Properties

Label 9702.2.a.ec.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.14336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.60804\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.27411 q^{5} +1.00000 q^{8} -2.27411 q^{10} +1.00000 q^{11} +1.80186 q^{13} +1.00000 q^{16} -5.10254 q^{17} -6.90440 q^{19} -2.27411 q^{20} +1.00000 q^{22} -8.59272 q^{23} +0.171573 q^{25} +1.80186 q^{26} +2.82843 q^{29} +3.14010 q^{31} +1.00000 q^{32} -5.10254 q^{34} +4.44078 q^{37} -6.90440 q^{38} -2.27411 q^{40} +5.10254 q^{41} +6.93587 q^{43} +1.00000 q^{44} -8.59272 q^{46} +0.0759718 q^{47} +0.171573 q^{50} +1.80186 q^{52} +6.87293 q^{53} -2.27411 q^{55} +2.82843 q^{58} -5.17157 q^{59} +8.63029 q^{61} +3.14010 q^{62} +1.00000 q^{64} -4.09763 q^{65} +13.4841 q^{67} -5.10254 q^{68} +9.26058 q^{71} -3.04941 q^{73} +4.44078 q^{74} -6.90440 q^{76} +9.26921 q^{79} -2.27411 q^{80} +5.10254 q^{82} +1.96853 q^{83} +11.6037 q^{85} +6.93587 q^{86} +1.00000 q^{88} -15.0624 q^{89} -8.59272 q^{92} +0.0759718 q^{94} +15.7014 q^{95} -9.01794 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 4 q^{11} + 4 q^{16} + 4 q^{22} + 8 q^{23} + 12 q^{25} + 16 q^{31} + 4 q^{32} + 8 q^{37} + 8 q^{43} + 4 q^{44} + 8 q^{46} - 16 q^{47} + 12 q^{50} - 8 q^{53} - 32 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.27411 −1.01701 −0.508506 0.861058i \(-0.669802\pi\)
−0.508506 + 0.861058i \(0.669802\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.27411 −0.719136
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.80186 0.499747 0.249873 0.968279i \(-0.419611\pi\)
0.249873 + 0.968279i \(0.419611\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.10254 −1.23755 −0.618773 0.785570i \(-0.712370\pi\)
−0.618773 + 0.785570i \(0.712370\pi\)
\(18\) 0 0
\(19\) −6.90440 −1.58398 −0.791989 0.610536i \(-0.790954\pi\)
−0.791989 + 0.610536i \(0.790954\pi\)
\(20\) −2.27411 −0.508506
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −8.59272 −1.79171 −0.895853 0.444350i \(-0.853435\pi\)
−0.895853 + 0.444350i \(0.853435\pi\)
\(24\) 0 0
\(25\) 0.171573 0.0343146
\(26\) 1.80186 0.353374
\(27\) 0 0
\(28\) 0 0
\(29\) 2.82843 0.525226 0.262613 0.964901i \(-0.415416\pi\)
0.262613 + 0.964901i \(0.415416\pi\)
\(30\) 0 0
\(31\) 3.14010 0.563979 0.281990 0.959417i \(-0.409006\pi\)
0.281990 + 0.959417i \(0.409006\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −5.10254 −0.875078
\(35\) 0 0
\(36\) 0 0
\(37\) 4.44078 0.730059 0.365030 0.930996i \(-0.381059\pi\)
0.365030 + 0.930996i \(0.381059\pi\)
\(38\) −6.90440 −1.12004
\(39\) 0 0
\(40\) −2.27411 −0.359568
\(41\) 5.10254 0.796882 0.398441 0.917194i \(-0.369551\pi\)
0.398441 + 0.917194i \(0.369551\pi\)
\(42\) 0 0
\(43\) 6.93587 1.05771 0.528855 0.848712i \(-0.322622\pi\)
0.528855 + 0.848712i \(0.322622\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −8.59272 −1.26693
\(47\) 0.0759718 0.0110816 0.00554082 0.999985i \(-0.498236\pi\)
0.00554082 + 0.999985i \(0.498236\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.171573 0.0242641
\(51\) 0 0
\(52\) 1.80186 0.249873
\(53\) 6.87293 0.944070 0.472035 0.881580i \(-0.343520\pi\)
0.472035 + 0.881580i \(0.343520\pi\)
\(54\) 0 0
\(55\) −2.27411 −0.306641
\(56\) 0 0
\(57\) 0 0
\(58\) 2.82843 0.371391
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) 8.63029 1.10500 0.552498 0.833514i \(-0.313675\pi\)
0.552498 + 0.833514i \(0.313675\pi\)
\(62\) 3.14010 0.398794
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.09763 −0.508249
\(66\) 0 0
\(67\) 13.4841 1.64734 0.823672 0.567067i \(-0.191922\pi\)
0.823672 + 0.567067i \(0.191922\pi\)
\(68\) −5.10254 −0.618773
\(69\) 0 0
\(70\) 0 0
\(71\) 9.26058 1.09903 0.549514 0.835484i \(-0.314813\pi\)
0.549514 + 0.835484i \(0.314813\pi\)
\(72\) 0 0
\(73\) −3.04941 −0.356906 −0.178453 0.983948i \(-0.557109\pi\)
−0.178453 + 0.983948i \(0.557109\pi\)
\(74\) 4.44078 0.516230
\(75\) 0 0
\(76\) −6.90440 −0.791989
\(77\) 0 0
\(78\) 0 0
\(79\) 9.26921 1.04287 0.521434 0.853292i \(-0.325397\pi\)
0.521434 + 0.853292i \(0.325397\pi\)
\(80\) −2.27411 −0.254253
\(81\) 0 0
\(82\) 5.10254 0.563481
\(83\) 1.96853 0.216074 0.108037 0.994147i \(-0.465543\pi\)
0.108037 + 0.994147i \(0.465543\pi\)
\(84\) 0 0
\(85\) 11.6037 1.25860
\(86\) 6.93587 0.747914
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −15.0624 −1.59662 −0.798308 0.602250i \(-0.794271\pi\)
−0.798308 + 0.602250i \(0.794271\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −8.59272 −0.895853
\(93\) 0 0
\(94\) 0.0759718 0.00783590
\(95\) 15.7014 1.61093
\(96\) 0 0
\(97\) −9.01794 −0.915633 −0.457816 0.889047i \(-0.651368\pi\)
−0.457816 + 0.889047i \(0.651368\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.171573 0.0171573
\(101\) 11.2230 1.11673 0.558366 0.829595i \(-0.311429\pi\)
0.558366 + 0.829595i \(0.311429\pi\)
\(102\) 0 0
\(103\) 17.0118 1.67623 0.838113 0.545496i \(-0.183659\pi\)
0.838113 + 0.545496i \(0.183659\pi\)
\(104\) 1.80186 0.176687
\(105\) 0 0
\(106\) 6.87293 0.667558
\(107\) −11.6482 −1.12608 −0.563038 0.826431i \(-0.690368\pi\)
−0.563038 + 0.826431i \(0.690368\pi\)
\(108\) 0 0
\(109\) −14.0890 −1.34948 −0.674741 0.738055i \(-0.735745\pi\)
−0.674741 + 0.738055i \(0.735745\pi\)
\(110\) −2.27411 −0.216828
\(111\) 0 0
\(112\) 0 0
\(113\) 5.71979 0.538073 0.269036 0.963130i \(-0.413295\pi\)
0.269036 + 0.963130i \(0.413295\pi\)
\(114\) 0 0
\(115\) 19.5408 1.82219
\(116\) 2.82843 0.262613
\(117\) 0 0
\(118\) −5.17157 −0.476082
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 8.63029 0.781350
\(123\) 0 0
\(124\) 3.14010 0.281990
\(125\) 10.9804 0.982114
\(126\) 0 0
\(127\) 6.60492 0.586092 0.293046 0.956098i \(-0.405331\pi\)
0.293046 + 0.956098i \(0.405331\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.09763 −0.359386
\(131\) −5.96853 −0.521473 −0.260737 0.965410i \(-0.583965\pi\)
−0.260737 + 0.965410i \(0.583965\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.4841 1.16485
\(135\) 0 0
\(136\) −5.10254 −0.437539
\(137\) −11.2606 −0.962056 −0.481028 0.876705i \(-0.659737\pi\)
−0.481028 + 0.876705i \(0.659737\pi\)
\(138\) 0 0
\(139\) 8.62419 0.731494 0.365747 0.930714i \(-0.380813\pi\)
0.365747 + 0.930714i \(0.380813\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 9.26058 0.777131
\(143\) 1.80186 0.150679
\(144\) 0 0
\(145\) −6.43215 −0.534161
\(146\) −3.04941 −0.252371
\(147\) 0 0
\(148\) 4.44078 0.365030
\(149\) 12.3211 1.00939 0.504694 0.863299i \(-0.331606\pi\)
0.504694 + 0.863299i \(0.331606\pi\)
\(150\) 0 0
\(151\) −11.5286 −0.938183 −0.469092 0.883149i \(-0.655419\pi\)
−0.469092 + 0.883149i \(0.655419\pi\)
\(152\) −6.90440 −0.560021
\(153\) 0 0
\(154\) 0 0
\(155\) −7.14094 −0.573574
\(156\) 0 0
\(157\) 1.49881 0.119618 0.0598091 0.998210i \(-0.480951\pi\)
0.0598091 + 0.998210i \(0.480951\pi\)
\(158\) 9.26921 0.737418
\(159\) 0 0
\(160\) −2.27411 −0.179784
\(161\) 0 0
\(162\) 0 0
\(163\) 13.6569 1.06969 0.534844 0.844951i \(-0.320370\pi\)
0.534844 + 0.844951i \(0.320370\pi\)
\(164\) 5.10254 0.398441
\(165\) 0 0
\(166\) 1.96853 0.152788
\(167\) −19.6927 −1.52387 −0.761935 0.647654i \(-0.775750\pi\)
−0.761935 + 0.647654i \(0.775750\pi\)
\(168\) 0 0
\(169\) −9.75329 −0.750253
\(170\) 11.6037 0.889965
\(171\) 0 0
\(172\) 6.93587 0.528855
\(173\) 14.5107 1.10322 0.551612 0.834101i \(-0.314013\pi\)
0.551612 + 0.834101i \(0.314013\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −15.0624 −1.12898
\(179\) 22.3656 1.67169 0.835843 0.548968i \(-0.184979\pi\)
0.835843 + 0.548968i \(0.184979\pi\)
\(180\) 0 0
\(181\) −5.73976 −0.426633 −0.213317 0.976983i \(-0.568427\pi\)
−0.213317 + 0.976983i \(0.568427\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.59272 −0.633464
\(185\) −10.0988 −0.742480
\(186\) 0 0
\(187\) −5.10254 −0.373134
\(188\) 0.0759718 0.00554082
\(189\) 0 0
\(190\) 15.7014 1.13910
\(191\) 11.7112 0.847390 0.423695 0.905805i \(-0.360733\pi\)
0.423695 + 0.905805i \(0.360733\pi\)
\(192\) 0 0
\(193\) −12.7533 −0.918002 −0.459001 0.888436i \(-0.651793\pi\)
−0.459001 + 0.888436i \(0.651793\pi\)
\(194\) −9.01794 −0.647450
\(195\) 0 0
\(196\) 0 0
\(197\) 23.2606 1.65725 0.828624 0.559806i \(-0.189124\pi\)
0.828624 + 0.559806i \(0.189124\pi\)
\(198\) 0 0
\(199\) 1.48325 0.105145 0.0525724 0.998617i \(-0.483258\pi\)
0.0525724 + 0.998617i \(0.483258\pi\)
\(200\) 0.171573 0.0121320
\(201\) 0 0
\(202\) 11.2230 0.789648
\(203\) 0 0
\(204\) 0 0
\(205\) −11.6037 −0.810439
\(206\) 17.0118 1.18527
\(207\) 0 0
\(208\) 1.80186 0.124937
\(209\) −6.90440 −0.477587
\(210\) 0 0
\(211\) 0.503715 0.0346772 0.0173386 0.999850i \(-0.494481\pi\)
0.0173386 + 0.999850i \(0.494481\pi\)
\(212\) 6.87293 0.472035
\(213\) 0 0
\(214\) −11.6482 −0.796257
\(215\) −15.7729 −1.07570
\(216\) 0 0
\(217\) 0 0
\(218\) −14.0890 −0.954228
\(219\) 0 0
\(220\) −2.27411 −0.153320
\(221\) −9.19407 −0.618460
\(222\) 0 0
\(223\) 20.0044 1.33959 0.669797 0.742544i \(-0.266381\pi\)
0.669797 + 0.742544i \(0.266381\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 5.71979 0.380475
\(227\) −13.5601 −0.900013 −0.450006 0.893025i \(-0.648578\pi\)
−0.450006 + 0.893025i \(0.648578\pi\)
\(228\) 0 0
\(229\) −5.10254 −0.337185 −0.168593 0.985686i \(-0.553922\pi\)
−0.168593 + 0.985686i \(0.553922\pi\)
\(230\) 19.5408 1.28848
\(231\) 0 0
\(232\) 2.82843 0.185695
\(233\) 0.343146 0.0224802 0.0112401 0.999937i \(-0.496422\pi\)
0.0112401 + 0.999937i \(0.496422\pi\)
\(234\) 0 0
\(235\) −0.172768 −0.0112702
\(236\) −5.17157 −0.336641
\(237\) 0 0
\(238\) 0 0
\(239\) 18.4322 1.19228 0.596138 0.802882i \(-0.296701\pi\)
0.596138 + 0.802882i \(0.296701\pi\)
\(240\) 0 0
\(241\) 24.5682 1.58258 0.791288 0.611444i \(-0.209411\pi\)
0.791288 + 0.611444i \(0.209411\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 8.63029 0.552498
\(245\) 0 0
\(246\) 0 0
\(247\) −12.4408 −0.791588
\(248\) 3.14010 0.199397
\(249\) 0 0
\(250\) 10.9804 0.694460
\(251\) −1.50491 −0.0949891 −0.0474946 0.998871i \(-0.515124\pi\)
−0.0474946 + 0.998871i \(0.515124\pi\)
\(252\) 0 0
\(253\) −8.59272 −0.540220
\(254\) 6.60492 0.414430
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.8476 −0.676652 −0.338326 0.941029i \(-0.609861\pi\)
−0.338326 + 0.941029i \(0.609861\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.09763 −0.254124
\(261\) 0 0
\(262\) −5.96853 −0.368737
\(263\) −6.25938 −0.385970 −0.192985 0.981202i \(-0.561817\pi\)
−0.192985 + 0.981202i \(0.561817\pi\)
\(264\) 0 0
\(265\) −15.6298 −0.960131
\(266\) 0 0
\(267\) 0 0
\(268\) 13.4841 0.823672
\(269\) −14.8345 −0.904477 −0.452239 0.891897i \(-0.649374\pi\)
−0.452239 + 0.891897i \(0.649374\pi\)
\(270\) 0 0
\(271\) −2.91743 −0.177221 −0.0886107 0.996066i \(-0.528243\pi\)
−0.0886107 + 0.996066i \(0.528243\pi\)
\(272\) −5.10254 −0.309387
\(273\) 0 0
\(274\) −11.2606 −0.680276
\(275\) 0.171573 0.0103462
\(276\) 0 0
\(277\) 12.1012 0.727091 0.363545 0.931576i \(-0.381566\pi\)
0.363545 + 0.931576i \(0.381566\pi\)
\(278\) 8.62419 0.517245
\(279\) 0 0
\(280\) 0 0
\(281\) −7.74586 −0.462079 −0.231040 0.972944i \(-0.574213\pi\)
−0.231040 + 0.972944i \(0.574213\pi\)
\(282\) 0 0
\(283\) 17.5948 1.04590 0.522950 0.852364i \(-0.324832\pi\)
0.522950 + 0.852364i \(0.324832\pi\)
\(284\) 9.26058 0.549514
\(285\) 0 0
\(286\) 1.80186 0.106546
\(287\) 0 0
\(288\) 0 0
\(289\) 9.03588 0.531522
\(290\) −6.43215 −0.377709
\(291\) 0 0
\(292\) −3.04941 −0.178453
\(293\) 16.1675 0.944516 0.472258 0.881460i \(-0.343439\pi\)
0.472258 + 0.881460i \(0.343439\pi\)
\(294\) 0 0
\(295\) 11.7607 0.684736
\(296\) 4.44078 0.258115
\(297\) 0 0
\(298\) 12.3211 0.713744
\(299\) −15.4829 −0.895399
\(300\) 0 0
\(301\) 0 0
\(302\) −11.5286 −0.663396
\(303\) 0 0
\(304\) −6.90440 −0.395994
\(305\) −19.6262 −1.12379
\(306\) 0 0
\(307\) −27.0563 −1.54419 −0.772094 0.635509i \(-0.780790\pi\)
−0.772094 + 0.635509i \(0.780790\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −7.14094 −0.405578
\(311\) 24.5751 1.39353 0.696764 0.717301i \(-0.254623\pi\)
0.696764 + 0.717301i \(0.254623\pi\)
\(312\) 0 0
\(313\) 13.0809 0.739375 0.369687 0.929156i \(-0.379465\pi\)
0.369687 + 0.929156i \(0.379465\pi\)
\(314\) 1.49881 0.0845828
\(315\) 0 0
\(316\) 9.26921 0.521434
\(317\) −20.6557 −1.16014 −0.580069 0.814568i \(-0.696974\pi\)
−0.580069 + 0.814568i \(0.696974\pi\)
\(318\) 0 0
\(319\) 2.82843 0.158362
\(320\) −2.27411 −0.127127
\(321\) 0 0
\(322\) 0 0
\(323\) 35.2299 1.96025
\(324\) 0 0
\(325\) 0.309151 0.0171486
\(326\) 13.6569 0.756383
\(327\) 0 0
\(328\) 5.10254 0.281740
\(329\) 0 0
\(330\) 0 0
\(331\) −19.7014 −1.08288 −0.541442 0.840738i \(-0.682122\pi\)
−0.541442 + 0.840738i \(0.682122\pi\)
\(332\) 1.96853 0.108037
\(333\) 0 0
\(334\) −19.6927 −1.07754
\(335\) −30.6643 −1.67537
\(336\) 0 0
\(337\) 7.88036 0.429271 0.214635 0.976694i \(-0.431144\pi\)
0.214635 + 0.976694i \(0.431144\pi\)
\(338\) −9.75329 −0.530509
\(339\) 0 0
\(340\) 11.6037 0.629300
\(341\) 3.14010 0.170046
\(342\) 0 0
\(343\) 0 0
\(344\) 6.93587 0.373957
\(345\) 0 0
\(346\) 14.5107 0.780097
\(347\) 31.1768 1.67366 0.836830 0.547463i \(-0.184406\pi\)
0.836830 + 0.547463i \(0.184406\pi\)
\(348\) 0 0
\(349\) 2.96124 0.158511 0.0792557 0.996854i \(-0.474746\pi\)
0.0792557 + 0.996854i \(0.474746\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 12.9514 0.689335 0.344667 0.938725i \(-0.387992\pi\)
0.344667 + 0.938725i \(0.387992\pi\)
\(354\) 0 0
\(355\) −21.0596 −1.11773
\(356\) −15.0624 −0.798308
\(357\) 0 0
\(358\) 22.3656 1.18206
\(359\) −25.6621 −1.35439 −0.677197 0.735802i \(-0.736805\pi\)
−0.677197 + 0.735802i \(0.736805\pi\)
\(360\) 0 0
\(361\) 28.6707 1.50899
\(362\) −5.73976 −0.301675
\(363\) 0 0
\(364\) 0 0
\(365\) 6.93469 0.362978
\(366\) 0 0
\(367\) 28.3885 1.48187 0.740933 0.671578i \(-0.234383\pi\)
0.740933 + 0.671578i \(0.234383\pi\)
\(368\) −8.59272 −0.447927
\(369\) 0 0
\(370\) −10.0988 −0.525012
\(371\) 0 0
\(372\) 0 0
\(373\) 14.5743 0.754628 0.377314 0.926085i \(-0.376848\pi\)
0.377314 + 0.926085i \(0.376848\pi\)
\(374\) −5.10254 −0.263846
\(375\) 0 0
\(376\) 0.0759718 0.00391795
\(377\) 5.09644 0.262480
\(378\) 0 0
\(379\) 6.64703 0.341435 0.170718 0.985320i \(-0.445391\pi\)
0.170718 + 0.985320i \(0.445391\pi\)
\(380\) 15.7014 0.805463
\(381\) 0 0
\(382\) 11.7112 0.599195
\(383\) −27.7108 −1.41596 −0.707978 0.706234i \(-0.750393\pi\)
−0.707978 + 0.706234i \(0.750393\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −12.7533 −0.649125
\(387\) 0 0
\(388\) −9.01794 −0.457816
\(389\) 10.6250 0.538710 0.269355 0.963041i \(-0.413189\pi\)
0.269355 + 0.963041i \(0.413189\pi\)
\(390\) 0 0
\(391\) 43.8447 2.21732
\(392\) 0 0
\(393\) 0 0
\(394\) 23.2606 1.17185
\(395\) −21.0792 −1.06061
\(396\) 0 0
\(397\) 2.14824 0.107817 0.0539084 0.998546i \(-0.482832\pi\)
0.0539084 + 0.998546i \(0.482832\pi\)
\(398\) 1.48325 0.0743486
\(399\) 0 0
\(400\) 0.171573 0.00857864
\(401\) 34.5743 1.72656 0.863279 0.504727i \(-0.168407\pi\)
0.863279 + 0.504727i \(0.168407\pi\)
\(402\) 0 0
\(403\) 5.65804 0.281847
\(404\) 11.2230 0.558366
\(405\) 0 0
\(406\) 0 0
\(407\) 4.44078 0.220121
\(408\) 0 0
\(409\) 38.5323 1.90530 0.952650 0.304069i \(-0.0983453\pi\)
0.952650 + 0.304069i \(0.0983453\pi\)
\(410\) −11.6037 −0.573067
\(411\) 0 0
\(412\) 17.0118 0.838113
\(413\) 0 0
\(414\) 0 0
\(415\) −4.47666 −0.219750
\(416\) 1.80186 0.0883436
\(417\) 0 0
\(418\) −6.90440 −0.337705
\(419\) −11.7729 −0.575145 −0.287572 0.957759i \(-0.592848\pi\)
−0.287572 + 0.957759i \(0.592848\pi\)
\(420\) 0 0
\(421\) −14.3039 −0.697129 −0.348564 0.937285i \(-0.613331\pi\)
−0.348564 + 0.937285i \(0.613331\pi\)
\(422\) 0.503715 0.0245205
\(423\) 0 0
\(424\) 6.87293 0.333779
\(425\) −0.875457 −0.0424659
\(426\) 0 0
\(427\) 0 0
\(428\) −11.6482 −0.563038
\(429\) 0 0
\(430\) −15.7729 −0.760638
\(431\) −0.172768 −0.00832195 −0.00416098 0.999991i \(-0.501324\pi\)
−0.00416098 + 0.999991i \(0.501324\pi\)
\(432\) 0 0
\(433\) 19.7712 0.950145 0.475072 0.879947i \(-0.342422\pi\)
0.475072 + 0.879947i \(0.342422\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.0890 −0.674741
\(437\) 59.3276 2.83802
\(438\) 0 0
\(439\) −1.17157 −0.0559161 −0.0279581 0.999609i \(-0.508900\pi\)
−0.0279581 + 0.999609i \(0.508900\pi\)
\(440\) −2.27411 −0.108414
\(441\) 0 0
\(442\) −9.19407 −0.437317
\(443\) 33.6621 1.59933 0.799667 0.600443i \(-0.205009\pi\)
0.799667 + 0.600443i \(0.205009\pi\)
\(444\) 0 0
\(445\) 34.2536 1.62378
\(446\) 20.0044 0.947236
\(447\) 0 0
\(448\) 0 0
\(449\) −7.27039 −0.343111 −0.171555 0.985174i \(-0.554879\pi\)
−0.171555 + 0.985174i \(0.554879\pi\)
\(450\) 0 0
\(451\) 5.10254 0.240269
\(452\) 5.71979 0.269036
\(453\) 0 0
\(454\) −13.5601 −0.636405
\(455\) 0 0
\(456\) 0 0
\(457\) −31.0596 −1.45291 −0.726453 0.687216i \(-0.758832\pi\)
−0.726453 + 0.687216i \(0.758832\pi\)
\(458\) −5.10254 −0.238426
\(459\) 0 0
\(460\) 19.5408 0.911094
\(461\) 10.5228 0.490098 0.245049 0.969511i \(-0.421196\pi\)
0.245049 + 0.969511i \(0.421196\pi\)
\(462\) 0 0
\(463\) −8.30389 −0.385914 −0.192957 0.981207i \(-0.561808\pi\)
−0.192957 + 0.981207i \(0.561808\pi\)
\(464\) 2.82843 0.131306
\(465\) 0 0
\(466\) 0.343146 0.0158959
\(467\) −11.5530 −0.534608 −0.267304 0.963612i \(-0.586133\pi\)
−0.267304 + 0.963612i \(0.586133\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.172768 −0.00796920
\(471\) 0 0
\(472\) −5.17157 −0.238041
\(473\) 6.93587 0.318912
\(474\) 0 0
\(475\) −1.18461 −0.0543535
\(476\) 0 0
\(477\) 0 0
\(478\) 18.4322 0.843067
\(479\) 10.7482 0.491100 0.245550 0.969384i \(-0.421032\pi\)
0.245550 + 0.969384i \(0.421032\pi\)
\(480\) 0 0
\(481\) 8.00167 0.364845
\(482\) 24.5682 1.11905
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 20.5078 0.931210
\(486\) 0 0
\(487\) −38.6164 −1.74988 −0.874938 0.484235i \(-0.839098\pi\)
−0.874938 + 0.484235i \(0.839098\pi\)
\(488\) 8.63029 0.390675
\(489\) 0 0
\(490\) 0 0
\(491\) 8.68629 0.392007 0.196003 0.980603i \(-0.437204\pi\)
0.196003 + 0.980603i \(0.437204\pi\)
\(492\) 0 0
\(493\) −14.4322 −0.649991
\(494\) −12.4408 −0.559737
\(495\) 0 0
\(496\) 3.14010 0.140995
\(497\) 0 0
\(498\) 0 0
\(499\) 43.1041 1.92960 0.964802 0.262979i \(-0.0847049\pi\)
0.964802 + 0.262979i \(0.0847049\pi\)
\(500\) 10.9804 0.491057
\(501\) 0 0
\(502\) −1.50491 −0.0671674
\(503\) 24.7174 1.10210 0.551048 0.834474i \(-0.314228\pi\)
0.551048 + 0.834474i \(0.314228\pi\)
\(504\) 0 0
\(505\) −25.5224 −1.13573
\(506\) −8.59272 −0.381993
\(507\) 0 0
\(508\) 6.60492 0.293046
\(509\) −21.4619 −0.951284 −0.475642 0.879639i \(-0.657784\pi\)
−0.475642 + 0.879639i \(0.657784\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −10.8476 −0.478465
\(515\) −38.6868 −1.70474
\(516\) 0 0
\(517\) 0.0759718 0.00334124
\(518\) 0 0
\(519\) 0 0
\(520\) −4.09763 −0.179693
\(521\) 19.2773 0.844555 0.422277 0.906467i \(-0.361231\pi\)
0.422277 + 0.906467i \(0.361231\pi\)
\(522\) 0 0
\(523\) −12.7304 −0.556664 −0.278332 0.960485i \(-0.589781\pi\)
−0.278332 + 0.960485i \(0.589781\pi\)
\(524\) −5.96853 −0.260737
\(525\) 0 0
\(526\) −6.25938 −0.272922
\(527\) −16.0225 −0.697951
\(528\) 0 0
\(529\) 50.8349 2.21021
\(530\) −15.6298 −0.678915
\(531\) 0 0
\(532\) 0 0
\(533\) 9.19407 0.398239
\(534\) 0 0
\(535\) 26.4893 1.14523
\(536\) 13.4841 0.582424
\(537\) 0 0
\(538\) −14.8345 −0.639562
\(539\) 0 0
\(540\) 0 0
\(541\) −7.36684 −0.316725 −0.158363 0.987381i \(-0.550621\pi\)
−0.158363 + 0.987381i \(0.550621\pi\)
\(542\) −2.91743 −0.125315
\(543\) 0 0
\(544\) −5.10254 −0.218769
\(545\) 32.0399 1.37244
\(546\) 0 0
\(547\) 13.7320 0.587138 0.293569 0.955938i \(-0.405157\pi\)
0.293569 + 0.955938i \(0.405157\pi\)
\(548\) −11.2606 −0.481028
\(549\) 0 0
\(550\) 0.171573 0.00731589
\(551\) −19.5286 −0.831946
\(552\) 0 0
\(553\) 0 0
\(554\) 12.1012 0.514131
\(555\) 0 0
\(556\) 8.62419 0.365747
\(557\) −0.845679 −0.0358326 −0.0179163 0.999839i \(-0.505703\pi\)
−0.0179163 + 0.999839i \(0.505703\pi\)
\(558\) 0 0
\(559\) 12.4975 0.528587
\(560\) 0 0
\(561\) 0 0
\(562\) −7.74586 −0.326739
\(563\) 18.1009 0.762860 0.381430 0.924398i \(-0.375432\pi\)
0.381430 + 0.924398i \(0.375432\pi\)
\(564\) 0 0
\(565\) −13.0074 −0.547227
\(566\) 17.5948 0.739563
\(567\) 0 0
\(568\) 9.26058 0.388565
\(569\) 34.4819 1.44556 0.722778 0.691080i \(-0.242865\pi\)
0.722778 + 0.691080i \(0.242865\pi\)
\(570\) 0 0
\(571\) −35.6927 −1.49369 −0.746847 0.664996i \(-0.768433\pi\)
−0.746847 + 0.664996i \(0.768433\pi\)
\(572\) 1.80186 0.0753397
\(573\) 0 0
\(574\) 0 0
\(575\) −1.47428 −0.0614816
\(576\) 0 0
\(577\) −1.64129 −0.0683279 −0.0341640 0.999416i \(-0.510877\pi\)
−0.0341640 + 0.999416i \(0.510877\pi\)
\(578\) 9.03588 0.375843
\(579\) 0 0
\(580\) −6.43215 −0.267081
\(581\) 0 0
\(582\) 0 0
\(583\) 6.87293 0.284648
\(584\) −3.04941 −0.126185
\(585\) 0 0
\(586\) 16.1675 0.667873
\(587\) 42.4582 1.75244 0.876219 0.481913i \(-0.160058\pi\)
0.876219 + 0.481913i \(0.160058\pi\)
\(588\) 0 0
\(589\) −21.6805 −0.893331
\(590\) 11.7607 0.484181
\(591\) 0 0
\(592\) 4.44078 0.182515
\(593\) 23.4457 0.962799 0.481399 0.876501i \(-0.340129\pi\)
0.481399 + 0.876501i \(0.340129\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.3211 0.504694
\(597\) 0 0
\(598\) −15.4829 −0.633143
\(599\) −47.4166 −1.93739 −0.968695 0.248256i \(-0.920143\pi\)
−0.968695 + 0.248256i \(0.920143\pi\)
\(600\) 0 0
\(601\) −31.9570 −1.30355 −0.651777 0.758410i \(-0.725976\pi\)
−0.651777 + 0.758410i \(0.725976\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −11.5286 −0.469092
\(605\) −2.27411 −0.0924557
\(606\) 0 0
\(607\) −21.0596 −0.854782 −0.427391 0.904067i \(-0.640567\pi\)
−0.427391 + 0.904067i \(0.640567\pi\)
\(608\) −6.90440 −0.280010
\(609\) 0 0
\(610\) −19.6262 −0.794642
\(611\) 0.136891 0.00553801
\(612\) 0 0
\(613\) 22.6013 0.912860 0.456430 0.889759i \(-0.349128\pi\)
0.456430 + 0.889759i \(0.349128\pi\)
\(614\) −27.0563 −1.09191
\(615\) 0 0
\(616\) 0 0
\(617\) 29.6447 1.19345 0.596724 0.802446i \(-0.296469\pi\)
0.596724 + 0.802446i \(0.296469\pi\)
\(618\) 0 0
\(619\) 1.10864 0.0445598 0.0222799 0.999752i \(-0.492907\pi\)
0.0222799 + 0.999752i \(0.492907\pi\)
\(620\) −7.14094 −0.286787
\(621\) 0 0
\(622\) 24.5751 0.985373
\(623\) 0 0
\(624\) 0 0
\(625\) −25.8284 −1.03314
\(626\) 13.0809 0.522817
\(627\) 0 0
\(628\) 1.49881 0.0598091
\(629\) −22.6592 −0.903483
\(630\) 0 0
\(631\) −8.76192 −0.348806 −0.174403 0.984674i \(-0.555800\pi\)
−0.174403 + 0.984674i \(0.555800\pi\)
\(632\) 9.26921 0.368709
\(633\) 0 0
\(634\) −20.6557 −0.820341
\(635\) −15.0203 −0.596063
\(636\) 0 0
\(637\) 0 0
\(638\) 2.82843 0.111979
\(639\) 0 0
\(640\) −2.27411 −0.0898921
\(641\) −47.2474 −1.86616 −0.933080 0.359669i \(-0.882890\pi\)
−0.933080 + 0.359669i \(0.882890\pi\)
\(642\) 0 0
\(643\) 4.71741 0.186037 0.0930183 0.995664i \(-0.470348\pi\)
0.0930183 + 0.995664i \(0.470348\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 35.2299 1.38610
\(647\) 28.0391 1.10233 0.551165 0.834396i \(-0.314183\pi\)
0.551165 + 0.834396i \(0.314183\pi\)
\(648\) 0 0
\(649\) −5.17157 −0.203002
\(650\) 0.309151 0.0121259
\(651\) 0 0
\(652\) 13.6569 0.534844
\(653\) −27.0596 −1.05892 −0.529461 0.848334i \(-0.677606\pi\)
−0.529461 + 0.848334i \(0.677606\pi\)
\(654\) 0 0
\(655\) 13.5731 0.530345
\(656\) 5.10254 0.199221
\(657\) 0 0
\(658\) 0 0
\(659\) −15.7741 −0.614472 −0.307236 0.951633i \(-0.599404\pi\)
−0.307236 + 0.951633i \(0.599404\pi\)
\(660\) 0 0
\(661\) 20.1597 0.784122 0.392061 0.919939i \(-0.371762\pi\)
0.392061 + 0.919939i \(0.371762\pi\)
\(662\) −19.7014 −0.765715
\(663\) 0 0
\(664\) 1.96853 0.0763938
\(665\) 0 0
\(666\) 0 0
\(667\) −24.3039 −0.941050
\(668\) −19.6927 −0.761935
\(669\) 0 0
\(670\) −30.6643 −1.18466
\(671\) 8.63029 0.333169
\(672\) 0 0
\(673\) 7.77410 0.299670 0.149835 0.988711i \(-0.452126\pi\)
0.149835 + 0.988711i \(0.452126\pi\)
\(674\) 7.88036 0.303540
\(675\) 0 0
\(676\) −9.75329 −0.375127
\(677\) −49.6568 −1.90847 −0.954234 0.299062i \(-0.903326\pi\)
−0.954234 + 0.299062i \(0.903326\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11.6037 0.444983
\(681\) 0 0
\(682\) 3.14010 0.120241
\(683\) 22.9261 0.877241 0.438621 0.898672i \(-0.355467\pi\)
0.438621 + 0.898672i \(0.355467\pi\)
\(684\) 0 0
\(685\) 25.6078 0.978423
\(686\) 0 0
\(687\) 0 0
\(688\) 6.93587 0.264427
\(689\) 12.3841 0.471796
\(690\) 0 0
\(691\) −34.1299 −1.29836 −0.649182 0.760633i \(-0.724889\pi\)
−0.649182 + 0.760633i \(0.724889\pi\)
\(692\) 14.5107 0.551612
\(693\) 0 0
\(694\) 31.1768 1.18346
\(695\) −19.6124 −0.743939
\(696\) 0 0
\(697\) −26.0359 −0.986179
\(698\) 2.96124 0.112084
\(699\) 0 0
\(700\) 0 0
\(701\) −12.1929 −0.460518 −0.230259 0.973129i \(-0.573957\pi\)
−0.230259 + 0.973129i \(0.573957\pi\)
\(702\) 0 0
\(703\) −30.6609 −1.15640
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 12.9514 0.487433
\(707\) 0 0
\(708\) 0 0
\(709\) −21.0902 −0.792059 −0.396030 0.918238i \(-0.629612\pi\)
−0.396030 + 0.918238i \(0.629612\pi\)
\(710\) −21.0596 −0.790352
\(711\) 0 0
\(712\) −15.0624 −0.564489
\(713\) −26.9820 −1.01049
\(714\) 0 0
\(715\) −4.09763 −0.153243
\(716\) 22.3656 0.835843
\(717\) 0 0
\(718\) −25.6621 −0.957701
\(719\) 22.7403 0.848068 0.424034 0.905646i \(-0.360614\pi\)
0.424034 + 0.905646i \(0.360614\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 28.6707 1.06701
\(723\) 0 0
\(724\) −5.73976 −0.213317
\(725\) 0.485281 0.0180229
\(726\) 0 0
\(727\) −1.83046 −0.0678879 −0.0339440 0.999424i \(-0.510807\pi\)
−0.0339440 + 0.999424i \(0.510807\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 6.93469 0.256664
\(731\) −35.3905 −1.30897
\(732\) 0 0
\(733\) −36.0191 −1.33040 −0.665199 0.746667i \(-0.731653\pi\)
−0.665199 + 0.746667i \(0.731653\pi\)
\(734\) 28.3885 1.04784
\(735\) 0 0
\(736\) −8.59272 −0.316732
\(737\) 13.4841 0.496693
\(738\) 0 0
\(739\) 26.5719 0.977463 0.488732 0.872434i \(-0.337460\pi\)
0.488732 + 0.872434i \(0.337460\pi\)
\(740\) −10.0988 −0.371240
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5580 0.387336 0.193668 0.981067i \(-0.437961\pi\)
0.193668 + 0.981067i \(0.437961\pi\)
\(744\) 0 0
\(745\) −28.0196 −1.02656
\(746\) 14.5743 0.533603
\(747\) 0 0
\(748\) −5.10254 −0.186567
\(749\) 0 0
\(750\) 0 0
\(751\) −31.3003 −1.14217 −0.571083 0.820893i \(-0.693476\pi\)
−0.571083 + 0.820893i \(0.693476\pi\)
\(752\) 0.0759718 0.00277041
\(753\) 0 0
\(754\) 5.09644 0.185601
\(755\) 26.2173 0.954144
\(756\) 0 0
\(757\) −21.3223 −0.774973 −0.387487 0.921875i \(-0.626657\pi\)
−0.387487 + 0.921875i \(0.626657\pi\)
\(758\) 6.64703 0.241431
\(759\) 0 0
\(760\) 15.7014 0.569548
\(761\) 6.48899 0.235226 0.117613 0.993060i \(-0.462476\pi\)
0.117613 + 0.993060i \(0.462476\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 11.7112 0.423695
\(765\) 0 0
\(766\) −27.7108 −1.00123
\(767\) −9.31846 −0.336470
\(768\) 0 0
\(769\) −41.9719 −1.51355 −0.756773 0.653678i \(-0.773225\pi\)
−0.756773 + 0.653678i \(0.773225\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.7533 −0.459001
\(773\) 29.8951 1.07525 0.537626 0.843184i \(-0.319321\pi\)
0.537626 + 0.843184i \(0.319321\pi\)
\(774\) 0 0
\(775\) 0.538757 0.0193527
\(776\) −9.01794 −0.323725
\(777\) 0 0
\(778\) 10.6250 0.380926
\(779\) −35.2299 −1.26224
\(780\) 0 0
\(781\) 9.26058 0.331370
\(782\) 43.8447 1.56788
\(783\) 0 0
\(784\) 0 0
\(785\) −3.40846 −0.121653
\(786\) 0 0
\(787\) −47.3602 −1.68821 −0.844105 0.536178i \(-0.819868\pi\)
−0.844105 + 0.536178i \(0.819868\pi\)
\(788\) 23.2606 0.828624
\(789\) 0 0
\(790\) −21.0792 −0.749964
\(791\) 0 0
\(792\) 0 0
\(793\) 15.5506 0.552218
\(794\) 2.14824 0.0762380
\(795\) 0 0
\(796\) 1.48325 0.0525724
\(797\) −26.7421 −0.947255 −0.473628 0.880725i \(-0.657056\pi\)
−0.473628 + 0.880725i \(0.657056\pi\)
\(798\) 0 0
\(799\) −0.387649 −0.0137140
\(800\) 0.171573 0.00606602
\(801\) 0 0
\(802\) 34.5743 1.22086
\(803\) −3.04941 −0.107611
\(804\) 0 0
\(805\) 0 0
\(806\) 5.65804 0.199296
\(807\) 0 0
\(808\) 11.2230 0.394824
\(809\) 9.75924 0.343117 0.171558 0.985174i \(-0.445120\pi\)
0.171558 + 0.985174i \(0.445120\pi\)
\(810\) 0 0
\(811\) −43.2255 −1.51785 −0.758927 0.651176i \(-0.774276\pi\)
−0.758927 + 0.651176i \(0.774276\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.44078 0.155649
\(815\) −31.0572 −1.08789
\(816\) 0 0
\(817\) −47.8880 −1.67539
\(818\) 38.5323 1.34725
\(819\) 0 0
\(820\) −11.6037 −0.405220
\(821\) 15.9631 0.557117 0.278559 0.960419i \(-0.410143\pi\)
0.278559 + 0.960419i \(0.410143\pi\)
\(822\) 0 0
\(823\) −51.4980 −1.79511 −0.897553 0.440907i \(-0.854657\pi\)
−0.897553 + 0.440907i \(0.854657\pi\)
\(824\) 17.0118 0.592636
\(825\) 0 0
\(826\) 0 0
\(827\) 15.7679 0.548302 0.274151 0.961687i \(-0.411603\pi\)
0.274151 + 0.961687i \(0.411603\pi\)
\(828\) 0 0
\(829\) −47.0437 −1.63389 −0.816947 0.576713i \(-0.804335\pi\)
−0.816947 + 0.576713i \(0.804335\pi\)
\(830\) −4.47666 −0.155387
\(831\) 0 0
\(832\) 1.80186 0.0624683
\(833\) 0 0
\(834\) 0 0
\(835\) 44.7834 1.54979
\(836\) −6.90440 −0.238794
\(837\) 0 0
\(838\) −11.7729 −0.406689
\(839\) −27.6046 −0.953015 −0.476508 0.879170i \(-0.658098\pi\)
−0.476508 + 0.879170i \(0.658098\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) −14.3039 −0.492945
\(843\) 0 0
\(844\) 0.503715 0.0173386
\(845\) 22.1800 0.763017
\(846\) 0 0
\(847\) 0 0
\(848\) 6.87293 0.236017
\(849\) 0 0
\(850\) −0.875457 −0.0300279
\(851\) −38.1584 −1.30805
\(852\) 0 0
\(853\) −47.4171 −1.62353 −0.811765 0.583985i \(-0.801493\pi\)
−0.811765 + 0.583985i \(0.801493\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −11.6482 −0.398128
\(857\) 57.6474 1.96920 0.984598 0.174831i \(-0.0559380\pi\)
0.984598 + 0.174831i \(0.0559380\pi\)
\(858\) 0 0
\(859\) 33.3865 1.13913 0.569566 0.821946i \(-0.307111\pi\)
0.569566 + 0.821946i \(0.307111\pi\)
\(860\) −15.7729 −0.537852
\(861\) 0 0
\(862\) −0.172768 −0.00588451
\(863\) 7.13113 0.242747 0.121373 0.992607i \(-0.461270\pi\)
0.121373 + 0.992607i \(0.461270\pi\)
\(864\) 0 0
\(865\) −32.9988 −1.12199
\(866\) 19.7712 0.671854
\(867\) 0 0
\(868\) 0 0
\(869\) 9.26921 0.314436
\(870\) 0 0
\(871\) 24.2965 0.823254
\(872\) −14.0890 −0.477114
\(873\) 0 0
\(874\) 59.3276 2.00679
\(875\) 0 0
\(876\) 0 0
\(877\) −9.46398 −0.319576 −0.159788 0.987151i \(-0.551081\pi\)
−0.159788 + 0.987151i \(0.551081\pi\)
\(878\) −1.17157 −0.0395387
\(879\) 0 0
\(880\) −2.27411 −0.0766602
\(881\) −18.7846 −0.632870 −0.316435 0.948614i \(-0.602486\pi\)
−0.316435 + 0.948614i \(0.602486\pi\)
\(882\) 0 0
\(883\) 32.2843 1.08645 0.543226 0.839586i \(-0.317203\pi\)
0.543226 + 0.839586i \(0.317203\pi\)
\(884\) −9.19407 −0.309230
\(885\) 0 0
\(886\) 33.6621 1.13090
\(887\) −10.5384 −0.353845 −0.176923 0.984225i \(-0.556614\pi\)
−0.176923 + 0.984225i \(0.556614\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 34.2536 1.14818
\(891\) 0 0
\(892\) 20.0044 0.669797
\(893\) −0.524540 −0.0175531
\(894\) 0 0
\(895\) −50.8619 −1.70013
\(896\) 0 0
\(897\) 0 0
\(898\) −7.27039 −0.242616
\(899\) 8.88156 0.296216
\(900\) 0 0
\(901\) −35.0694 −1.16833
\(902\) 5.10254 0.169896
\(903\) 0 0
\(904\) 5.71979 0.190237
\(905\) 13.0528 0.433891
\(906\) 0 0
\(907\) −2.49866 −0.0829667 −0.0414834 0.999139i \(-0.513208\pi\)
−0.0414834 + 0.999139i \(0.513208\pi\)
\(908\) −13.5601 −0.450006
\(909\) 0 0
\(910\) 0 0
\(911\) 14.4645 0.479229 0.239614 0.970868i \(-0.422979\pi\)
0.239614 + 0.970868i \(0.422979\pi\)
\(912\) 0 0
\(913\) 1.96853 0.0651489
\(914\) −31.0596 −1.02736
\(915\) 0 0
\(916\) −5.10254 −0.168593
\(917\) 0 0
\(918\) 0 0
\(919\) −3.29646 −0.108740 −0.0543700 0.998521i \(-0.517315\pi\)
−0.0543700 + 0.998521i \(0.517315\pi\)
\(920\) 19.5408 0.644241
\(921\) 0 0
\(922\) 10.5228 0.346552
\(923\) 16.6863 0.549236
\(924\) 0 0
\(925\) 0.761917 0.0250517
\(926\) −8.30389 −0.272883
\(927\) 0 0
\(928\) 2.82843 0.0928477
\(929\) 29.7650 0.976558 0.488279 0.872688i \(-0.337625\pi\)
0.488279 + 0.872688i \(0.337625\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.343146 0.0112401
\(933\) 0 0
\(934\) −11.5530 −0.378025
\(935\) 11.6037 0.379482
\(936\) 0 0
\(937\) 42.4521 1.38685 0.693425 0.720529i \(-0.256101\pi\)
0.693425 + 0.720529i \(0.256101\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.172768 −0.00563508
\(941\) −34.4494 −1.12302 −0.561509 0.827471i \(-0.689779\pi\)
−0.561509 + 0.827471i \(0.689779\pi\)
\(942\) 0 0
\(943\) −43.8447 −1.42778
\(944\) −5.17157 −0.168320
\(945\) 0 0
\(946\) 6.93587 0.225505
\(947\) 51.3611 1.66901 0.834505 0.551000i \(-0.185754\pi\)
0.834505 + 0.551000i \(0.185754\pi\)
\(948\) 0 0
\(949\) −5.49461 −0.178363
\(950\) −1.18461 −0.0384337
\(951\) 0 0
\(952\) 0 0
\(953\) −50.4015 −1.63267 −0.816333 0.577582i \(-0.803996\pi\)
−0.816333 + 0.577582i \(0.803996\pi\)
\(954\) 0 0
\(955\) −26.6325 −0.861806
\(956\) 18.4322 0.596138
\(957\) 0 0
\(958\) 10.7482 0.347260
\(959\) 0 0
\(960\) 0 0
\(961\) −21.1397 −0.681927
\(962\) 8.00167 0.257984
\(963\) 0 0
\(964\) 24.5682 0.791288
\(965\) 29.0024 0.933620
\(966\) 0 0
\(967\) 30.9141 0.994129 0.497064 0.867714i \(-0.334411\pi\)
0.497064 + 0.867714i \(0.334411\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 20.5078 0.658465
\(971\) 25.2623 0.810704 0.405352 0.914161i \(-0.367149\pi\)
0.405352 + 0.914161i \(0.367149\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −38.6164 −1.23735
\(975\) 0 0
\(976\) 8.63029 0.276249
\(977\) 8.97798 0.287231 0.143616 0.989634i \(-0.454127\pi\)
0.143616 + 0.989634i \(0.454127\pi\)
\(978\) 0 0
\(979\) −15.0624 −0.481398
\(980\) 0 0
\(981\) 0 0
\(982\) 8.68629 0.277191
\(983\) −19.2638 −0.614420 −0.307210 0.951642i \(-0.599395\pi\)
−0.307210 + 0.951642i \(0.599395\pi\)
\(984\) 0 0
\(985\) −52.8971 −1.68544
\(986\) −14.4322 −0.459613
\(987\) 0 0
\(988\) −12.4408 −0.395794
\(989\) −59.5980 −1.89511
\(990\) 0 0
\(991\) −46.5858 −1.47985 −0.739923 0.672692i \(-0.765138\pi\)
−0.739923 + 0.672692i \(0.765138\pi\)
\(992\) 3.14010 0.0996984
\(993\) 0 0
\(994\) 0 0
\(995\) −3.37307 −0.106934
\(996\) 0 0
\(997\) 31.0330 0.982825 0.491412 0.870927i \(-0.336481\pi\)
0.491412 + 0.870927i \(0.336481\pi\)
\(998\) 43.1041 1.36444
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.ec.1.2 4
3.2 odd 2 3234.2.a.bk.1.3 yes 4
7.6 odd 2 9702.2.a.eb.1.3 4
21.20 even 2 3234.2.a.bj.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.bj.1.2 4 21.20 even 2
3234.2.a.bk.1.3 yes 4 3.2 odd 2
9702.2.a.eb.1.3 4 7.6 odd 2
9702.2.a.ec.1.2 4 1.1 even 1 trivial