Properties

Label 968.6.a.p.1.5
Level $968$
Weight $6$
Character 968.1
Self dual yes
Analytic conductor $155.252$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,6,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.251537579\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 2635 x^{14} + 10644 x^{13} + 2721739 x^{12} - 11107836 x^{11} + \cdots + 53\!\cdots\!20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-10.4080\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.0260 q^{3} -30.6908 q^{5} -62.4872 q^{7} -121.427 q^{9} +767.115 q^{13} +338.397 q^{15} -186.822 q^{17} +2764.74 q^{19} +688.983 q^{21} -1140.13 q^{23} -2183.07 q^{25} +4018.18 q^{27} -4715.77 q^{29} -5483.97 q^{31} +1917.78 q^{35} -3010.93 q^{37} -8458.21 q^{39} -8174.20 q^{41} -4238.82 q^{43} +3726.70 q^{45} -21699.7 q^{47} -12902.4 q^{49} +2059.90 q^{51} +13600.3 q^{53} -30484.0 q^{57} -23965.5 q^{59} +47317.7 q^{61} +7587.65 q^{63} -23543.4 q^{65} -18613.7 q^{67} +12571.1 q^{69} -23483.0 q^{71} +7444.27 q^{73} +24070.6 q^{75} -8499.94 q^{79} -14797.6 q^{81} +58176.0 q^{83} +5733.72 q^{85} +51996.0 q^{87} +58147.0 q^{89} -47934.9 q^{91} +60466.2 q^{93} -84852.1 q^{95} -142469. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} + 81 q^{5} - 47 q^{7} + 1416 q^{9} + 859 q^{13} - 738 q^{15} + 1226 q^{17} + 616 q^{19} + 1141 q^{21} + 2258 q^{23} + 10307 q^{25} + 564 q^{27} + 1613 q^{29} + 18511 q^{31} - 23544 q^{35}+ \cdots + 171314 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.0260 −0.707318 −0.353659 0.935374i \(-0.615063\pi\)
−0.353659 + 0.935374i \(0.615063\pi\)
\(4\) 0 0
\(5\) −30.6908 −0.549014 −0.274507 0.961585i \(-0.588515\pi\)
−0.274507 + 0.961585i \(0.588515\pi\)
\(6\) 0 0
\(7\) −62.4872 −0.481998 −0.240999 0.970525i \(-0.577475\pi\)
−0.240999 + 0.970525i \(0.577475\pi\)
\(8\) 0 0
\(9\) −121.427 −0.499701
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 767.115 1.25893 0.629466 0.777028i \(-0.283274\pi\)
0.629466 + 0.777028i \(0.283274\pi\)
\(14\) 0 0
\(15\) 338.397 0.388328
\(16\) 0 0
\(17\) −186.822 −0.156786 −0.0783928 0.996923i \(-0.524979\pi\)
−0.0783928 + 0.996923i \(0.524979\pi\)
\(18\) 0 0
\(19\) 2764.74 1.75699 0.878497 0.477748i \(-0.158547\pi\)
0.878497 + 0.477748i \(0.158547\pi\)
\(20\) 0 0
\(21\) 688.983 0.340926
\(22\) 0 0
\(23\) −1140.13 −0.449402 −0.224701 0.974428i \(-0.572141\pi\)
−0.224701 + 0.974428i \(0.572141\pi\)
\(24\) 0 0
\(25\) −2183.07 −0.698584
\(26\) 0 0
\(27\) 4018.18 1.06077
\(28\) 0 0
\(29\) −4715.77 −1.04126 −0.520628 0.853784i \(-0.674302\pi\)
−0.520628 + 0.853784i \(0.674302\pi\)
\(30\) 0 0
\(31\) −5483.97 −1.02492 −0.512461 0.858711i \(-0.671266\pi\)
−0.512461 + 0.858711i \(0.671266\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1917.78 0.264624
\(36\) 0 0
\(37\) −3010.93 −0.361573 −0.180787 0.983522i \(-0.557864\pi\)
−0.180787 + 0.983522i \(0.557864\pi\)
\(38\) 0 0
\(39\) −8458.21 −0.890466
\(40\) 0 0
\(41\) −8174.20 −0.759426 −0.379713 0.925104i \(-0.623977\pi\)
−0.379713 + 0.925104i \(0.623977\pi\)
\(42\) 0 0
\(43\) −4238.82 −0.349602 −0.174801 0.984604i \(-0.555928\pi\)
−0.174801 + 0.984604i \(0.555928\pi\)
\(44\) 0 0
\(45\) 3726.70 0.274343
\(46\) 0 0
\(47\) −21699.7 −1.43288 −0.716440 0.697648i \(-0.754230\pi\)
−0.716440 + 0.697648i \(0.754230\pi\)
\(48\) 0 0
\(49\) −12902.4 −0.767677
\(50\) 0 0
\(51\) 2059.90 0.110897
\(52\) 0 0
\(53\) 13600.3 0.665054 0.332527 0.943094i \(-0.392099\pi\)
0.332527 + 0.943094i \(0.392099\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −30484.0 −1.24275
\(58\) 0 0
\(59\) −23965.5 −0.896307 −0.448154 0.893957i \(-0.647918\pi\)
−0.448154 + 0.893957i \(0.647918\pi\)
\(60\) 0 0
\(61\) 47317.7 1.62817 0.814084 0.580747i \(-0.197239\pi\)
0.814084 + 0.580747i \(0.197239\pi\)
\(62\) 0 0
\(63\) 7587.65 0.240855
\(64\) 0 0
\(65\) −23543.4 −0.691171
\(66\) 0 0
\(67\) −18613.7 −0.506577 −0.253288 0.967391i \(-0.581512\pi\)
−0.253288 + 0.967391i \(0.581512\pi\)
\(68\) 0 0
\(69\) 12571.1 0.317870
\(70\) 0 0
\(71\) −23483.0 −0.552850 −0.276425 0.961036i \(-0.589150\pi\)
−0.276425 + 0.961036i \(0.589150\pi\)
\(72\) 0 0
\(73\) 7444.27 0.163499 0.0817494 0.996653i \(-0.473949\pi\)
0.0817494 + 0.996653i \(0.473949\pi\)
\(74\) 0 0
\(75\) 24070.6 0.494121
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8499.94 −0.153231 −0.0766157 0.997061i \(-0.524411\pi\)
−0.0766157 + 0.997061i \(0.524411\pi\)
\(80\) 0 0
\(81\) −14797.6 −0.250598
\(82\) 0 0
\(83\) 58176.0 0.926934 0.463467 0.886114i \(-0.346605\pi\)
0.463467 + 0.886114i \(0.346605\pi\)
\(84\) 0 0
\(85\) 5733.72 0.0860775
\(86\) 0 0
\(87\) 51996.0 0.736499
\(88\) 0 0
\(89\) 58147.0 0.778130 0.389065 0.921210i \(-0.372798\pi\)
0.389065 + 0.921210i \(0.372798\pi\)
\(90\) 0 0
\(91\) −47934.9 −0.606803
\(92\) 0 0
\(93\) 60466.2 0.724946
\(94\) 0 0
\(95\) −84852.1 −0.964614
\(96\) 0 0
\(97\) −142469. −1.53741 −0.768706 0.639603i \(-0.779099\pi\)
−0.768706 + 0.639603i \(0.779099\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −95236.9 −0.928970 −0.464485 0.885581i \(-0.653761\pi\)
−0.464485 + 0.885581i \(0.653761\pi\)
\(102\) 0 0
\(103\) 67353.9 0.625561 0.312780 0.949825i \(-0.398740\pi\)
0.312780 + 0.949825i \(0.398740\pi\)
\(104\) 0 0
\(105\) −21145.5 −0.187173
\(106\) 0 0
\(107\) −23295.4 −0.196703 −0.0983514 0.995152i \(-0.531357\pi\)
−0.0983514 + 0.995152i \(0.531357\pi\)
\(108\) 0 0
\(109\) 235745. 1.90054 0.950270 0.311427i \(-0.100807\pi\)
0.950270 + 0.311427i \(0.100807\pi\)
\(110\) 0 0
\(111\) 33198.5 0.255747
\(112\) 0 0
\(113\) −117664. −0.866855 −0.433427 0.901188i \(-0.642696\pi\)
−0.433427 + 0.901188i \(0.642696\pi\)
\(114\) 0 0
\(115\) 34991.6 0.246728
\(116\) 0 0
\(117\) −93148.8 −0.629090
\(118\) 0 0
\(119\) 11674.0 0.0755704
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 90128.7 0.537156
\(124\) 0 0
\(125\) 162909. 0.932546
\(126\) 0 0
\(127\) 167746. 0.922874 0.461437 0.887173i \(-0.347334\pi\)
0.461437 + 0.887173i \(0.347334\pi\)
\(128\) 0 0
\(129\) 46737.2 0.247280
\(130\) 0 0
\(131\) −153627. −0.782146 −0.391073 0.920360i \(-0.627896\pi\)
−0.391073 + 0.920360i \(0.627896\pi\)
\(132\) 0 0
\(133\) −172761. −0.846869
\(134\) 0 0
\(135\) −123321. −0.582375
\(136\) 0 0
\(137\) −94232.1 −0.428941 −0.214470 0.976730i \(-0.568803\pi\)
−0.214470 + 0.976730i \(0.568803\pi\)
\(138\) 0 0
\(139\) −31302.9 −0.137419 −0.0687096 0.997637i \(-0.521888\pi\)
−0.0687096 + 0.997637i \(0.521888\pi\)
\(140\) 0 0
\(141\) 239261. 1.01350
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 144731. 0.571664
\(146\) 0 0
\(147\) 142261. 0.542992
\(148\) 0 0
\(149\) 158925. 0.586443 0.293222 0.956044i \(-0.405273\pi\)
0.293222 + 0.956044i \(0.405273\pi\)
\(150\) 0 0
\(151\) −309966. −1.10630 −0.553149 0.833083i \(-0.686574\pi\)
−0.553149 + 0.833083i \(0.686574\pi\)
\(152\) 0 0
\(153\) 22685.3 0.0783459
\(154\) 0 0
\(155\) 168307. 0.562696
\(156\) 0 0
\(157\) −153535. −0.497115 −0.248558 0.968617i \(-0.579956\pi\)
−0.248558 + 0.968617i \(0.579956\pi\)
\(158\) 0 0
\(159\) −149956. −0.470405
\(160\) 0 0
\(161\) 71243.6 0.216611
\(162\) 0 0
\(163\) 545142. 1.60709 0.803545 0.595244i \(-0.202944\pi\)
0.803545 + 0.595244i \(0.202944\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −216305. −0.600172 −0.300086 0.953912i \(-0.597015\pi\)
−0.300086 + 0.953912i \(0.597015\pi\)
\(168\) 0 0
\(169\) 217173. 0.584910
\(170\) 0 0
\(171\) −335715. −0.877972
\(172\) 0 0
\(173\) −710453. −1.80476 −0.902381 0.430939i \(-0.858182\pi\)
−0.902381 + 0.430939i \(0.858182\pi\)
\(174\) 0 0
\(175\) 136414. 0.336716
\(176\) 0 0
\(177\) 264244. 0.633974
\(178\) 0 0
\(179\) 543848. 1.26866 0.634329 0.773063i \(-0.281276\pi\)
0.634329 + 0.773063i \(0.281276\pi\)
\(180\) 0 0
\(181\) 699884. 1.58792 0.793961 0.607968i \(-0.208015\pi\)
0.793961 + 0.607968i \(0.208015\pi\)
\(182\) 0 0
\(183\) −521725. −1.15163
\(184\) 0 0
\(185\) 92407.8 0.198509
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −251084. −0.511287
\(190\) 0 0
\(191\) −544537. −1.08005 −0.540025 0.841649i \(-0.681585\pi\)
−0.540025 + 0.841649i \(0.681585\pi\)
\(192\) 0 0
\(193\) 757661. 1.46414 0.732069 0.681231i \(-0.238555\pi\)
0.732069 + 0.681231i \(0.238555\pi\)
\(194\) 0 0
\(195\) 259589. 0.488878
\(196\) 0 0
\(197\) 393716. 0.722798 0.361399 0.932411i \(-0.382299\pi\)
0.361399 + 0.932411i \(0.382299\pi\)
\(198\) 0 0
\(199\) 202030. 0.361646 0.180823 0.983516i \(-0.442124\pi\)
0.180823 + 0.983516i \(0.442124\pi\)
\(200\) 0 0
\(201\) 205234. 0.358311
\(202\) 0 0
\(203\) 294675. 0.501884
\(204\) 0 0
\(205\) 250873. 0.416935
\(206\) 0 0
\(207\) 138443. 0.224567
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 640321. 0.990128 0.495064 0.868857i \(-0.335145\pi\)
0.495064 + 0.868857i \(0.335145\pi\)
\(212\) 0 0
\(213\) 258923. 0.391041
\(214\) 0 0
\(215\) 130093. 0.191936
\(216\) 0 0
\(217\) 342678. 0.494011
\(218\) 0 0
\(219\) −82080.5 −0.115646
\(220\) 0 0
\(221\) −143314. −0.197382
\(222\) 0 0
\(223\) −574919. −0.774184 −0.387092 0.922041i \(-0.626520\pi\)
−0.387092 + 0.922041i \(0.626520\pi\)
\(224\) 0 0
\(225\) 265085. 0.349083
\(226\) 0 0
\(227\) −1.15336e6 −1.48560 −0.742799 0.669514i \(-0.766502\pi\)
−0.742799 + 0.669514i \(0.766502\pi\)
\(228\) 0 0
\(229\) 1.44965e6 1.82673 0.913366 0.407139i \(-0.133474\pi\)
0.913366 + 0.407139i \(0.133474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00916e6 1.21778 0.608892 0.793253i \(-0.291614\pi\)
0.608892 + 0.793253i \(0.291614\pi\)
\(234\) 0 0
\(235\) 665983. 0.786671
\(236\) 0 0
\(237\) 93720.3 0.108383
\(238\) 0 0
\(239\) 46802.2 0.0529994 0.0264997 0.999649i \(-0.491564\pi\)
0.0264997 + 0.999649i \(0.491564\pi\)
\(240\) 0 0
\(241\) −247446. −0.274434 −0.137217 0.990541i \(-0.543816\pi\)
−0.137217 + 0.990541i \(0.543816\pi\)
\(242\) 0 0
\(243\) −813259. −0.883513
\(244\) 0 0
\(245\) 395984. 0.421466
\(246\) 0 0
\(247\) 2.12087e6 2.21194
\(248\) 0 0
\(249\) −641449. −0.655637
\(250\) 0 0
\(251\) 1.56390e6 1.56684 0.783421 0.621491i \(-0.213473\pi\)
0.783421 + 0.621491i \(0.213473\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −63220.0 −0.0608842
\(256\) 0 0
\(257\) 1.25939e6 1.18939 0.594697 0.803950i \(-0.297272\pi\)
0.594697 + 0.803950i \(0.297272\pi\)
\(258\) 0 0
\(259\) 188144. 0.174278
\(260\) 0 0
\(261\) 572623. 0.520316
\(262\) 0 0
\(263\) −167697. −0.149498 −0.0747492 0.997202i \(-0.523816\pi\)
−0.0747492 + 0.997202i \(0.523816\pi\)
\(264\) 0 0
\(265\) −417403. −0.365124
\(266\) 0 0
\(267\) −641128. −0.550385
\(268\) 0 0
\(269\) −1.04180e6 −0.877818 −0.438909 0.898532i \(-0.644635\pi\)
−0.438909 + 0.898532i \(0.644635\pi\)
\(270\) 0 0
\(271\) −967496. −0.800250 −0.400125 0.916461i \(-0.631033\pi\)
−0.400125 + 0.916461i \(0.631033\pi\)
\(272\) 0 0
\(273\) 528530. 0.429203
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −359462. −0.281484 −0.140742 0.990046i \(-0.544949\pi\)
−0.140742 + 0.990046i \(0.544949\pi\)
\(278\) 0 0
\(279\) 665904. 0.512155
\(280\) 0 0
\(281\) 2.15740e6 1.62991 0.814956 0.579523i \(-0.196761\pi\)
0.814956 + 0.579523i \(0.196761\pi\)
\(282\) 0 0
\(283\) −2.20021e6 −1.63304 −0.816522 0.577314i \(-0.804101\pi\)
−0.816522 + 0.577314i \(0.804101\pi\)
\(284\) 0 0
\(285\) 935579. 0.682289
\(286\) 0 0
\(287\) 510782. 0.366042
\(288\) 0 0
\(289\) −1.38495e6 −0.975418
\(290\) 0 0
\(291\) 1.57086e6 1.08744
\(292\) 0 0
\(293\) 1.18632e6 0.807294 0.403647 0.914915i \(-0.367742\pi\)
0.403647 + 0.914915i \(0.367742\pi\)
\(294\) 0 0
\(295\) 735521. 0.492085
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −874612. −0.565767
\(300\) 0 0
\(301\) 264872. 0.168507
\(302\) 0 0
\(303\) 1.05008e6 0.657077
\(304\) 0 0
\(305\) −1.45222e6 −0.893887
\(306\) 0 0
\(307\) −1.47791e6 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(308\) 0 0
\(309\) −742644. −0.442471
\(310\) 0 0
\(311\) 1.46422e6 0.858434 0.429217 0.903201i \(-0.358790\pi\)
0.429217 + 0.903201i \(0.358790\pi\)
\(312\) 0 0
\(313\) 1.45447e6 0.839158 0.419579 0.907719i \(-0.362178\pi\)
0.419579 + 0.907719i \(0.362178\pi\)
\(314\) 0 0
\(315\) −232871. −0.132233
\(316\) 0 0
\(317\) 749716. 0.419033 0.209517 0.977805i \(-0.432811\pi\)
0.209517 + 0.977805i \(0.432811\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 256855. 0.139131
\(322\) 0 0
\(323\) −516515. −0.275471
\(324\) 0 0
\(325\) −1.67467e6 −0.879470
\(326\) 0 0
\(327\) −2.59933e6 −1.34429
\(328\) 0 0
\(329\) 1.35596e6 0.690646
\(330\) 0 0
\(331\) 212396. 0.106556 0.0532778 0.998580i \(-0.483033\pi\)
0.0532778 + 0.998580i \(0.483033\pi\)
\(332\) 0 0
\(333\) 365609. 0.180678
\(334\) 0 0
\(335\) 571269. 0.278118
\(336\) 0 0
\(337\) −748105. −0.358829 −0.179414 0.983774i \(-0.557420\pi\)
−0.179414 + 0.983774i \(0.557420\pi\)
\(338\) 0 0
\(339\) 1.29736e6 0.613142
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.85645e6 0.852018
\(344\) 0 0
\(345\) −385817. −0.174515
\(346\) 0 0
\(347\) 4.17224e6 1.86014 0.930070 0.367381i \(-0.119746\pi\)
0.930070 + 0.367381i \(0.119746\pi\)
\(348\) 0 0
\(349\) 1.92470e6 0.845864 0.422932 0.906161i \(-0.361001\pi\)
0.422932 + 0.906161i \(0.361001\pi\)
\(350\) 0 0
\(351\) 3.08240e6 1.33543
\(352\) 0 0
\(353\) 2.76647e6 1.18165 0.590825 0.806800i \(-0.298803\pi\)
0.590825 + 0.806800i \(0.298803\pi\)
\(354\) 0 0
\(355\) 720711. 0.303522
\(356\) 0 0
\(357\) −128717. −0.0534523
\(358\) 0 0
\(359\) −2.88561e6 −1.18168 −0.590842 0.806787i \(-0.701204\pi\)
−0.590842 + 0.806787i \(0.701204\pi\)
\(360\) 0 0
\(361\) 5.16769e6 2.08703
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −228471. −0.0897631
\(366\) 0 0
\(367\) 1.20578e6 0.467309 0.233654 0.972320i \(-0.424932\pi\)
0.233654 + 0.972320i \(0.424932\pi\)
\(368\) 0 0
\(369\) 992571. 0.379486
\(370\) 0 0
\(371\) −849841. −0.320555
\(372\) 0 0
\(373\) 2.45110e6 0.912197 0.456098 0.889929i \(-0.349247\pi\)
0.456098 + 0.889929i \(0.349247\pi\)
\(374\) 0 0
\(375\) −1.79624e6 −0.659607
\(376\) 0 0
\(377\) −3.61754e6 −1.31087
\(378\) 0 0
\(379\) −2.74431e6 −0.981374 −0.490687 0.871336i \(-0.663254\pi\)
−0.490687 + 0.871336i \(0.663254\pi\)
\(380\) 0 0
\(381\) −1.84956e6 −0.652765
\(382\) 0 0
\(383\) −1.54697e6 −0.538870 −0.269435 0.963019i \(-0.586837\pi\)
−0.269435 + 0.963019i \(0.586837\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 514708. 0.174696
\(388\) 0 0
\(389\) 4.54806e6 1.52388 0.761942 0.647645i \(-0.224246\pi\)
0.761942 + 0.647645i \(0.224246\pi\)
\(390\) 0 0
\(391\) 213002. 0.0704598
\(392\) 0 0
\(393\) 1.69389e6 0.553226
\(394\) 0 0
\(395\) 260870. 0.0841262
\(396\) 0 0
\(397\) 5.44927e6 1.73525 0.867625 0.497219i \(-0.165645\pi\)
0.867625 + 0.497219i \(0.165645\pi\)
\(398\) 0 0
\(399\) 1.90486e6 0.599006
\(400\) 0 0
\(401\) 2.28068e6 0.708277 0.354139 0.935193i \(-0.384774\pi\)
0.354139 + 0.935193i \(0.384774\pi\)
\(402\) 0 0
\(403\) −4.20684e6 −1.29031
\(404\) 0 0
\(405\) 454149. 0.137582
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.63755e6 −0.484045 −0.242023 0.970271i \(-0.577811\pi\)
−0.242023 + 0.970271i \(0.577811\pi\)
\(410\) 0 0
\(411\) 1.03900e6 0.303398
\(412\) 0 0
\(413\) 1.49754e6 0.432019
\(414\) 0 0
\(415\) −1.78547e6 −0.508900
\(416\) 0 0
\(417\) 345145. 0.0971991
\(418\) 0 0
\(419\) −2.44185e6 −0.679490 −0.339745 0.940518i \(-0.610341\pi\)
−0.339745 + 0.940518i \(0.610341\pi\)
\(420\) 0 0
\(421\) −5.02281e6 −1.38115 −0.690576 0.723260i \(-0.742643\pi\)
−0.690576 + 0.723260i \(0.742643\pi\)
\(422\) 0 0
\(423\) 2.63494e6 0.716012
\(424\) 0 0
\(425\) 407847. 0.109528
\(426\) 0 0
\(427\) −2.95675e6 −0.784775
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.19628e6 −1.08811 −0.544053 0.839051i \(-0.683111\pi\)
−0.544053 + 0.839051i \(0.683111\pi\)
\(432\) 0 0
\(433\) −1.94669e6 −0.498972 −0.249486 0.968378i \(-0.580262\pi\)
−0.249486 + 0.968378i \(0.580262\pi\)
\(434\) 0 0
\(435\) −1.59580e6 −0.404348
\(436\) 0 0
\(437\) −3.15217e6 −0.789597
\(438\) 0 0
\(439\) −3.81550e6 −0.944910 −0.472455 0.881355i \(-0.656632\pi\)
−0.472455 + 0.881355i \(0.656632\pi\)
\(440\) 0 0
\(441\) 1.56670e6 0.383609
\(442\) 0 0
\(443\) −6.84054e6 −1.65608 −0.828040 0.560669i \(-0.810544\pi\)
−0.828040 + 0.560669i \(0.810544\pi\)
\(444\) 0 0
\(445\) −1.78458e6 −0.427204
\(446\) 0 0
\(447\) −1.75231e6 −0.414802
\(448\) 0 0
\(449\) 1.23343e6 0.288734 0.144367 0.989524i \(-0.453885\pi\)
0.144367 + 0.989524i \(0.453885\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.41769e6 0.782504
\(454\) 0 0
\(455\) 1.47116e6 0.333143
\(456\) 0 0
\(457\) −2.13534e6 −0.478273 −0.239136 0.970986i \(-0.576864\pi\)
−0.239136 + 0.970986i \(0.576864\pi\)
\(458\) 0 0
\(459\) −750684. −0.166313
\(460\) 0 0
\(461\) 2.79275e6 0.612040 0.306020 0.952025i \(-0.401002\pi\)
0.306020 + 0.952025i \(0.401002\pi\)
\(462\) 0 0
\(463\) −2.67460e6 −0.579837 −0.289918 0.957051i \(-0.593628\pi\)
−0.289918 + 0.957051i \(0.593628\pi\)
\(464\) 0 0
\(465\) −1.85576e6 −0.398005
\(466\) 0 0
\(467\) 4.92341e6 1.04466 0.522328 0.852745i \(-0.325064\pi\)
0.522328 + 0.852745i \(0.325064\pi\)
\(468\) 0 0
\(469\) 1.16312e6 0.244169
\(470\) 0 0
\(471\) 1.69287e6 0.351618
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6.03563e6 −1.22741
\(476\) 0 0
\(477\) −1.65144e6 −0.332328
\(478\) 0 0
\(479\) 3.94596e6 0.785803 0.392901 0.919581i \(-0.371471\pi\)
0.392901 + 0.919581i \(0.371471\pi\)
\(480\) 0 0
\(481\) −2.30973e6 −0.455196
\(482\) 0 0
\(483\) −785532. −0.153213
\(484\) 0 0
\(485\) 4.37248e6 0.844060
\(486\) 0 0
\(487\) 8.86385e6 1.69356 0.846778 0.531946i \(-0.178539\pi\)
0.846778 + 0.531946i \(0.178539\pi\)
\(488\) 0 0
\(489\) −6.01073e6 −1.13672
\(490\) 0 0
\(491\) −178845. −0.0334791 −0.0167395 0.999860i \(-0.505329\pi\)
−0.0167395 + 0.999860i \(0.505329\pi\)
\(492\) 0 0
\(493\) 881010. 0.163254
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.46738e6 0.266473
\(498\) 0 0
\(499\) 7.61576e6 1.36918 0.684592 0.728927i \(-0.259980\pi\)
0.684592 + 0.728927i \(0.259980\pi\)
\(500\) 0 0
\(501\) 2.38498e6 0.424513
\(502\) 0 0
\(503\) 8.42363e6 1.48450 0.742249 0.670125i \(-0.233759\pi\)
0.742249 + 0.670125i \(0.233759\pi\)
\(504\) 0 0
\(505\) 2.92290e6 0.510017
\(506\) 0 0
\(507\) −2.39455e6 −0.413718
\(508\) 0 0
\(509\) 293702. 0.0502473 0.0251237 0.999684i \(-0.492002\pi\)
0.0251237 + 0.999684i \(0.492002\pi\)
\(510\) 0 0
\(511\) −465171. −0.0788062
\(512\) 0 0
\(513\) 1.11092e7 1.86376
\(514\) 0 0
\(515\) −2.06714e6 −0.343442
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 7.83345e6 1.27654
\(520\) 0 0
\(521\) −1.13382e7 −1.82999 −0.914996 0.403462i \(-0.867807\pi\)
−0.914996 + 0.403462i \(0.867807\pi\)
\(522\) 0 0
\(523\) 1.11445e7 1.78158 0.890790 0.454416i \(-0.150152\pi\)
0.890790 + 0.454416i \(0.150152\pi\)
\(524\) 0 0
\(525\) −1.50410e6 −0.238166
\(526\) 0 0
\(527\) 1.02453e6 0.160693
\(528\) 0 0
\(529\) −5.13644e6 −0.798038
\(530\) 0 0
\(531\) 2.91007e6 0.447886
\(532\) 0 0
\(533\) −6.27055e6 −0.956066
\(534\) 0 0
\(535\) 714954. 0.107993
\(536\) 0 0
\(537\) −5.99647e6 −0.897345
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6.29022e6 −0.924002 −0.462001 0.886880i \(-0.652868\pi\)
−0.462001 + 0.886880i \(0.652868\pi\)
\(542\) 0 0
\(543\) −7.71692e6 −1.12317
\(544\) 0 0
\(545\) −7.23522e6 −1.04342
\(546\) 0 0
\(547\) −4.54009e6 −0.648778 −0.324389 0.945924i \(-0.605159\pi\)
−0.324389 + 0.945924i \(0.605159\pi\)
\(548\) 0 0
\(549\) −5.74567e6 −0.813597
\(550\) 0 0
\(551\) −1.30379e7 −1.82948
\(552\) 0 0
\(553\) 531137. 0.0738573
\(554\) 0 0
\(555\) −1.01889e6 −0.140409
\(556\) 0 0
\(557\) −246032. −0.0336011 −0.0168006 0.999859i \(-0.505348\pi\)
−0.0168006 + 0.999859i \(0.505348\pi\)
\(558\) 0 0
\(559\) −3.25166e6 −0.440125
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −332746. −0.0442427 −0.0221213 0.999755i \(-0.507042\pi\)
−0.0221213 + 0.999755i \(0.507042\pi\)
\(564\) 0 0
\(565\) 3.61119e6 0.475915
\(566\) 0 0
\(567\) 924657. 0.120788
\(568\) 0 0
\(569\) 1.26937e7 1.64365 0.821823 0.569743i \(-0.192957\pi\)
0.821823 + 0.569743i \(0.192957\pi\)
\(570\) 0 0
\(571\) −4.43068e6 −0.568696 −0.284348 0.958721i \(-0.591777\pi\)
−0.284348 + 0.958721i \(0.591777\pi\)
\(572\) 0 0
\(573\) 6.00406e6 0.763939
\(574\) 0 0
\(575\) 2.48899e6 0.313945
\(576\) 0 0
\(577\) 2.81065e6 0.351453 0.175726 0.984439i \(-0.443773\pi\)
0.175726 + 0.984439i \(0.443773\pi\)
\(578\) 0 0
\(579\) −8.35397e6 −1.03561
\(580\) 0 0
\(581\) −3.63525e6 −0.446781
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.85881e6 0.345379
\(586\) 0 0
\(587\) −8.61761e6 −1.03227 −0.516133 0.856508i \(-0.672629\pi\)
−0.516133 + 0.856508i \(0.672629\pi\)
\(588\) 0 0
\(589\) −1.51618e7 −1.80078
\(590\) 0 0
\(591\) −4.34111e6 −0.511248
\(592\) 0 0
\(593\) 3.31303e6 0.386891 0.193445 0.981111i \(-0.438034\pi\)
0.193445 + 0.981111i \(0.438034\pi\)
\(594\) 0 0
\(595\) −358284. −0.0414892
\(596\) 0 0
\(597\) −2.22758e6 −0.255799
\(598\) 0 0
\(599\) 8.47569e6 0.965179 0.482589 0.875847i \(-0.339696\pi\)
0.482589 + 0.875847i \(0.339696\pi\)
\(600\) 0 0
\(601\) 1.70659e7 1.92727 0.963637 0.267215i \(-0.0861035\pi\)
0.963637 + 0.267215i \(0.0861035\pi\)
\(602\) 0 0
\(603\) 2.26021e6 0.253137
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.20372e6 0.242764 0.121382 0.992606i \(-0.461267\pi\)
0.121382 + 0.992606i \(0.461267\pi\)
\(608\) 0 0
\(609\) −3.24909e6 −0.354991
\(610\) 0 0
\(611\) −1.66462e7 −1.80390
\(612\) 0 0
\(613\) 1.04961e7 1.12818 0.564090 0.825713i \(-0.309227\pi\)
0.564090 + 0.825713i \(0.309227\pi\)
\(614\) 0 0
\(615\) −2.76612e6 −0.294906
\(616\) 0 0
\(617\) 1.40583e7 1.48669 0.743345 0.668908i \(-0.233238\pi\)
0.743345 + 0.668908i \(0.233238\pi\)
\(618\) 0 0
\(619\) 1.68713e7 1.76979 0.884895 0.465791i \(-0.154230\pi\)
0.884895 + 0.465791i \(0.154230\pi\)
\(620\) 0 0
\(621\) −4.58125e6 −0.476711
\(622\) 0 0
\(623\) −3.63344e6 −0.375057
\(624\) 0 0
\(625\) 1.82229e6 0.186603
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 562508. 0.0566894
\(630\) 0 0
\(631\) 4.06595e6 0.406526 0.203263 0.979124i \(-0.434845\pi\)
0.203263 + 0.979124i \(0.434845\pi\)
\(632\) 0 0
\(633\) −7.06017e6 −0.700335
\(634\) 0 0
\(635\) −5.14825e6 −0.506670
\(636\) 0 0
\(637\) −9.89760e6 −0.966454
\(638\) 0 0
\(639\) 2.85147e6 0.276259
\(640\) 0 0
\(641\) −1.28667e7 −1.23686 −0.618431 0.785839i \(-0.712232\pi\)
−0.618431 + 0.785839i \(0.712232\pi\)
\(642\) 0 0
\(643\) −2.99428e6 −0.285604 −0.142802 0.989751i \(-0.545611\pi\)
−0.142802 + 0.989751i \(0.545611\pi\)
\(644\) 0 0
\(645\) −1.43440e6 −0.135760
\(646\) 0 0
\(647\) −1.72635e7 −1.62132 −0.810658 0.585521i \(-0.800890\pi\)
−0.810658 + 0.585521i \(0.800890\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −3.77836e6 −0.349423
\(652\) 0 0
\(653\) 1.53789e7 1.41138 0.705689 0.708522i \(-0.250638\pi\)
0.705689 + 0.708522i \(0.250638\pi\)
\(654\) 0 0
\(655\) 4.71492e6 0.429409
\(656\) 0 0
\(657\) −903937. −0.0817005
\(658\) 0 0
\(659\) −2.01583e7 −1.80818 −0.904088 0.427346i \(-0.859449\pi\)
−0.904088 + 0.427346i \(0.859449\pi\)
\(660\) 0 0
\(661\) −7.61165e6 −0.677602 −0.338801 0.940858i \(-0.610021\pi\)
−0.338801 + 0.940858i \(0.610021\pi\)
\(662\) 0 0
\(663\) 1.58018e6 0.139612
\(664\) 0 0
\(665\) 5.30217e6 0.464943
\(666\) 0 0
\(667\) 5.37659e6 0.467943
\(668\) 0 0
\(669\) 6.33905e6 0.547594
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 9.02219e6 0.767846 0.383923 0.923365i \(-0.374573\pi\)
0.383923 + 0.923365i \(0.374573\pi\)
\(674\) 0 0
\(675\) −8.77198e6 −0.741034
\(676\) 0 0
\(677\) −8.13999e6 −0.682578 −0.341289 0.939958i \(-0.610864\pi\)
−0.341289 + 0.939958i \(0.610864\pi\)
\(678\) 0 0
\(679\) 8.90246e6 0.741030
\(680\) 0 0
\(681\) 1.27170e7 1.05079
\(682\) 0 0
\(683\) −1.63028e6 −0.133725 −0.0668623 0.997762i \(-0.521299\pi\)
−0.0668623 + 0.997762i \(0.521299\pi\)
\(684\) 0 0
\(685\) 2.89206e6 0.235494
\(686\) 0 0
\(687\) −1.59839e7 −1.29208
\(688\) 0 0
\(689\) 1.04330e7 0.837258
\(690\) 0 0
\(691\) −8.36827e6 −0.666715 −0.333358 0.942800i \(-0.608182\pi\)
−0.333358 + 0.942800i \(0.608182\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 960711. 0.0754450
\(696\) 0 0
\(697\) 1.52712e6 0.119067
\(698\) 0 0
\(699\) −1.11270e7 −0.861361
\(700\) 0 0
\(701\) 1.87217e7 1.43896 0.719482 0.694511i \(-0.244379\pi\)
0.719482 + 0.694511i \(0.244379\pi\)
\(702\) 0 0
\(703\) −8.32443e6 −0.635282
\(704\) 0 0
\(705\) −7.34312e6 −0.556427
\(706\) 0 0
\(707\) 5.95108e6 0.447762
\(708\) 0 0
\(709\) −1.40544e7 −1.05002 −0.525011 0.851096i \(-0.675939\pi\)
−0.525011 + 0.851096i \(0.675939\pi\)
\(710\) 0 0
\(711\) 1.03212e6 0.0765699
\(712\) 0 0
\(713\) 6.25245e6 0.460602
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −516041. −0.0374875
\(718\) 0 0
\(719\) −5.24149e6 −0.378122 −0.189061 0.981965i \(-0.560544\pi\)
−0.189061 + 0.981965i \(0.560544\pi\)
\(720\) 0 0
\(721\) −4.20875e6 −0.301519
\(722\) 0 0
\(723\) 2.72834e6 0.194112
\(724\) 0 0
\(725\) 1.02949e7 0.727404
\(726\) 0 0
\(727\) 4.25207e6 0.298376 0.149188 0.988809i \(-0.452334\pi\)
0.149188 + 0.988809i \(0.452334\pi\)
\(728\) 0 0
\(729\) 1.25628e7 0.875523
\(730\) 0 0
\(731\) 791905. 0.0548125
\(732\) 0 0
\(733\) 1.84911e7 1.27117 0.635584 0.772032i \(-0.280759\pi\)
0.635584 + 0.772032i \(0.280759\pi\)
\(734\) 0 0
\(735\) −4.36612e6 −0.298110
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.31783e7 0.887663 0.443831 0.896110i \(-0.353619\pi\)
0.443831 + 0.896110i \(0.353619\pi\)
\(740\) 0 0
\(741\) −2.33848e7 −1.56454
\(742\) 0 0
\(743\) −1.41289e7 −0.938937 −0.469468 0.882949i \(-0.655554\pi\)
−0.469468 + 0.882949i \(0.655554\pi\)
\(744\) 0 0
\(745\) −4.87753e6 −0.321966
\(746\) 0 0
\(747\) −7.06416e6 −0.463190
\(748\) 0 0
\(749\) 1.45566e6 0.0948104
\(750\) 0 0
\(751\) 1.63912e7 1.06050 0.530251 0.847841i \(-0.322098\pi\)
0.530251 + 0.847841i \(0.322098\pi\)
\(752\) 0 0
\(753\) −1.72436e7 −1.10826
\(754\) 0 0
\(755\) 9.51311e6 0.607372
\(756\) 0 0
\(757\) −2.51059e7 −1.59234 −0.796172 0.605071i \(-0.793145\pi\)
−0.796172 + 0.605071i \(0.793145\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.92504e6 −0.245687 −0.122843 0.992426i \(-0.539201\pi\)
−0.122843 + 0.992426i \(0.539201\pi\)
\(762\) 0 0
\(763\) −1.47311e7 −0.916057
\(764\) 0 0
\(765\) −696231. −0.0430130
\(766\) 0 0
\(767\) −1.83843e7 −1.12839
\(768\) 0 0
\(769\) 3.83427e6 0.233812 0.116906 0.993143i \(-0.462702\pi\)
0.116906 + 0.993143i \(0.462702\pi\)
\(770\) 0 0
\(771\) −1.38860e7 −0.841280
\(772\) 0 0
\(773\) 1.15946e7 0.697922 0.348961 0.937137i \(-0.386535\pi\)
0.348961 + 0.937137i \(0.386535\pi\)
\(774\) 0 0
\(775\) 1.19719e7 0.715994
\(776\) 0 0
\(777\) −2.07448e6 −0.123270
\(778\) 0 0
\(779\) −2.25995e7 −1.33431
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.89488e7 −1.10453
\(784\) 0 0
\(785\) 4.71210e6 0.272923
\(786\) 0 0
\(787\) −1.80618e7 −1.03950 −0.519749 0.854319i \(-0.673975\pi\)
−0.519749 + 0.854319i \(0.673975\pi\)
\(788\) 0 0
\(789\) 1.84903e6 0.105743
\(790\) 0 0
\(791\) 7.35247e6 0.417823
\(792\) 0 0
\(793\) 3.62982e7 2.04975
\(794\) 0 0
\(795\) 4.60228e6 0.258259
\(796\) 0 0
\(797\) −1.74588e7 −0.973572 −0.486786 0.873521i \(-0.661831\pi\)
−0.486786 + 0.873521i \(0.661831\pi\)
\(798\) 0 0
\(799\) 4.05399e6 0.224655
\(800\) 0 0
\(801\) −7.06063e6 −0.388832
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2.18652e6 −0.118923
\(806\) 0 0
\(807\) 1.14869e7 0.620897
\(808\) 0 0
\(809\) 3.45131e7 1.85401 0.927007 0.375045i \(-0.122373\pi\)
0.927007 + 0.375045i \(0.122373\pi\)
\(810\) 0 0
\(811\) −1.15510e7 −0.616690 −0.308345 0.951275i \(-0.599775\pi\)
−0.308345 + 0.951275i \(0.599775\pi\)
\(812\) 0 0
\(813\) 1.06676e7 0.566032
\(814\) 0 0
\(815\) −1.67308e7 −0.882315
\(816\) 0 0
\(817\) −1.17192e7 −0.614248
\(818\) 0 0
\(819\) 5.82060e6 0.303220
\(820\) 0 0
\(821\) 2.89284e7 1.49784 0.748921 0.662660i \(-0.230572\pi\)
0.748921 + 0.662660i \(0.230572\pi\)
\(822\) 0 0
\(823\) −2.19999e7 −1.13220 −0.566098 0.824338i \(-0.691547\pi\)
−0.566098 + 0.824338i \(0.691547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.72489e6 −0.341917 −0.170959 0.985278i \(-0.554686\pi\)
−0.170959 + 0.985278i \(0.554686\pi\)
\(828\) 0 0
\(829\) −1.41455e7 −0.714878 −0.357439 0.933937i \(-0.616350\pi\)
−0.357439 + 0.933937i \(0.616350\pi\)
\(830\) 0 0
\(831\) 3.96343e6 0.199099
\(832\) 0 0
\(833\) 2.41045e6 0.120361
\(834\) 0 0
\(835\) 6.63858e6 0.329503
\(836\) 0 0
\(837\) −2.20356e7 −1.08720
\(838\) 0 0
\(839\) −1.85571e7 −0.910133 −0.455066 0.890457i \(-0.650385\pi\)
−0.455066 + 0.890457i \(0.650385\pi\)
\(840\) 0 0
\(841\) 1.72731e6 0.0842134
\(842\) 0 0
\(843\) −2.37875e7 −1.15287
\(844\) 0 0
\(845\) −6.66522e6 −0.321124
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.42595e7 1.15508
\(850\) 0 0
\(851\) 3.43285e6 0.162492
\(852\) 0 0
\(853\) −1.33810e7 −0.629672 −0.314836 0.949146i \(-0.601950\pi\)
−0.314836 + 0.949146i \(0.601950\pi\)
\(854\) 0 0
\(855\) 1.03034e7 0.482019
\(856\) 0 0
\(857\) −2.96898e7 −1.38088 −0.690439 0.723391i \(-0.742582\pi\)
−0.690439 + 0.723391i \(0.742582\pi\)
\(858\) 0 0
\(859\) 1.96436e6 0.0908318 0.0454159 0.998968i \(-0.485539\pi\)
0.0454159 + 0.998968i \(0.485539\pi\)
\(860\) 0 0
\(861\) −5.63189e6 −0.258908
\(862\) 0 0
\(863\) −2.55237e7 −1.16658 −0.583292 0.812263i \(-0.698236\pi\)
−0.583292 + 0.812263i \(0.698236\pi\)
\(864\) 0 0
\(865\) 2.18044e7 0.990839
\(866\) 0 0
\(867\) 1.52705e7 0.689931
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −1.42788e7 −0.637746
\(872\) 0 0
\(873\) 1.72996e7 0.768246
\(874\) 0 0
\(875\) −1.01797e7 −0.449486
\(876\) 0 0
\(877\) 3.35461e7 1.47280 0.736399 0.676548i \(-0.236525\pi\)
0.736399 + 0.676548i \(0.236525\pi\)
\(878\) 0 0
\(879\) −1.30803e7 −0.571013
\(880\) 0 0
\(881\) −7.70609e6 −0.334499 −0.167249 0.985915i \(-0.553489\pi\)
−0.167249 + 0.985915i \(0.553489\pi\)
\(882\) 0 0
\(883\) −3.80156e7 −1.64082 −0.820409 0.571777i \(-0.806254\pi\)
−0.820409 + 0.571777i \(0.806254\pi\)
\(884\) 0 0
\(885\) −8.10986e6 −0.348061
\(886\) 0 0
\(887\) −2.60108e7 −1.11006 −0.555028 0.831832i \(-0.687292\pi\)
−0.555028 + 0.831832i \(0.687292\pi\)
\(888\) 0 0
\(889\) −1.04820e7 −0.444824
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.99942e7 −2.51756
\(894\) 0 0
\(895\) −1.66911e7 −0.696511
\(896\) 0 0
\(897\) 9.64348e6 0.400177
\(898\) 0 0
\(899\) 2.58611e7 1.06721
\(900\) 0 0
\(901\) −2.54083e6 −0.104271
\(902\) 0 0
\(903\) −2.92047e6 −0.119188
\(904\) 0 0
\(905\) −2.14800e7 −0.871792
\(906\) 0 0
\(907\) 1.61230e7 0.650771 0.325385 0.945582i \(-0.394506\pi\)
0.325385 + 0.945582i \(0.394506\pi\)
\(908\) 0 0
\(909\) 1.15644e7 0.464207
\(910\) 0 0
\(911\) 5.69067e6 0.227179 0.113589 0.993528i \(-0.463765\pi\)
0.113589 + 0.993528i \(0.463765\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.60122e7 0.632263
\(916\) 0 0
\(917\) 9.59968e6 0.376993
\(918\) 0 0
\(919\) 5.98582e6 0.233795 0.116897 0.993144i \(-0.462705\pi\)
0.116897 + 0.993144i \(0.462705\pi\)
\(920\) 0 0
\(921\) 1.62954e7 0.633019
\(922\) 0 0
\(923\) −1.80141e7 −0.696000
\(924\) 0 0
\(925\) 6.57308e6 0.252589
\(926\) 0 0
\(927\) −8.17860e6 −0.312593
\(928\) 0 0
\(929\) −4.08661e6 −0.155354 −0.0776772 0.996979i \(-0.524750\pi\)
−0.0776772 + 0.996979i \(0.524750\pi\)
\(930\) 0 0
\(931\) −3.56717e7 −1.34880
\(932\) 0 0
\(933\) −1.61445e7 −0.607186
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.29957e7 0.855654 0.427827 0.903861i \(-0.359279\pi\)
0.427827 + 0.903861i \(0.359279\pi\)
\(938\) 0 0
\(939\) −1.60370e7 −0.593552
\(940\) 0 0
\(941\) 1.35157e6 0.0497583 0.0248791 0.999690i \(-0.492080\pi\)
0.0248791 + 0.999690i \(0.492080\pi\)
\(942\) 0 0
\(943\) 9.31966e6 0.341288
\(944\) 0 0
\(945\) 7.70598e6 0.280704
\(946\) 0 0
\(947\) 4.10415e7 1.48713 0.743564 0.668664i \(-0.233134\pi\)
0.743564 + 0.668664i \(0.233134\pi\)
\(948\) 0 0
\(949\) 5.71061e6 0.205834
\(950\) 0 0
\(951\) −8.26637e6 −0.296390
\(952\) 0 0
\(953\) −350815. −0.0125126 −0.00625628 0.999980i \(-0.501991\pi\)
−0.00625628 + 0.999980i \(0.501991\pi\)
\(954\) 0 0
\(955\) 1.67123e7 0.592962
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.88829e6 0.206749
\(960\) 0 0
\(961\) 1.44477e6 0.0504651
\(962\) 0 0
\(963\) 2.82870e6 0.0982925
\(964\) 0 0
\(965\) −2.32532e7 −0.803832
\(966\) 0 0
\(967\) 1.88773e7 0.649192 0.324596 0.945853i \(-0.394772\pi\)
0.324596 + 0.945853i \(0.394772\pi\)
\(968\) 0 0
\(969\) 5.69509e6 0.194846
\(970\) 0 0
\(971\) 4.91221e7 1.67197 0.835985 0.548752i \(-0.184897\pi\)
0.835985 + 0.548752i \(0.184897\pi\)
\(972\) 0 0
\(973\) 1.95603e6 0.0662358
\(974\) 0 0
\(975\) 1.84649e7 0.622065
\(976\) 0 0
\(977\) −1.85542e7 −0.621877 −0.310939 0.950430i \(-0.600643\pi\)
−0.310939 + 0.950430i \(0.600643\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.86259e7 −0.949702
\(982\) 0 0
\(983\) −7.81995e6 −0.258119 −0.129060 0.991637i \(-0.541196\pi\)
−0.129060 + 0.991637i \(0.541196\pi\)
\(984\) 0 0
\(985\) −1.20835e7 −0.396826
\(986\) 0 0
\(987\) −1.49508e7 −0.488507
\(988\) 0 0
\(989\) 4.83281e6 0.157112
\(990\) 0 0
\(991\) −9.04999e6 −0.292728 −0.146364 0.989231i \(-0.546757\pi\)
−0.146364 + 0.989231i \(0.546757\pi\)
\(992\) 0 0
\(993\) −2.34188e6 −0.0753688
\(994\) 0 0
\(995\) −6.20047e6 −0.198549
\(996\) 0 0
\(997\) −4.76118e7 −1.51697 −0.758484 0.651692i \(-0.774060\pi\)
−0.758484 + 0.651692i \(0.774060\pi\)
\(998\) 0 0
\(999\) −1.20984e7 −0.383544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.6.a.p.1.5 16
11.2 odd 10 88.6.i.b.81.3 yes 32
11.6 odd 10 88.6.i.b.25.3 32
11.10 odd 2 968.6.a.q.1.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.i.b.25.3 32 11.6 odd 10
88.6.i.b.81.3 yes 32 11.2 odd 10
968.6.a.p.1.5 16 1.1 even 1 trivial
968.6.a.q.1.5 16 11.10 odd 2