0.984382i \(0.443669\pi\)
\(864\) 0 0
\(865\) 1.79036e7 0.813582
\(866\) 0 0
\(867\) 8.20945e6 0.370908
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 3.57641e6 0.159735
\(872\) 0 0
\(873\) −996025. −0.0442318
\(874\) 0 0
\(875\) −4.70208e6 −0.207620
\(876\) 0 0
\(877\) −2.37050e7 −1.04074 −0.520368 0.853942i \(-0.674205\pi\)
−0.520368 + 0.853942i \(0.674205\pi\)
\(878\) 0 0
\(879\) −2.92780e7 −1.27811
\(880\) 0 0
\(881\) −2.30169e6 −0.0999094 −0.0499547 0.998751i \(-0.515908\pi\)
−0.0499547 + 0.998751i \(0.515908\pi\)
\(882\) 0 0
\(883\) 2.07113e7 0.893932 0.446966 0.894551i \(-0.352504\pi\)
0.446966 + 0.894551i \(0.352504\pi\)
\(884\) 0 0
\(885\) −6.36811e7 −2.73308
\(886\) 0 0
\(887\) 2.44090e7 1.04170 0.520849 0.853649i \(-0.325616\pi\)
0.520849 + 0.853649i \(0.325616\pi\)
\(888\) 0 0
\(889\) −3.39248e6 −0.143967
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.80683e6 0.201711
\(894\) 0 0
\(895\) −3.60300e7 −1.50351
\(896\) 0 0
\(897\) −2.42610e6 −0.100677
\(898\) 0 0
\(899\) −1.53138e7 −0.631950
\(900\) 0 0
\(901\) 3.31572e7 1.36071
\(902\) 0 0
\(903\) −1.21023e7 −0.493910
\(904\) 0 0
\(905\) 8.81999e6 0.357970
\(906\) 0 0
\(907\) −2.68654e7 −1.08436 −0.542182 0.840261i \(-0.682402\pi\)
−0.542182 + 0.840261i \(0.682402\pi\)
\(908\) 0 0
\(909\) −7.95338e6 −0.319258
\(910\) 0 0
\(911\) 1.22198e7 0.487829 0.243914 0.969797i \(-0.421568\pi\)
0.243914 + 0.969797i \(0.421568\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −5.47943e7 −2.16363
\(916\) 0 0
\(917\) 1.17427e6 0.0461152
\(918\) 0 0
\(919\) −1.76834e7 −0.690681 −0.345340 0.938478i \(-0.612237\pi\)
−0.345340 + 0.938478i \(0.612237\pi\)
\(920\) 0 0
\(921\) 4.83600e7 1.87861
\(922\) 0 0
\(923\) 1.17428e7 0.453700
\(924\) 0 0
\(925\) −4.79616e6 −0.184306
\(926\) 0 0
\(927\) −3.64978e7 −1.39498
\(928\) 0 0
\(929\) −1.80890e7 −0.687664 −0.343832 0.939031i \(-0.611725\pi\)
−0.343832 + 0.939031i \(0.611725\pi\)
\(930\) 0 0
\(931\) 6.40094e6 0.242030
\(932\) 0 0
\(933\) −4.14471e7 −1.55880
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5.31784e7 −1.97873 −0.989364 0.145464i \(-0.953533\pi\)
−0.989364 + 0.145464i \(0.953533\pi\)
\(938\) 0 0
\(939\) −5.79063e7 −2.14320
\(940\) 0 0
\(941\) 3.34713e7 1.23225 0.616124 0.787649i \(-0.288702\pi\)
0.616124 + 0.787649i \(0.288702\pi\)
\(942\) 0 0
\(943\) −3.37730e6 −0.123678
\(944\) 0 0
\(945\) −3.25559e6 −0.118591
\(946\) 0 0
\(947\) −3.89951e7 −1.41298 −0.706488 0.707725i \(-0.749721\pi\)
−0.706488 + 0.707725i \(0.749721\pi\)
\(948\) 0 0
\(949\) −1.59727e7 −0.575721
\(950\) 0 0
\(951\) −2.83943e7 −1.01808
\(952\) 0 0
\(953\) 5.40079e6 0.192631 0.0963153 0.995351i \(-0.469294\pi\)
0.0963153 + 0.995351i \(0.469294\pi\)
\(954\) 0 0
\(955\) 4.78524e6 0.169783
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.56919e6 0.195544
\(960\) 0 0
\(961\) 2.71309e7 0.947667
\(962\) 0 0
\(963\) 2.27479e7 0.790452
\(964\) 0 0
\(965\) −2.25870e7 −0.780799
\(966\) 0 0
\(967\) 1.12876e7 0.388183 0.194091 0.980983i \(-0.437824\pi\)
0.194091 + 0.980983i \(0.437824\pi\)
\(968\) 0 0
\(969\) −9.99760e6 −0.342047
\(970\) 0 0
\(971\) 2.98554e7 1.01619 0.508096 0.861301i \(-0.330350\pi\)
0.508096 + 0.861301i \(0.330350\pi\)
\(972\) 0 0
\(973\) −1.74272e6 −0.0590126
\(974\) 0 0
\(975\) −2.77786e6 −0.0935833
\(976\) 0 0
\(977\) −2.61437e7 −0.876256 −0.438128 0.898913i \(-0.644358\pi\)
−0.438128 + 0.898913i \(0.644358\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 9.23556e6 0.306401
\(982\) 0 0
\(983\) 2.66113e7 0.878381 0.439191 0.898394i \(-0.355265\pi\)
0.439191 + 0.898394i \(0.355265\pi\)
\(984\) 0 0
\(985\) −5.07464e7 −1.66653
\(986\) 0 0
\(987\) −7.46148e6 −0.243799
\(988\) 0 0
\(989\) 8.60535e6 0.279755
\(990\) 0 0
\(991\) −9.05255e6 −0.292811 −0.146405 0.989225i \(-0.546770\pi\)
−0.146405 + 0.989225i \(0.546770\pi\)
\(992\) 0 0
\(993\) −5.04065e7 −1.62223
\(994\) 0 0
\(995\) −2.69832e7 −0.864045
\(996\) 0 0
\(997\) −1.69560e7 −0.540240 −0.270120 0.962827i \(-0.587063\pi\)
−0.270120 + 0.962827i \(0.587063\pi\)
\(998\) 0 0
\(999\) −2.40591e7 −0.762722
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.6.a.p.1.3 16
11.7 odd 10 88.6.i.b.49.8 yes 32
11.8 odd 10 88.6.i.b.9.8 32
11.10 odd 2 968.6.a.q.1.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.9.8 32 11.8 odd 10
88.6.i.b.49.8 yes 32 11.7 odd 10
968.6.a.p.1.3 16 1.1 even 1 trivial
968.6.a.q.1.3 16 11.10 odd 2