Properties

Label 9702.2.a.dc.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1386)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.16228\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.16228 q^{5} +1.00000 q^{8} +3.16228 q^{10} -1.00000 q^{11} -2.00000 q^{13} +1.00000 q^{16} -7.16228 q^{17} -5.16228 q^{19} +3.16228 q^{20} -1.00000 q^{22} -6.32456 q^{23} +5.00000 q^{25} -2.00000 q^{26} +4.00000 q^{29} -9.16228 q^{31} +1.00000 q^{32} -7.16228 q^{34} +8.32456 q^{37} -5.16228 q^{38} +3.16228 q^{40} +7.16228 q^{41} -6.32456 q^{43} -1.00000 q^{44} -6.32456 q^{46} -11.4868 q^{47} +5.00000 q^{50} -2.00000 q^{52} +4.32456 q^{53} -3.16228 q^{55} +4.00000 q^{58} +1.67544 q^{59} -10.0000 q^{61} -9.16228 q^{62} +1.00000 q^{64} -6.32456 q^{65} +4.32456 q^{67} -7.16228 q^{68} -8.00000 q^{71} +5.48683 q^{73} +8.32456 q^{74} -5.16228 q^{76} -4.32456 q^{79} +3.16228 q^{80} +7.16228 q^{82} +5.16228 q^{83} -22.6491 q^{85} -6.32456 q^{86} -1.00000 q^{88} -16.3246 q^{89} -6.32456 q^{92} -11.4868 q^{94} -16.3246 q^{95} +10.6491 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{11} - 4 q^{13} + 2 q^{16} - 8 q^{17} - 4 q^{19} - 2 q^{22} + 10 q^{25} - 4 q^{26} + 8 q^{29} - 12 q^{31} + 2 q^{32} - 8 q^{34} + 4 q^{37} - 4 q^{38} + 8 q^{41} - 2 q^{44}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.16228 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.16228 1.00000
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −7.16228 −1.73711 −0.868554 0.495595i \(-0.834950\pi\)
−0.868554 + 0.495595i \(0.834950\pi\)
\(18\) 0 0
\(19\) −5.16228 −1.18431 −0.592154 0.805825i \(-0.701722\pi\)
−0.592154 + 0.805825i \(0.701722\pi\)
\(20\) 3.16228 0.707107
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −6.32456 −1.31876 −0.659380 0.751809i \(-0.729181\pi\)
−0.659380 + 0.751809i \(0.729181\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −9.16228 −1.64559 −0.822797 0.568336i \(-0.807588\pi\)
−0.822797 + 0.568336i \(0.807588\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −7.16228 −1.22832
\(35\) 0 0
\(36\) 0 0
\(37\) 8.32456 1.36855 0.684274 0.729225i \(-0.260119\pi\)
0.684274 + 0.729225i \(0.260119\pi\)
\(38\) −5.16228 −0.837432
\(39\) 0 0
\(40\) 3.16228 0.500000
\(41\) 7.16228 1.11856 0.559280 0.828979i \(-0.311078\pi\)
0.559280 + 0.828979i \(0.311078\pi\)
\(42\) 0 0
\(43\) −6.32456 −0.964486 −0.482243 0.876038i \(-0.660178\pi\)
−0.482243 + 0.876038i \(0.660178\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −6.32456 −0.932505
\(47\) −11.4868 −1.67553 −0.837763 0.546033i \(-0.816137\pi\)
−0.837763 + 0.546033i \(0.816137\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 4.32456 0.594023 0.297012 0.954874i \(-0.404010\pi\)
0.297012 + 0.954874i \(0.404010\pi\)
\(54\) 0 0
\(55\) −3.16228 −0.426401
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 0.525226
\(59\) 1.67544 0.218124 0.109062 0.994035i \(-0.465215\pi\)
0.109062 + 0.994035i \(0.465215\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −9.16228 −1.16361
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.32456 −0.784465
\(66\) 0 0
\(67\) 4.32456 0.528329 0.264164 0.964478i \(-0.414904\pi\)
0.264164 + 0.964478i \(0.414904\pi\)
\(68\) −7.16228 −0.868554
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 5.48683 0.642185 0.321093 0.947048i \(-0.395950\pi\)
0.321093 + 0.947048i \(0.395950\pi\)
\(74\) 8.32456 0.967710
\(75\) 0 0
\(76\) −5.16228 −0.592154
\(77\) 0 0
\(78\) 0 0
\(79\) −4.32456 −0.486550 −0.243275 0.969957i \(-0.578222\pi\)
−0.243275 + 0.969957i \(0.578222\pi\)
\(80\) 3.16228 0.353553
\(81\) 0 0
\(82\) 7.16228 0.790941
\(83\) 5.16228 0.566634 0.283317 0.959026i \(-0.408565\pi\)
0.283317 + 0.959026i \(0.408565\pi\)
\(84\) 0 0
\(85\) −22.6491 −2.45664
\(86\) −6.32456 −0.681994
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −16.3246 −1.73040 −0.865200 0.501427i \(-0.832808\pi\)
−0.865200 + 0.501427i \(0.832808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.32456 −0.659380
\(93\) 0 0
\(94\) −11.4868 −1.18478
\(95\) −16.3246 −1.67486
\(96\) 0 0
\(97\) 10.6491 1.08125 0.540627 0.841263i \(-0.318187\pi\)
0.540627 + 0.841263i \(0.318187\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −13.8114 −1.36088 −0.680438 0.732805i \(-0.738211\pi\)
−0.680438 + 0.732805i \(0.738211\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 4.32456 0.420038
\(107\) −14.3246 −1.38481 −0.692404 0.721510i \(-0.743448\pi\)
−0.692404 + 0.721510i \(0.743448\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) −3.16228 −0.301511
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −20.0000 −1.86501
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 1.67544 0.154237
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −9.16228 −0.822797
\(125\) 0 0
\(126\) 0 0
\(127\) 20.9737 1.86111 0.930556 0.366150i \(-0.119324\pi\)
0.930556 + 0.366150i \(0.119324\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −6.32456 −0.554700
\(131\) −5.16228 −0.451030 −0.225515 0.974240i \(-0.572407\pi\)
−0.225515 + 0.974240i \(0.572407\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.32456 0.373585
\(135\) 0 0
\(136\) −7.16228 −0.614160
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 7.48683 0.635025 0.317512 0.948254i \(-0.397152\pi\)
0.317512 + 0.948254i \(0.397152\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 12.6491 1.05045
\(146\) 5.48683 0.454094
\(147\) 0 0
\(148\) 8.32456 0.684274
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 20.6491 1.68040 0.840200 0.542276i \(-0.182437\pi\)
0.840200 + 0.542276i \(0.182437\pi\)
\(152\) −5.16228 −0.418716
\(153\) 0 0
\(154\) 0 0
\(155\) −28.9737 −2.32722
\(156\) 0 0
\(157\) 5.48683 0.437897 0.218948 0.975736i \(-0.429737\pi\)
0.218948 + 0.975736i \(0.429737\pi\)
\(158\) −4.32456 −0.344043
\(159\) 0 0
\(160\) 3.16228 0.250000
\(161\) 0 0
\(162\) 0 0
\(163\) −16.6491 −1.30406 −0.652029 0.758194i \(-0.726082\pi\)
−0.652029 + 0.758194i \(0.726082\pi\)
\(164\) 7.16228 0.559280
\(165\) 0 0
\(166\) 5.16228 0.400670
\(167\) 6.32456 0.489409 0.244704 0.969598i \(-0.421309\pi\)
0.244704 + 0.969598i \(0.421309\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −22.6491 −1.73711
\(171\) 0 0
\(172\) −6.32456 −0.482243
\(173\) 12.3246 0.937019 0.468509 0.883459i \(-0.344791\pi\)
0.468509 + 0.883459i \(0.344791\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −16.3246 −1.22358
\(179\) −3.67544 −0.274716 −0.137358 0.990521i \(-0.543861\pi\)
−0.137358 + 0.990521i \(0.543861\pi\)
\(180\) 0 0
\(181\) −17.4868 −1.29979 −0.649893 0.760026i \(-0.725186\pi\)
−0.649893 + 0.760026i \(0.725186\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.32456 −0.466252
\(185\) 26.3246 1.93542
\(186\) 0 0
\(187\) 7.16228 0.523758
\(188\) −11.4868 −0.837763
\(189\) 0 0
\(190\) −16.3246 −1.18431
\(191\) −5.67544 −0.410661 −0.205330 0.978693i \(-0.565827\pi\)
−0.205330 + 0.978693i \(0.565827\pi\)
\(192\) 0 0
\(193\) 10.6491 0.766540 0.383270 0.923636i \(-0.374798\pi\)
0.383270 + 0.923636i \(0.374798\pi\)
\(194\) 10.6491 0.764562
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) −19.4868 −1.38138 −0.690692 0.723149i \(-0.742694\pi\)
−0.690692 + 0.723149i \(0.742694\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 22.6491 1.58188
\(206\) −13.8114 −0.962285
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 5.16228 0.357082
\(210\) 0 0
\(211\) −18.3246 −1.26151 −0.630757 0.775980i \(-0.717256\pi\)
−0.630757 + 0.775980i \(0.717256\pi\)
\(212\) 4.32456 0.297012
\(213\) 0 0
\(214\) −14.3246 −0.979206
\(215\) −20.0000 −1.36399
\(216\) 0 0
\(217\) 0 0
\(218\) −8.00000 −0.541828
\(219\) 0 0
\(220\) −3.16228 −0.213201
\(221\) 14.3246 0.963574
\(222\) 0 0
\(223\) 11.4868 0.769215 0.384608 0.923080i \(-0.374337\pi\)
0.384608 + 0.923080i \(0.374337\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) −7.48683 −0.496919 −0.248459 0.968642i \(-0.579924\pi\)
−0.248459 + 0.968642i \(0.579924\pi\)
\(228\) 0 0
\(229\) 25.4868 1.68422 0.842109 0.539308i \(-0.181314\pi\)
0.842109 + 0.539308i \(0.181314\pi\)
\(230\) −20.0000 −1.31876
\(231\) 0 0
\(232\) 4.00000 0.262613
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −36.3246 −2.36955
\(236\) 1.67544 0.109062
\(237\) 0 0
\(238\) 0 0
\(239\) 12.6491 0.818203 0.409101 0.912489i \(-0.365842\pi\)
0.409101 + 0.912489i \(0.365842\pi\)
\(240\) 0 0
\(241\) −0.837722 −0.0539624 −0.0269812 0.999636i \(-0.508589\pi\)
−0.0269812 + 0.999636i \(0.508589\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 10.3246 0.656936
\(248\) −9.16228 −0.581805
\(249\) 0 0
\(250\) 0 0
\(251\) 13.6754 0.863186 0.431593 0.902068i \(-0.357952\pi\)
0.431593 + 0.902068i \(0.357952\pi\)
\(252\) 0 0
\(253\) 6.32456 0.397621
\(254\) 20.9737 1.31600
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.67544 −0.478781 −0.239391 0.970923i \(-0.576948\pi\)
−0.239391 + 0.970923i \(0.576948\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −6.32456 −0.392232
\(261\) 0 0
\(262\) −5.16228 −0.318927
\(263\) 24.9737 1.53994 0.769971 0.638079i \(-0.220271\pi\)
0.769971 + 0.638079i \(0.220271\pi\)
\(264\) 0 0
\(265\) 13.6754 0.840076
\(266\) 0 0
\(267\) 0 0
\(268\) 4.32456 0.264164
\(269\) −11.1623 −0.680576 −0.340288 0.940321i \(-0.610525\pi\)
−0.340288 + 0.940321i \(0.610525\pi\)
\(270\) 0 0
\(271\) 6.32456 0.384189 0.192095 0.981376i \(-0.438472\pi\)
0.192095 + 0.981376i \(0.438472\pi\)
\(272\) −7.16228 −0.434277
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) −24.0000 −1.44202 −0.721010 0.692925i \(-0.756322\pi\)
−0.721010 + 0.692925i \(0.756322\pi\)
\(278\) 7.48683 0.449030
\(279\) 0 0
\(280\) 0 0
\(281\) 22.6491 1.35113 0.675566 0.737299i \(-0.263899\pi\)
0.675566 + 0.737299i \(0.263899\pi\)
\(282\) 0 0
\(283\) 15.4868 0.920597 0.460298 0.887764i \(-0.347742\pi\)
0.460298 + 0.887764i \(0.347742\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) 0 0
\(289\) 34.2982 2.01754
\(290\) 12.6491 0.742781
\(291\) 0 0
\(292\) 5.48683 0.321093
\(293\) −24.9737 −1.45898 −0.729489 0.683993i \(-0.760242\pi\)
−0.729489 + 0.683993i \(0.760242\pi\)
\(294\) 0 0
\(295\) 5.29822 0.308474
\(296\) 8.32456 0.483855
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) 12.6491 0.731517
\(300\) 0 0
\(301\) 0 0
\(302\) 20.6491 1.18822
\(303\) 0 0
\(304\) −5.16228 −0.296077
\(305\) −31.6228 −1.81071
\(306\) 0 0
\(307\) 21.1623 1.20779 0.603897 0.797062i \(-0.293614\pi\)
0.603897 + 0.797062i \(0.293614\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −28.9737 −1.64559
\(311\) 29.8114 1.69045 0.845224 0.534412i \(-0.179467\pi\)
0.845224 + 0.534412i \(0.179467\pi\)
\(312\) 0 0
\(313\) −20.3246 −1.14881 −0.574406 0.818571i \(-0.694767\pi\)
−0.574406 + 0.818571i \(0.694767\pi\)
\(314\) 5.48683 0.309640
\(315\) 0 0
\(316\) −4.32456 −0.243275
\(317\) 12.9737 0.728674 0.364337 0.931267i \(-0.381296\pi\)
0.364337 + 0.931267i \(0.381296\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 3.16228 0.176777
\(321\) 0 0
\(322\) 0 0
\(323\) 36.9737 2.05727
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) −16.6491 −0.922109
\(327\) 0 0
\(328\) 7.16228 0.395471
\(329\) 0 0
\(330\) 0 0
\(331\) −8.97367 −0.493237 −0.246619 0.969113i \(-0.579320\pi\)
−0.246619 + 0.969113i \(0.579320\pi\)
\(332\) 5.16228 0.283317
\(333\) 0 0
\(334\) 6.32456 0.346064
\(335\) 13.6754 0.747169
\(336\) 0 0
\(337\) −19.6754 −1.07179 −0.535895 0.844285i \(-0.680026\pi\)
−0.535895 + 0.844285i \(0.680026\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) −22.6491 −1.22832
\(341\) 9.16228 0.496165
\(342\) 0 0
\(343\) 0 0
\(344\) −6.32456 −0.340997
\(345\) 0 0
\(346\) 12.3246 0.662572
\(347\) −14.3246 −0.768982 −0.384491 0.923129i \(-0.625623\pi\)
−0.384491 + 0.923129i \(0.625623\pi\)
\(348\) 0 0
\(349\) −8.97367 −0.480349 −0.240175 0.970730i \(-0.577205\pi\)
−0.240175 + 0.970730i \(0.577205\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −7.67544 −0.408523 −0.204261 0.978916i \(-0.565479\pi\)
−0.204261 + 0.978916i \(0.565479\pi\)
\(354\) 0 0
\(355\) −25.2982 −1.34269
\(356\) −16.3246 −0.865200
\(357\) 0 0
\(358\) −3.67544 −0.194253
\(359\) 3.67544 0.193983 0.0969913 0.995285i \(-0.469078\pi\)
0.0969913 + 0.995285i \(0.469078\pi\)
\(360\) 0 0
\(361\) 7.64911 0.402585
\(362\) −17.4868 −0.919088
\(363\) 0 0
\(364\) 0 0
\(365\) 17.3509 0.908187
\(366\) 0 0
\(367\) 1.16228 0.0606704 0.0303352 0.999540i \(-0.490343\pi\)
0.0303352 + 0.999540i \(0.490343\pi\)
\(368\) −6.32456 −0.329690
\(369\) 0 0
\(370\) 26.3246 1.36855
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 7.16228 0.370353
\(375\) 0 0
\(376\) −11.4868 −0.592388
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −13.2982 −0.683084 −0.341542 0.939867i \(-0.610949\pi\)
−0.341542 + 0.939867i \(0.610949\pi\)
\(380\) −16.3246 −0.837432
\(381\) 0 0
\(382\) −5.67544 −0.290381
\(383\) 9.16228 0.468171 0.234085 0.972216i \(-0.424791\pi\)
0.234085 + 0.972216i \(0.424791\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.6491 0.542025
\(387\) 0 0
\(388\) 10.6491 0.540627
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 45.2982 2.29083
\(392\) 0 0
\(393\) 0 0
\(394\) 24.0000 1.20910
\(395\) −13.6754 −0.688086
\(396\) 0 0
\(397\) −21.4868 −1.07839 −0.539197 0.842180i \(-0.681272\pi\)
−0.539197 + 0.842180i \(0.681272\pi\)
\(398\) −19.4868 −0.976787
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) 23.2982 1.16346 0.581729 0.813383i \(-0.302376\pi\)
0.581729 + 0.813383i \(0.302376\pi\)
\(402\) 0 0
\(403\) 18.3246 0.912811
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) −8.32456 −0.412633
\(408\) 0 0
\(409\) −27.1623 −1.34309 −0.671544 0.740965i \(-0.734369\pi\)
−0.671544 + 0.740965i \(0.734369\pi\)
\(410\) 22.6491 1.11856
\(411\) 0 0
\(412\) −13.8114 −0.680438
\(413\) 0 0
\(414\) 0 0
\(415\) 16.3246 0.801341
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) 5.16228 0.252495
\(419\) 16.6491 0.813362 0.406681 0.913570i \(-0.366686\pi\)
0.406681 + 0.913570i \(0.366686\pi\)
\(420\) 0 0
\(421\) −39.9473 −1.94691 −0.973457 0.228870i \(-0.926497\pi\)
−0.973457 + 0.228870i \(0.926497\pi\)
\(422\) −18.3246 −0.892025
\(423\) 0 0
\(424\) 4.32456 0.210019
\(425\) −35.8114 −1.73711
\(426\) 0 0
\(427\) 0 0
\(428\) −14.3246 −0.692404
\(429\) 0 0
\(430\) −20.0000 −0.964486
\(431\) −8.97367 −0.432246 −0.216123 0.976366i \(-0.569341\pi\)
−0.216123 + 0.976366i \(0.569341\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 32.6491 1.56182
\(438\) 0 0
\(439\) 6.32456 0.301855 0.150927 0.988545i \(-0.451774\pi\)
0.150927 + 0.988545i \(0.451774\pi\)
\(440\) −3.16228 −0.150756
\(441\) 0 0
\(442\) 14.3246 0.681350
\(443\) 4.32456 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(444\) 0 0
\(445\) −51.6228 −2.44715
\(446\) 11.4868 0.543917
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −7.16228 −0.337258
\(452\) 2.00000 0.0940721
\(453\) 0 0
\(454\) −7.48683 −0.351374
\(455\) 0 0
\(456\) 0 0
\(457\) 17.3509 0.811640 0.405820 0.913953i \(-0.366986\pi\)
0.405820 + 0.913953i \(0.366986\pi\)
\(458\) 25.4868 1.19092
\(459\) 0 0
\(460\) −20.0000 −0.932505
\(461\) 23.2982 1.08511 0.542553 0.840021i \(-0.317458\pi\)
0.542553 + 0.840021i \(0.317458\pi\)
\(462\) 0 0
\(463\) −28.6491 −1.33144 −0.665719 0.746203i \(-0.731875\pi\)
−0.665719 + 0.746203i \(0.731875\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 17.2982 0.800466 0.400233 0.916413i \(-0.368929\pi\)
0.400233 + 0.916413i \(0.368929\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −36.3246 −1.67553
\(471\) 0 0
\(472\) 1.67544 0.0771186
\(473\) 6.32456 0.290803
\(474\) 0 0
\(475\) −25.8114 −1.18431
\(476\) 0 0
\(477\) 0 0
\(478\) 12.6491 0.578557
\(479\) 21.2982 0.973141 0.486570 0.873641i \(-0.338248\pi\)
0.486570 + 0.873641i \(0.338248\pi\)
\(480\) 0 0
\(481\) −16.6491 −0.759134
\(482\) −0.837722 −0.0381572
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 33.6754 1.52912
\(486\) 0 0
\(487\) −14.3246 −0.649108 −0.324554 0.945867i \(-0.605214\pi\)
−0.324554 + 0.945867i \(0.605214\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) 8.64911 0.390329 0.195164 0.980771i \(-0.437476\pi\)
0.195164 + 0.980771i \(0.437476\pi\)
\(492\) 0 0
\(493\) −28.6491 −1.29029
\(494\) 10.3246 0.464524
\(495\) 0 0
\(496\) −9.16228 −0.411398
\(497\) 0 0
\(498\) 0 0
\(499\) −16.9737 −0.759846 −0.379923 0.925018i \(-0.624049\pi\)
−0.379923 + 0.925018i \(0.624049\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 13.6754 0.610365
\(503\) 5.02633 0.224113 0.112057 0.993702i \(-0.464256\pi\)
0.112057 + 0.993702i \(0.464256\pi\)
\(504\) 0 0
\(505\) 18.9737 0.844317
\(506\) 6.32456 0.281161
\(507\) 0 0
\(508\) 20.9737 0.930556
\(509\) −39.8114 −1.76461 −0.882304 0.470679i \(-0.844009\pi\)
−0.882304 + 0.470679i \(0.844009\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −7.67544 −0.338549
\(515\) −43.6754 −1.92457
\(516\) 0 0
\(517\) 11.4868 0.505190
\(518\) 0 0
\(519\) 0 0
\(520\) −6.32456 −0.277350
\(521\) −20.3246 −0.890435 −0.445217 0.895422i \(-0.646874\pi\)
−0.445217 + 0.895422i \(0.646874\pi\)
\(522\) 0 0
\(523\) 4.13594 0.180852 0.0904261 0.995903i \(-0.471177\pi\)
0.0904261 + 0.995903i \(0.471177\pi\)
\(524\) −5.16228 −0.225515
\(525\) 0 0
\(526\) 24.9737 1.08890
\(527\) 65.6228 2.85857
\(528\) 0 0
\(529\) 17.0000 0.739130
\(530\) 13.6754 0.594023
\(531\) 0 0
\(532\) 0 0
\(533\) −14.3246 −0.620465
\(534\) 0 0
\(535\) −45.2982 −1.95841
\(536\) 4.32456 0.186792
\(537\) 0 0
\(538\) −11.1623 −0.481240
\(539\) 0 0
\(540\) 0 0
\(541\) 31.2982 1.34562 0.672808 0.739817i \(-0.265088\pi\)
0.672808 + 0.739817i \(0.265088\pi\)
\(542\) 6.32456 0.271663
\(543\) 0 0
\(544\) −7.16228 −0.307080
\(545\) −25.2982 −1.08366
\(546\) 0 0
\(547\) −41.2982 −1.76578 −0.882892 0.469576i \(-0.844407\pi\)
−0.882892 + 0.469576i \(0.844407\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) −5.00000 −0.213201
\(551\) −20.6491 −0.879682
\(552\) 0 0
\(553\) 0 0
\(554\) −24.0000 −1.01966
\(555\) 0 0
\(556\) 7.48683 0.317512
\(557\) −33.2982 −1.41089 −0.705445 0.708764i \(-0.749253\pi\)
−0.705445 + 0.708764i \(0.749253\pi\)
\(558\) 0 0
\(559\) 12.6491 0.535000
\(560\) 0 0
\(561\) 0 0
\(562\) 22.6491 0.955395
\(563\) −20.1359 −0.848629 −0.424314 0.905515i \(-0.639485\pi\)
−0.424314 + 0.905515i \(0.639485\pi\)
\(564\) 0 0
\(565\) 6.32456 0.266076
\(566\) 15.4868 0.650960
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 26.6491 1.11719 0.558594 0.829441i \(-0.311341\pi\)
0.558594 + 0.829441i \(0.311341\pi\)
\(570\) 0 0
\(571\) 12.6491 0.529349 0.264674 0.964338i \(-0.414736\pi\)
0.264674 + 0.964338i \(0.414736\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) −31.6228 −1.31876
\(576\) 0 0
\(577\) −15.6754 −0.652577 −0.326289 0.945270i \(-0.605798\pi\)
−0.326289 + 0.945270i \(0.605798\pi\)
\(578\) 34.2982 1.42662
\(579\) 0 0
\(580\) 12.6491 0.525226
\(581\) 0 0
\(582\) 0 0
\(583\) −4.32456 −0.179105
\(584\) 5.48683 0.227047
\(585\) 0 0
\(586\) −24.9737 −1.03165
\(587\) −6.97367 −0.287834 −0.143917 0.989590i \(-0.545970\pi\)
−0.143917 + 0.989590i \(0.545970\pi\)
\(588\) 0 0
\(589\) 47.2982 1.94889
\(590\) 5.29822 0.218124
\(591\) 0 0
\(592\) 8.32456 0.342137
\(593\) 16.4605 0.675952 0.337976 0.941155i \(-0.390258\pi\)
0.337976 + 0.941155i \(0.390258\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 12.6491 0.517261
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −19.1623 −0.781646 −0.390823 0.920466i \(-0.627809\pi\)
−0.390823 + 0.920466i \(0.627809\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 20.6491 0.840200
\(605\) 3.16228 0.128565
\(606\) 0 0
\(607\) −4.64911 −0.188702 −0.0943508 0.995539i \(-0.530078\pi\)
−0.0943508 + 0.995539i \(0.530078\pi\)
\(608\) −5.16228 −0.209358
\(609\) 0 0
\(610\) −31.6228 −1.28037
\(611\) 22.9737 0.929415
\(612\) 0 0
\(613\) −31.2982 −1.26412 −0.632062 0.774918i \(-0.717791\pi\)
−0.632062 + 0.774918i \(0.717791\pi\)
\(614\) 21.1623 0.854040
\(615\) 0 0
\(616\) 0 0
\(617\) 20.6491 0.831302 0.415651 0.909524i \(-0.363554\pi\)
0.415651 + 0.909524i \(0.363554\pi\)
\(618\) 0 0
\(619\) −23.3509 −0.938551 −0.469276 0.883052i \(-0.655485\pi\)
−0.469276 + 0.883052i \(0.655485\pi\)
\(620\) −28.9737 −1.16361
\(621\) 0 0
\(622\) 29.8114 1.19533
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) −20.3246 −0.812333
\(627\) 0 0
\(628\) 5.48683 0.218948
\(629\) −59.6228 −2.37732
\(630\) 0 0
\(631\) −27.6228 −1.09965 −0.549823 0.835281i \(-0.685305\pi\)
−0.549823 + 0.835281i \(0.685305\pi\)
\(632\) −4.32456 −0.172022
\(633\) 0 0
\(634\) 12.9737 0.515250
\(635\) 66.3246 2.63201
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) 3.16228 0.125000
\(641\) 37.9473 1.49883 0.749415 0.662101i \(-0.230335\pi\)
0.749415 + 0.662101i \(0.230335\pi\)
\(642\) 0 0
\(643\) −34.9737 −1.37923 −0.689613 0.724178i \(-0.742220\pi\)
−0.689613 + 0.724178i \(0.742220\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 36.9737 1.45471
\(647\) −3.48683 −0.137082 −0.0685408 0.997648i \(-0.521834\pi\)
−0.0685408 + 0.997648i \(0.521834\pi\)
\(648\) 0 0
\(649\) −1.67544 −0.0657670
\(650\) −10.0000 −0.392232
\(651\) 0 0
\(652\) −16.6491 −0.652029
\(653\) −43.2982 −1.69439 −0.847195 0.531282i \(-0.821711\pi\)
−0.847195 + 0.531282i \(0.821711\pi\)
\(654\) 0 0
\(655\) −16.3246 −0.637853
\(656\) 7.16228 0.279640
\(657\) 0 0
\(658\) 0 0
\(659\) 22.9737 0.894927 0.447463 0.894302i \(-0.352327\pi\)
0.447463 + 0.894302i \(0.352327\pi\)
\(660\) 0 0
\(661\) 22.1359 0.860988 0.430494 0.902593i \(-0.358339\pi\)
0.430494 + 0.902593i \(0.358339\pi\)
\(662\) −8.97367 −0.348771
\(663\) 0 0
\(664\) 5.16228 0.200335
\(665\) 0 0
\(666\) 0 0
\(667\) −25.2982 −0.979551
\(668\) 6.32456 0.244704
\(669\) 0 0
\(670\) 13.6754 0.528329
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 13.6228 0.525119 0.262560 0.964916i \(-0.415433\pi\)
0.262560 + 0.964916i \(0.415433\pi\)
\(674\) −19.6754 −0.757870
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 8.32456 0.319939 0.159969 0.987122i \(-0.448860\pi\)
0.159969 + 0.987122i \(0.448860\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −22.6491 −0.868554
\(681\) 0 0
\(682\) 9.16228 0.350842
\(683\) −24.9737 −0.955591 −0.477795 0.878471i \(-0.658564\pi\)
−0.477795 + 0.878471i \(0.658564\pi\)
\(684\) 0 0
\(685\) −56.9210 −2.17484
\(686\) 0 0
\(687\) 0 0
\(688\) −6.32456 −0.241121
\(689\) −8.64911 −0.329505
\(690\) 0 0
\(691\) 6.97367 0.265291 0.132645 0.991164i \(-0.457653\pi\)
0.132645 + 0.991164i \(0.457653\pi\)
\(692\) 12.3246 0.468509
\(693\) 0 0
\(694\) −14.3246 −0.543753
\(695\) 23.6754 0.898061
\(696\) 0 0
\(697\) −51.2982 −1.94306
\(698\) −8.97367 −0.339658
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −42.9737 −1.62078
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −7.67544 −0.288869
\(707\) 0 0
\(708\) 0 0
\(709\) 40.3246 1.51442 0.757210 0.653171i \(-0.226562\pi\)
0.757210 + 0.653171i \(0.226562\pi\)
\(710\) −25.2982 −0.949425
\(711\) 0 0
\(712\) −16.3246 −0.611789
\(713\) 57.9473 2.17014
\(714\) 0 0
\(715\) 6.32456 0.236525
\(716\) −3.67544 −0.137358
\(717\) 0 0
\(718\) 3.67544 0.137166
\(719\) −22.8377 −0.851703 −0.425852 0.904793i \(-0.640025\pi\)
−0.425852 + 0.904793i \(0.640025\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 7.64911 0.284670
\(723\) 0 0
\(724\) −17.4868 −0.649893
\(725\) 20.0000 0.742781
\(726\) 0 0
\(727\) 40.1359 1.48856 0.744280 0.667868i \(-0.232793\pi\)
0.744280 + 0.667868i \(0.232793\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 17.3509 0.642185
\(731\) 45.2982 1.67542
\(732\) 0 0
\(733\) −5.35089 −0.197640 −0.0988198 0.995105i \(-0.531507\pi\)
−0.0988198 + 0.995105i \(0.531507\pi\)
\(734\) 1.16228 0.0429005
\(735\) 0 0
\(736\) −6.32456 −0.233126
\(737\) −4.32456 −0.159297
\(738\) 0 0
\(739\) 3.35089 0.123264 0.0616322 0.998099i \(-0.480369\pi\)
0.0616322 + 0.998099i \(0.480369\pi\)
\(740\) 26.3246 0.967710
\(741\) 0 0
\(742\) 0 0
\(743\) 3.35089 0.122932 0.0614661 0.998109i \(-0.480422\pi\)
0.0614661 + 0.998109i \(0.480422\pi\)
\(744\) 0 0
\(745\) 6.32456 0.231714
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 7.16228 0.261879
\(749\) 0 0
\(750\) 0 0
\(751\) 5.67544 0.207100 0.103550 0.994624i \(-0.466980\pi\)
0.103550 + 0.994624i \(0.466980\pi\)
\(752\) −11.4868 −0.418882
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) 65.2982 2.37645
\(756\) 0 0
\(757\) 29.6228 1.07666 0.538329 0.842735i \(-0.319056\pi\)
0.538329 + 0.842735i \(0.319056\pi\)
\(758\) −13.2982 −0.483013
\(759\) 0 0
\(760\) −16.3246 −0.592154
\(761\) 9.48683 0.343897 0.171949 0.985106i \(-0.444994\pi\)
0.171949 + 0.985106i \(0.444994\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5.67544 −0.205330
\(765\) 0 0
\(766\) 9.16228 0.331047
\(767\) −3.35089 −0.120994
\(768\) 0 0
\(769\) −25.4868 −0.919079 −0.459539 0.888157i \(-0.651985\pi\)
−0.459539 + 0.888157i \(0.651985\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.6491 0.383270
\(773\) 5.86406 0.210915 0.105458 0.994424i \(-0.466369\pi\)
0.105458 + 0.994424i \(0.466369\pi\)
\(774\) 0 0
\(775\) −45.8114 −1.64559
\(776\) 10.6491 0.382281
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −36.9737 −1.32472
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 45.2982 1.61986
\(783\) 0 0
\(784\) 0 0
\(785\) 17.3509 0.619280
\(786\) 0 0
\(787\) −6.46050 −0.230292 −0.115146 0.993349i \(-0.536734\pi\)
−0.115146 + 0.993349i \(0.536734\pi\)
\(788\) 24.0000 0.854965
\(789\) 0 0
\(790\) −13.6754 −0.486550
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −21.4868 −0.762539
\(795\) 0 0
\(796\) −19.4868 −0.690692
\(797\) −8.83772 −0.313048 −0.156524 0.987674i \(-0.550029\pi\)
−0.156524 + 0.987674i \(0.550029\pi\)
\(798\) 0 0
\(799\) 82.2719 2.91057
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) 23.2982 0.822689
\(803\) −5.48683 −0.193626
\(804\) 0 0
\(805\) 0 0
\(806\) 18.3246 0.645455
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 43.6754 1.53555 0.767773 0.640721i \(-0.221365\pi\)
0.767773 + 0.640721i \(0.221365\pi\)
\(810\) 0 0
\(811\) 7.48683 0.262898 0.131449 0.991323i \(-0.458037\pi\)
0.131449 + 0.991323i \(0.458037\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.32456 −0.291776
\(815\) −52.6491 −1.84422
\(816\) 0 0
\(817\) 32.6491 1.14225
\(818\) −27.1623 −0.949707
\(819\) 0 0
\(820\) 22.6491 0.790941
\(821\) −52.5964 −1.83563 −0.917814 0.397010i \(-0.870048\pi\)
−0.917814 + 0.397010i \(0.870048\pi\)
\(822\) 0 0
\(823\) −9.02633 −0.314638 −0.157319 0.987548i \(-0.550285\pi\)
−0.157319 + 0.987548i \(0.550285\pi\)
\(824\) −13.8114 −0.481143
\(825\) 0 0
\(826\) 0 0
\(827\) 33.9473 1.18046 0.590232 0.807234i \(-0.299036\pi\)
0.590232 + 0.807234i \(0.299036\pi\)
\(828\) 0 0
\(829\) 12.4605 0.432771 0.216386 0.976308i \(-0.430573\pi\)
0.216386 + 0.976308i \(0.430573\pi\)
\(830\) 16.3246 0.566634
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 20.0000 0.692129
\(836\) 5.16228 0.178541
\(837\) 0 0
\(838\) 16.6491 0.575134
\(839\) 34.4605 1.18971 0.594854 0.803834i \(-0.297210\pi\)
0.594854 + 0.803834i \(0.297210\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) −39.9473 −1.37668
\(843\) 0 0
\(844\) −18.3246 −0.630757
\(845\) −28.4605 −0.979071
\(846\) 0 0
\(847\) 0 0
\(848\) 4.32456 0.148506
\(849\) 0 0
\(850\) −35.8114 −1.22832
\(851\) −52.6491 −1.80479
\(852\) 0 0
\(853\) 6.64911 0.227661 0.113831 0.993500i \(-0.463688\pi\)
0.113831 + 0.993500i \(0.463688\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −14.3246 −0.489603
\(857\) −24.1886 −0.826267 −0.413134 0.910670i \(-0.635566\pi\)
−0.413134 + 0.910670i \(0.635566\pi\)
\(858\) 0 0
\(859\) 30.3246 1.03466 0.517330 0.855786i \(-0.326926\pi\)
0.517330 + 0.855786i \(0.326926\pi\)
\(860\) −20.0000 −0.681994
\(861\) 0 0
\(862\) −8.97367 −0.305644
\(863\) 17.6754 0.601679 0.300840 0.953675i \(-0.402733\pi\)
0.300840 + 0.953675i \(0.402733\pi\)
\(864\) 0 0
\(865\) 38.9737 1.32514
\(866\) 34.0000 1.15537
\(867\) 0 0
\(868\) 0 0
\(869\) 4.32456 0.146700
\(870\) 0 0
\(871\) −8.64911 −0.293064
\(872\) −8.00000 −0.270914
\(873\) 0 0
\(874\) 32.6491 1.10437
\(875\) 0 0
\(876\) 0 0
\(877\) −23.3509 −0.788504 −0.394252 0.919002i \(-0.628996\pi\)
−0.394252 + 0.919002i \(0.628996\pi\)
\(878\) 6.32456 0.213443
\(879\) 0 0
\(880\) −3.16228 −0.106600
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) −13.2982 −0.447521 −0.223760 0.974644i \(-0.571833\pi\)
−0.223760 + 0.974644i \(0.571833\pi\)
\(884\) 14.3246 0.481787
\(885\) 0 0
\(886\) 4.32456 0.145286
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −51.6228 −1.73040
\(891\) 0 0
\(892\) 11.4868 0.384608
\(893\) 59.2982 1.98434
\(894\) 0 0
\(895\) −11.6228 −0.388507
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −36.6491 −1.22232
\(900\) 0 0
\(901\) −30.9737 −1.03188
\(902\) −7.16228 −0.238478
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) −55.2982 −1.83818
\(906\) 0 0
\(907\) 53.6228 1.78052 0.890258 0.455457i \(-0.150524\pi\)
0.890258 + 0.455457i \(0.150524\pi\)
\(908\) −7.48683 −0.248459
\(909\) 0 0
\(910\) 0 0
\(911\) −22.3246 −0.739646 −0.369823 0.929102i \(-0.620582\pi\)
−0.369823 + 0.929102i \(0.620582\pi\)
\(912\) 0 0
\(913\) −5.16228 −0.170846
\(914\) 17.3509 0.573916
\(915\) 0 0
\(916\) 25.4868 0.842109
\(917\) 0 0
\(918\) 0 0
\(919\) −17.2982 −0.570616 −0.285308 0.958436i \(-0.592096\pi\)
−0.285308 + 0.958436i \(0.592096\pi\)
\(920\) −20.0000 −0.659380
\(921\) 0 0
\(922\) 23.2982 0.767286
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 41.6228 1.36855
\(926\) −28.6491 −0.941468
\(927\) 0 0
\(928\) 4.00000 0.131306
\(929\) −33.6228 −1.10313 −0.551564 0.834133i \(-0.685969\pi\)
−0.551564 + 0.834133i \(0.685969\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 17.2982 0.566015
\(935\) 22.6491 0.740705
\(936\) 0 0
\(937\) 42.1359 1.37652 0.688261 0.725464i \(-0.258375\pi\)
0.688261 + 0.725464i \(0.258375\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −36.3246 −1.18478
\(941\) 27.6754 0.902194 0.451097 0.892475i \(-0.351033\pi\)
0.451097 + 0.892475i \(0.351033\pi\)
\(942\) 0 0
\(943\) −45.2982 −1.47511
\(944\) 1.67544 0.0545311
\(945\) 0 0
\(946\) 6.32456 0.205629
\(947\) 2.70178 0.0877960 0.0438980 0.999036i \(-0.486022\pi\)
0.0438980 + 0.999036i \(0.486022\pi\)
\(948\) 0 0
\(949\) −10.9737 −0.356220
\(950\) −25.8114 −0.837432
\(951\) 0 0
\(952\) 0 0
\(953\) −4.97367 −0.161113 −0.0805564 0.996750i \(-0.525670\pi\)
−0.0805564 + 0.996750i \(0.525670\pi\)
\(954\) 0 0
\(955\) −17.9473 −0.580762
\(956\) 12.6491 0.409101
\(957\) 0 0
\(958\) 21.2982 0.688114
\(959\) 0 0
\(960\) 0 0
\(961\) 52.9473 1.70798
\(962\) −16.6491 −0.536789
\(963\) 0 0
\(964\) −0.837722 −0.0269812
\(965\) 33.6754 1.08405
\(966\) 0 0
\(967\) −57.2982 −1.84259 −0.921293 0.388868i \(-0.872866\pi\)
−0.921293 + 0.388868i \(0.872866\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 33.6754 1.08125
\(971\) 7.35089 0.235901 0.117951 0.993019i \(-0.462368\pi\)
0.117951 + 0.993019i \(0.462368\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −14.3246 −0.458988
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) −24.6491 −0.788595 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(978\) 0 0
\(979\) 16.3246 0.521735
\(980\) 0 0
\(981\) 0 0
\(982\) 8.64911 0.276004
\(983\) −48.1359 −1.53530 −0.767649 0.640870i \(-0.778574\pi\)
−0.767649 + 0.640870i \(0.778574\pi\)
\(984\) 0 0
\(985\) 75.8947 2.41821
\(986\) −28.6491 −0.912374
\(987\) 0 0
\(988\) 10.3246 0.328468
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) −61.2982 −1.94720 −0.973601 0.228256i \(-0.926698\pi\)
−0.973601 + 0.228256i \(0.926698\pi\)
\(992\) −9.16228 −0.290903
\(993\) 0 0
\(994\) 0 0
\(995\) −61.6228 −1.95357
\(996\) 0 0
\(997\) −48.9737 −1.55101 −0.775506 0.631340i \(-0.782505\pi\)
−0.775506 + 0.631340i \(0.782505\pi\)
\(998\) −16.9737 −0.537292
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.dc.1.2 2
3.2 odd 2 9702.2.a.cn.1.1 2
7.6 odd 2 1386.2.a.o.1.1 yes 2
21.20 even 2 1386.2.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1386.2.a.n.1.2 2 21.20 even 2
1386.2.a.o.1.1 yes 2 7.6 odd 2
9702.2.a.cn.1.1 2 3.2 odd 2
9702.2.a.dc.1.2 2 1.1 even 1 trivial