Properties

Label 9747.2.a.bk.1.6
Level $9747$
Weight $2$
Character 9747.1
Self dual yes
Analytic conductor $77.830$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9747,2,Mod(1,9747)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9747, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9747.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9747 = 3^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9747.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.8301868501\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1272367936.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 23x^{4} + 152x^{2} - 301 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.95759\) of defining polynomial
Character \(\chi\) \(=\) 9747.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.91223 q^{2} +1.65662 q^{4} +1.95759 q^{5} +1.25561 q^{7} -0.656620 q^{8} +3.74336 q^{10} -5.70095 q^{11} -1.28539 q^{13} +2.40101 q^{14} -4.56885 q^{16} +6.98635 q^{17} +3.24299 q^{20} -10.9015 q^{22} +1.95759 q^{23} -1.16784 q^{25} -2.45797 q^{26} +2.08007 q^{28} -4.91223 q^{29} -9.61614 q^{31} -7.42345 q^{32} +13.3595 q^{34} +2.45797 q^{35} -3.74336 q^{37} -1.28539 q^{40} -9.22547 q^{41} -3.40101 q^{43} -9.44432 q^{44} +3.74336 q^{46} +3.07117 q^{47} -5.42345 q^{49} -2.23317 q^{50} -2.12941 q^{52} -6.65662 q^{53} -11.1601 q^{55} -0.824458 q^{56} -9.39331 q^{58} +4.96986 q^{59} +7.70655 q^{61} -18.3883 q^{62} -5.05763 q^{64} -2.51628 q^{65} -4.58738 q^{67} +11.5737 q^{68} +4.70020 q^{70} +8.19533 q^{71} -9.27540 q^{73} -7.15817 q^{74} -7.15817 q^{77} +6.31415 q^{79} -8.94394 q^{80} -17.6412 q^{82} -3.07117 q^{83} +13.6764 q^{85} -6.50351 q^{86} +3.74336 q^{88} +6.01979 q^{89} -1.61395 q^{91} +3.24299 q^{92} +5.87277 q^{94} +13.8009 q^{97} -10.3709 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 6 q^{4} - 2 q^{7} + 20 q^{14} - 10 q^{16} + 16 q^{25} - 24 q^{28} - 16 q^{29} - 12 q^{32} - 34 q^{41} - 26 q^{43} - 42 q^{50} - 36 q^{53} + 6 q^{55} + 22 q^{56} - 12 q^{58} + 18 q^{59} - 6 q^{61}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91223 1.35215 0.676075 0.736833i \(-0.263679\pi\)
0.676075 + 0.736833i \(0.263679\pi\)
\(3\) 0 0
\(4\) 1.65662 0.828310
\(5\) 1.95759 0.875461 0.437731 0.899106i \(-0.355782\pi\)
0.437731 + 0.899106i \(0.355782\pi\)
\(6\) 0 0
\(7\) 1.25561 0.474575 0.237288 0.971439i \(-0.423742\pi\)
0.237288 + 0.971439i \(0.423742\pi\)
\(8\) −0.656620 −0.232150
\(9\) 0 0
\(10\) 3.74336 1.18376
\(11\) −5.70095 −1.71890 −0.859451 0.511218i \(-0.829194\pi\)
−0.859451 + 0.511218i \(0.829194\pi\)
\(12\) 0 0
\(13\) −1.28539 −0.356504 −0.178252 0.983985i \(-0.557044\pi\)
−0.178252 + 0.983985i \(0.557044\pi\)
\(14\) 2.40101 0.641697
\(15\) 0 0
\(16\) −4.56885 −1.14221
\(17\) 6.98635 1.69444 0.847219 0.531244i \(-0.178275\pi\)
0.847219 + 0.531244i \(0.178275\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 3.24299 0.725154
\(21\) 0 0
\(22\) −10.9015 −2.32421
\(23\) 1.95759 0.408186 0.204093 0.978952i \(-0.434576\pi\)
0.204093 + 0.978952i \(0.434576\pi\)
\(24\) 0 0
\(25\) −1.16784 −0.233568
\(26\) −2.45797 −0.482047
\(27\) 0 0
\(28\) 2.08007 0.393096
\(29\) −4.91223 −0.912178 −0.456089 0.889934i \(-0.650750\pi\)
−0.456089 + 0.889934i \(0.650750\pi\)
\(30\) 0 0
\(31\) −9.61614 −1.72711 −0.863554 0.504256i \(-0.831767\pi\)
−0.863554 + 0.504256i \(0.831767\pi\)
\(32\) −7.42345 −1.31229
\(33\) 0 0
\(34\) 13.3595 2.29113
\(35\) 2.45797 0.415472
\(36\) 0 0
\(37\) −3.74336 −0.615405 −0.307702 0.951483i \(-0.599560\pi\)
−0.307702 + 0.951483i \(0.599560\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.28539 −0.203239
\(41\) −9.22547 −1.44078 −0.720388 0.693571i \(-0.756036\pi\)
−0.720388 + 0.693571i \(0.756036\pi\)
\(42\) 0 0
\(43\) −3.40101 −0.518649 −0.259325 0.965790i \(-0.583500\pi\)
−0.259325 + 0.965790i \(0.583500\pi\)
\(44\) −9.44432 −1.42378
\(45\) 0 0
\(46\) 3.74336 0.551929
\(47\) 3.07117 0.447976 0.223988 0.974592i \(-0.428092\pi\)
0.223988 + 0.974592i \(0.428092\pi\)
\(48\) 0 0
\(49\) −5.42345 −0.774778
\(50\) −2.23317 −0.315818
\(51\) 0 0
\(52\) −2.12941 −0.295296
\(53\) −6.65662 −0.914357 −0.457179 0.889375i \(-0.651140\pi\)
−0.457179 + 0.889375i \(0.651140\pi\)
\(54\) 0 0
\(55\) −11.1601 −1.50483
\(56\) −0.824458 −0.110173
\(57\) 0 0
\(58\) −9.39331 −1.23340
\(59\) 4.96986 0.647021 0.323510 0.946225i \(-0.395137\pi\)
0.323510 + 0.946225i \(0.395137\pi\)
\(60\) 0 0
\(61\) 7.70655 0.986722 0.493361 0.869825i \(-0.335768\pi\)
0.493361 + 0.869825i \(0.335768\pi\)
\(62\) −18.3883 −2.33531
\(63\) 0 0
\(64\) −5.05763 −0.632204
\(65\) −2.51628 −0.312106
\(66\) 0 0
\(67\) −4.58738 −0.560437 −0.280219 0.959936i \(-0.590407\pi\)
−0.280219 + 0.959936i \(0.590407\pi\)
\(68\) 11.5737 1.40352
\(69\) 0 0
\(70\) 4.70020 0.561781
\(71\) 8.19533 0.972607 0.486303 0.873790i \(-0.338345\pi\)
0.486303 + 0.873790i \(0.338345\pi\)
\(72\) 0 0
\(73\) −9.27540 −1.08560 −0.542802 0.839861i \(-0.682636\pi\)
−0.542802 + 0.839861i \(0.682636\pi\)
\(74\) −7.15817 −0.832120
\(75\) 0 0
\(76\) 0 0
\(77\) −7.15817 −0.815749
\(78\) 0 0
\(79\) 6.31415 0.710397 0.355199 0.934791i \(-0.384413\pi\)
0.355199 + 0.934791i \(0.384413\pi\)
\(80\) −8.94394 −0.999963
\(81\) 0 0
\(82\) −17.6412 −1.94815
\(83\) −3.07117 −0.337104 −0.168552 0.985693i \(-0.553909\pi\)
−0.168552 + 0.985693i \(0.553909\pi\)
\(84\) 0 0
\(85\) 13.6764 1.48341
\(86\) −6.50351 −0.701292
\(87\) 0 0
\(88\) 3.74336 0.399044
\(89\) 6.01979 0.638096 0.319048 0.947738i \(-0.396637\pi\)
0.319048 + 0.947738i \(0.396637\pi\)
\(90\) 0 0
\(91\) −1.61395 −0.169188
\(92\) 3.24299 0.338105
\(93\) 0 0
\(94\) 5.87277 0.605730
\(95\) 0 0
\(96\) 0 0
\(97\) 13.8009 1.40127 0.700633 0.713522i \(-0.252901\pi\)
0.700633 + 0.713522i \(0.252901\pi\)
\(98\) −10.3709 −1.04762
\(99\) 0 0
\(100\) −1.93466 −0.193466
\(101\) 12.6873 1.26243 0.631217 0.775606i \(-0.282556\pi\)
0.631217 + 0.775606i \(0.282556\pi\)
\(102\) 0 0
\(103\) 2.45797 0.242191 0.121095 0.992641i \(-0.461359\pi\)
0.121095 + 0.992641i \(0.461359\pi\)
\(104\) 0.844016 0.0827626
\(105\) 0 0
\(106\) −12.7290 −1.23635
\(107\) −13.4234 −1.29769 −0.648847 0.760919i \(-0.724748\pi\)
−0.648847 + 0.760919i \(0.724748\pi\)
\(108\) 0 0
\(109\) −13.3595 −1.27961 −0.639804 0.768538i \(-0.720984\pi\)
−0.639804 + 0.768538i \(0.720984\pi\)
\(110\) −21.3407 −2.03476
\(111\) 0 0
\(112\) −5.73669 −0.542066
\(113\) −14.7565 −1.38817 −0.694086 0.719892i \(-0.744191\pi\)
−0.694086 + 0.719892i \(0.744191\pi\)
\(114\) 0 0
\(115\) 3.83216 0.357351
\(116\) −8.13770 −0.755566
\(117\) 0 0
\(118\) 9.50351 0.874869
\(119\) 8.77212 0.804139
\(120\) 0 0
\(121\) 21.5009 1.95462
\(122\) 14.7367 1.33420
\(123\) 0 0
\(124\) −15.9303 −1.43058
\(125\) −12.0741 −1.07994
\(126\) 0 0
\(127\) 18.3883 1.63169 0.815847 0.578268i \(-0.196271\pi\)
0.815847 + 0.578268i \(0.196271\pi\)
\(128\) 5.17554 0.457458
\(129\) 0 0
\(130\) −4.81170 −0.422014
\(131\) −6.81453 −0.595388 −0.297694 0.954661i \(-0.596218\pi\)
−0.297694 + 0.954661i \(0.596218\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.77212 −0.757796
\(135\) 0 0
\(136\) −4.58738 −0.393364
\(137\) −6.54497 −0.559174 −0.279587 0.960120i \(-0.590198\pi\)
−0.279587 + 0.960120i \(0.590198\pi\)
\(138\) 0 0
\(139\) −14.5886 −1.23739 −0.618696 0.785630i \(-0.712339\pi\)
−0.618696 + 0.785630i \(0.712339\pi\)
\(140\) 4.07192 0.344140
\(141\) 0 0
\(142\) 15.6714 1.31511
\(143\) 7.32797 0.612796
\(144\) 0 0
\(145\) −9.61614 −0.798577
\(146\) −17.7367 −1.46790
\(147\) 0 0
\(148\) −6.20133 −0.509746
\(149\) −14.0317 −1.14952 −0.574761 0.818322i \(-0.694905\pi\)
−0.574761 + 0.818322i \(0.694905\pi\)
\(150\) 0 0
\(151\) 11.2301 0.913892 0.456946 0.889495i \(-0.348943\pi\)
0.456946 + 0.889495i \(0.348943\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −13.6881 −1.10301
\(155\) −18.8245 −1.51202
\(156\) 0 0
\(157\) 15.4509 1.23312 0.616560 0.787308i \(-0.288526\pi\)
0.616560 + 0.787308i \(0.288526\pi\)
\(158\) 12.0741 0.960564
\(159\) 0 0
\(160\) −14.5321 −1.14886
\(161\) 2.45797 0.193715
\(162\) 0 0
\(163\) −1.53871 −0.120521 −0.0602606 0.998183i \(-0.519193\pi\)
−0.0602606 + 0.998183i \(0.519193\pi\)
\(164\) −15.2831 −1.19341
\(165\) 0 0
\(166\) −5.87277 −0.455816
\(167\) −18.5035 −1.43184 −0.715922 0.698180i \(-0.753994\pi\)
−0.715922 + 0.698180i \(0.753994\pi\)
\(168\) 0 0
\(169\) −11.3478 −0.872905
\(170\) 26.1524 2.00580
\(171\) 0 0
\(172\) −5.63419 −0.429603
\(173\) −5.71690 −0.434648 −0.217324 0.976100i \(-0.569733\pi\)
−0.217324 + 0.976100i \(0.569733\pi\)
\(174\) 0 0
\(175\) −1.46635 −0.110845
\(176\) 26.0468 1.96335
\(177\) 0 0
\(178\) 11.5112 0.862802
\(179\) −14.8667 −1.11119 −0.555594 0.831454i \(-0.687509\pi\)
−0.555594 + 0.831454i \(0.687509\pi\)
\(180\) 0 0
\(181\) −20.5177 −1.52507 −0.762533 0.646949i \(-0.776045\pi\)
−0.762533 + 0.646949i \(0.776045\pi\)
\(182\) −3.08625 −0.228768
\(183\) 0 0
\(184\) −1.28539 −0.0947605
\(185\) −7.32797 −0.538763
\(186\) 0 0
\(187\) −39.8288 −2.91257
\(188\) 5.08776 0.371063
\(189\) 0 0
\(190\) 0 0
\(191\) 18.4473 1.33480 0.667398 0.744701i \(-0.267408\pi\)
0.667398 + 0.744701i \(0.267408\pi\)
\(192\) 0 0
\(193\) 25.4336 1.83075 0.915375 0.402602i \(-0.131894\pi\)
0.915375 + 0.402602i \(0.131894\pi\)
\(194\) 26.3904 1.89472
\(195\) 0 0
\(196\) −8.98459 −0.641757
\(197\) −4.52838 −0.322634 −0.161317 0.986903i \(-0.551574\pi\)
−0.161317 + 0.986903i \(0.551574\pi\)
\(198\) 0 0
\(199\) 8.56115 0.606884 0.303442 0.952850i \(-0.401864\pi\)
0.303442 + 0.952850i \(0.401864\pi\)
\(200\) 0.766826 0.0542228
\(201\) 0 0
\(202\) 24.2610 1.70700
\(203\) −6.16784 −0.432897
\(204\) 0 0
\(205\) −18.0597 −1.26134
\(206\) 4.70020 0.327478
\(207\) 0 0
\(208\) 5.87277 0.407204
\(209\) 0 0
\(210\) 0 0
\(211\) −14.6449 −1.00820 −0.504098 0.863646i \(-0.668175\pi\)
−0.504098 + 0.863646i \(0.668175\pi\)
\(212\) −11.0275 −0.757371
\(213\) 0 0
\(214\) −25.6687 −1.75468
\(215\) −6.65779 −0.454057
\(216\) 0 0
\(217\) −12.0741 −0.819644
\(218\) −25.5464 −1.73022
\(219\) 0 0
\(220\) −18.4881 −1.24647
\(221\) −8.98021 −0.604074
\(222\) 0 0
\(223\) 22.9756 1.53856 0.769281 0.638910i \(-0.220615\pi\)
0.769281 + 0.638910i \(0.220615\pi\)
\(224\) −9.32094 −0.622782
\(225\) 0 0
\(226\) −28.2178 −1.87702
\(227\) 8.71690 0.578561 0.289280 0.957244i \(-0.406584\pi\)
0.289280 + 0.957244i \(0.406584\pi\)
\(228\) 0 0
\(229\) −18.0724 −1.19426 −0.597128 0.802146i \(-0.703691\pi\)
−0.597128 + 0.802146i \(0.703691\pi\)
\(230\) 7.32797 0.483192
\(231\) 0 0
\(232\) 3.22547 0.211762
\(233\) 15.7585 1.03237 0.516186 0.856477i \(-0.327351\pi\)
0.516186 + 0.856477i \(0.327351\pi\)
\(234\) 0 0
\(235\) 6.01209 0.392185
\(236\) 8.23317 0.535934
\(237\) 0 0
\(238\) 16.7743 1.08732
\(239\) 26.8908 1.73942 0.869711 0.493561i \(-0.164305\pi\)
0.869711 + 0.493561i \(0.164305\pi\)
\(240\) 0 0
\(241\) −26.8318 −1.72839 −0.864195 0.503158i \(-0.832171\pi\)
−0.864195 + 0.503158i \(0.832171\pi\)
\(242\) 41.1146 2.64295
\(243\) 0 0
\(244\) 12.7668 0.817312
\(245\) −10.6169 −0.678288
\(246\) 0 0
\(247\) 0 0
\(248\) 6.31415 0.400949
\(249\) 0 0
\(250\) −23.0885 −1.46024
\(251\) 15.2581 0.963082 0.481541 0.876424i \(-0.340077\pi\)
0.481541 + 0.876424i \(0.340077\pi\)
\(252\) 0 0
\(253\) −11.1601 −0.701632
\(254\) 35.1626 2.20629
\(255\) 0 0
\(256\) 20.0121 1.25076
\(257\) −23.7565 −1.48189 −0.740944 0.671567i \(-0.765622\pi\)
−0.740944 + 0.671567i \(0.765622\pi\)
\(258\) 0 0
\(259\) −4.70020 −0.292056
\(260\) −4.16851 −0.258520
\(261\) 0 0
\(262\) −13.0309 −0.805054
\(263\) 7.21717 0.445030 0.222515 0.974929i \(-0.428573\pi\)
0.222515 + 0.974929i \(0.428573\pi\)
\(264\) 0 0
\(265\) −13.0309 −0.800484
\(266\) 0 0
\(267\) 0 0
\(268\) −7.59954 −0.464216
\(269\) 2.53101 0.154318 0.0771591 0.997019i \(-0.475415\pi\)
0.0771591 + 0.997019i \(0.475415\pi\)
\(270\) 0 0
\(271\) 3.02243 0.183600 0.0917999 0.995777i \(-0.470738\pi\)
0.0917999 + 0.995777i \(0.470738\pi\)
\(272\) −31.9196 −1.93541
\(273\) 0 0
\(274\) −12.5155 −0.756088
\(275\) 6.65779 0.401480
\(276\) 0 0
\(277\) −5.08513 −0.305536 −0.152768 0.988262i \(-0.548819\pi\)
−0.152768 + 0.988262i \(0.548819\pi\)
\(278\) −27.8968 −1.67314
\(279\) 0 0
\(280\) −1.61395 −0.0964521
\(281\) 8.25296 0.492331 0.246165 0.969228i \(-0.420829\pi\)
0.246165 + 0.969228i \(0.420829\pi\)
\(282\) 0 0
\(283\) −23.7488 −1.41172 −0.705859 0.708352i \(-0.749439\pi\)
−0.705859 + 0.708352i \(0.749439\pi\)
\(284\) 13.5766 0.805620
\(285\) 0 0
\(286\) 14.0128 0.828592
\(287\) −11.5836 −0.683757
\(288\) 0 0
\(289\) 31.8091 1.87112
\(290\) −18.3883 −1.07980
\(291\) 0 0
\(292\) −15.3658 −0.899216
\(293\) 25.2901 1.47747 0.738733 0.673999i \(-0.235425\pi\)
0.738733 + 0.673999i \(0.235425\pi\)
\(294\) 0 0
\(295\) 9.72896 0.566442
\(296\) 2.45797 0.142867
\(297\) 0 0
\(298\) −26.8318 −1.55433
\(299\) −2.51628 −0.145520
\(300\) 0 0
\(301\) −4.27034 −0.246138
\(302\) 21.4745 1.23572
\(303\) 0 0
\(304\) 0 0
\(305\) 15.0863 0.863837
\(306\) 0 0
\(307\) −9.21350 −0.525842 −0.262921 0.964817i \(-0.584686\pi\)
−0.262921 + 0.964817i \(0.584686\pi\)
\(308\) −11.8584 −0.675693
\(309\) 0 0
\(310\) −35.9967 −2.04447
\(311\) −7.71754 −0.437622 −0.218811 0.975767i \(-0.570218\pi\)
−0.218811 + 0.975767i \(0.570218\pi\)
\(312\) 0 0
\(313\) −7.05499 −0.398771 −0.199386 0.979921i \(-0.563895\pi\)
−0.199386 + 0.979921i \(0.563895\pi\)
\(314\) 29.5457 1.66736
\(315\) 0 0
\(316\) 10.4602 0.588429
\(317\) −16.4285 −0.922717 −0.461358 0.887214i \(-0.652638\pi\)
−0.461358 + 0.887214i \(0.652638\pi\)
\(318\) 0 0
\(319\) 28.0044 1.56794
\(320\) −9.90077 −0.553470
\(321\) 0 0
\(322\) 4.70020 0.261932
\(323\) 0 0
\(324\) 0 0
\(325\) 1.50113 0.0832678
\(326\) −2.94237 −0.162963
\(327\) 0 0
\(328\) 6.05763 0.334477
\(329\) 3.85618 0.212598
\(330\) 0 0
\(331\) 19.1195 1.05090 0.525450 0.850824i \(-0.323897\pi\)
0.525450 + 0.850824i \(0.323897\pi\)
\(332\) −5.08776 −0.279227
\(333\) 0 0
\(334\) −35.3830 −1.93607
\(335\) −8.98021 −0.490641
\(336\) 0 0
\(337\) −6.64271 −0.361851 −0.180926 0.983497i \(-0.557909\pi\)
−0.180926 + 0.983497i \(0.557909\pi\)
\(338\) −21.6995 −1.18030
\(339\) 0 0
\(340\) 22.6566 1.22873
\(341\) 54.8211 2.96873
\(342\) 0 0
\(343\) −15.5990 −0.842266
\(344\) 2.23317 0.120405
\(345\) 0 0
\(346\) −10.9320 −0.587709
\(347\) −33.8182 −1.81545 −0.907727 0.419561i \(-0.862184\pi\)
−0.907727 + 0.419561i \(0.862184\pi\)
\(348\) 0 0
\(349\) 14.7015 0.786953 0.393476 0.919335i \(-0.371272\pi\)
0.393476 + 0.919335i \(0.371272\pi\)
\(350\) −2.80399 −0.149880
\(351\) 0 0
\(352\) 42.3207 2.25570
\(353\) 7.09917 0.377851 0.188925 0.981991i \(-0.439500\pi\)
0.188925 + 0.981991i \(0.439500\pi\)
\(354\) 0 0
\(355\) 16.0431 0.851480
\(356\) 9.97251 0.528542
\(357\) 0 0
\(358\) −28.4285 −1.50249
\(359\) −24.6047 −1.29858 −0.649292 0.760539i \(-0.724935\pi\)
−0.649292 + 0.760539i \(0.724935\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −39.2345 −2.06212
\(363\) 0 0
\(364\) −2.67371 −0.140140
\(365\) −18.1574 −0.950404
\(366\) 0 0
\(367\) 12.3709 0.645754 0.322877 0.946441i \(-0.395350\pi\)
0.322877 + 0.946441i \(0.395350\pi\)
\(368\) −8.94394 −0.466235
\(369\) 0 0
\(370\) −14.0128 −0.728489
\(371\) −8.35811 −0.433931
\(372\) 0 0
\(373\) 7.15817 0.370636 0.185318 0.982679i \(-0.440669\pi\)
0.185318 + 0.982679i \(0.440669\pi\)
\(374\) −76.1619 −3.93824
\(375\) 0 0
\(376\) −2.01659 −0.103998
\(377\) 6.31415 0.325195
\(378\) 0 0
\(379\) −14.2035 −0.729585 −0.364793 0.931089i \(-0.618860\pi\)
−0.364793 + 0.931089i \(0.618860\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 35.2754 1.80485
\(383\) −19.4184 −0.992233 −0.496117 0.868256i \(-0.665241\pi\)
−0.496117 + 0.868256i \(0.665241\pi\)
\(384\) 0 0
\(385\) −14.0128 −0.714156
\(386\) 48.6349 2.47545
\(387\) 0 0
\(388\) 22.8628 1.16068
\(389\) 7.31491 0.370880 0.185440 0.982656i \(-0.440629\pi\)
0.185440 + 0.982656i \(0.440629\pi\)
\(390\) 0 0
\(391\) 13.6764 0.691646
\(392\) 3.56115 0.179865
\(393\) 0 0
\(394\) −8.65930 −0.436249
\(395\) 12.3605 0.621925
\(396\) 0 0
\(397\) −17.6489 −0.885774 −0.442887 0.896578i \(-0.646046\pi\)
−0.442887 + 0.896578i \(0.646046\pi\)
\(398\) 16.3709 0.820598
\(399\) 0 0
\(400\) 5.33568 0.266784
\(401\) −20.0801 −1.00275 −0.501375 0.865230i \(-0.667172\pi\)
−0.501375 + 0.865230i \(0.667172\pi\)
\(402\) 0 0
\(403\) 12.3605 0.615722
\(404\) 21.0180 1.04569
\(405\) 0 0
\(406\) −11.7943 −0.585342
\(407\) 21.3407 1.05782
\(408\) 0 0
\(409\) −10.1703 −0.502891 −0.251445 0.967872i \(-0.580906\pi\)
−0.251445 + 0.967872i \(0.580906\pi\)
\(410\) −34.5343 −1.70553
\(411\) 0 0
\(412\) 4.07192 0.200609
\(413\) 6.24020 0.307060
\(414\) 0 0
\(415\) −6.01209 −0.295122
\(416\) 9.54206 0.467838
\(417\) 0 0
\(418\) 0 0
\(419\) −16.4897 −0.805573 −0.402786 0.915294i \(-0.631958\pi\)
−0.402786 + 0.915294i \(0.631958\pi\)
\(420\) 0 0
\(421\) 22.2057 1.08224 0.541120 0.840946i \(-0.318001\pi\)
0.541120 + 0.840946i \(0.318001\pi\)
\(422\) −28.0044 −1.36323
\(423\) 0 0
\(424\) 4.37087 0.212268
\(425\) −8.15892 −0.395766
\(426\) 0 0
\(427\) 9.67641 0.468274
\(428\) −22.2376 −1.07489
\(429\) 0 0
\(430\) −12.7312 −0.613954
\(431\) 31.1421 1.50006 0.750031 0.661403i \(-0.230039\pi\)
0.750031 + 0.661403i \(0.230039\pi\)
\(432\) 0 0
\(433\) 7.59954 0.365211 0.182605 0.983186i \(-0.441547\pi\)
0.182605 + 0.983186i \(0.441547\pi\)
\(434\) −23.0885 −1.10828
\(435\) 0 0
\(436\) −22.1316 −1.05991
\(437\) 0 0
\(438\) 0 0
\(439\) −25.8750 −1.23495 −0.617473 0.786592i \(-0.711843\pi\)
−0.617473 + 0.786592i \(0.711843\pi\)
\(440\) 7.32797 0.349347
\(441\) 0 0
\(442\) −17.1722 −0.816799
\(443\) 9.84695 0.467843 0.233921 0.972256i \(-0.424844\pi\)
0.233921 + 0.972256i \(0.424844\pi\)
\(444\) 0 0
\(445\) 11.7843 0.558629
\(446\) 43.9347 2.08037
\(447\) 0 0
\(448\) −6.35041 −0.300029
\(449\) −40.0647 −1.89077 −0.945384 0.325958i \(-0.894313\pi\)
−0.945384 + 0.325958i \(0.894313\pi\)
\(450\) 0 0
\(451\) 52.5940 2.47655
\(452\) −24.4459 −1.14984
\(453\) 0 0
\(454\) 16.6687 0.782301
\(455\) −3.15946 −0.148118
\(456\) 0 0
\(457\) 36.0372 1.68575 0.842874 0.538111i \(-0.180862\pi\)
0.842874 + 0.538111i \(0.180862\pi\)
\(458\) −34.5585 −1.61481
\(459\) 0 0
\(460\) 6.34844 0.295997
\(461\) −18.3293 −0.853679 −0.426839 0.904328i \(-0.640373\pi\)
−0.426839 + 0.904328i \(0.640373\pi\)
\(462\) 0 0
\(463\) 25.9769 1.20725 0.603624 0.797269i \(-0.293723\pi\)
0.603624 + 0.797269i \(0.293723\pi\)
\(464\) 22.4432 1.04190
\(465\) 0 0
\(466\) 30.1338 1.39592
\(467\) −12.8001 −0.592319 −0.296159 0.955139i \(-0.595706\pi\)
−0.296159 + 0.955139i \(0.595706\pi\)
\(468\) 0 0
\(469\) −5.75995 −0.265970
\(470\) 11.4965 0.530293
\(471\) 0 0
\(472\) −3.26331 −0.150206
\(473\) 19.3890 0.891508
\(474\) 0 0
\(475\) 0 0
\(476\) 14.5321 0.666076
\(477\) 0 0
\(478\) 51.4214 2.35196
\(479\) −3.91518 −0.178889 −0.0894446 0.995992i \(-0.528509\pi\)
−0.0894446 + 0.995992i \(0.528509\pi\)
\(480\) 0 0
\(481\) 4.81170 0.219394
\(482\) −51.3086 −2.33704
\(483\) 0 0
\(484\) 35.6188 1.61904
\(485\) 27.0165 1.22675
\(486\) 0 0
\(487\) 11.3429 0.513996 0.256998 0.966412i \(-0.417267\pi\)
0.256998 + 0.966412i \(0.417267\pi\)
\(488\) −5.06028 −0.229068
\(489\) 0 0
\(490\) −20.3019 −0.917148
\(491\) 22.8038 1.02912 0.514561 0.857454i \(-0.327955\pi\)
0.514561 + 0.857454i \(0.327955\pi\)
\(492\) 0 0
\(493\) −34.3185 −1.54563
\(494\) 0 0
\(495\) 0 0
\(496\) 43.9347 1.97273
\(497\) 10.2901 0.461575
\(498\) 0 0
\(499\) 30.7538 1.37673 0.688365 0.725364i \(-0.258329\pi\)
0.688365 + 0.725364i \(0.258329\pi\)
\(500\) −20.0022 −0.894526
\(501\) 0 0
\(502\) 29.1770 1.30223
\(503\) 8.94394 0.398791 0.199395 0.979919i \(-0.436102\pi\)
0.199395 + 0.979919i \(0.436102\pi\)
\(504\) 0 0
\(505\) 24.8365 1.10521
\(506\) −21.3407 −0.948711
\(507\) 0 0
\(508\) 30.4624 1.35155
\(509\) −2.41574 −0.107076 −0.0535380 0.998566i \(-0.517050\pi\)
−0.0535380 + 0.998566i \(0.517050\pi\)
\(510\) 0 0
\(511\) −11.6463 −0.515201
\(512\) 27.9166 1.23375
\(513\) 0 0
\(514\) −45.4278 −2.00374
\(515\) 4.81170 0.212029
\(516\) 0 0
\(517\) −17.5086 −0.770026
\(518\) −8.98786 −0.394904
\(519\) 0 0
\(520\) 1.65224 0.0724554
\(521\) −2.43553 −0.106703 −0.0533513 0.998576i \(-0.516990\pi\)
−0.0533513 + 0.998576i \(0.516990\pi\)
\(522\) 0 0
\(523\) 7.88936 0.344978 0.172489 0.985011i \(-0.444819\pi\)
0.172489 + 0.985011i \(0.444819\pi\)
\(524\) −11.2891 −0.493166
\(525\) 0 0
\(526\) 13.8009 0.601747
\(527\) −67.1817 −2.92648
\(528\) 0 0
\(529\) −19.1678 −0.833384
\(530\) −24.9181 −1.08237
\(531\) 0 0
\(532\) 0 0
\(533\) 11.8584 0.513643
\(534\) 0 0
\(535\) −26.2776 −1.13608
\(536\) 3.01217 0.130106
\(537\) 0 0
\(538\) 4.83987 0.208661
\(539\) 30.9188 1.33177
\(540\) 0 0
\(541\) −24.4683 −1.05198 −0.525988 0.850492i \(-0.676304\pi\)
−0.525988 + 0.850492i \(0.676304\pi\)
\(542\) 5.77959 0.248255
\(543\) 0 0
\(544\) −51.8628 −2.22360
\(545\) −26.1524 −1.12025
\(546\) 0 0
\(547\) 18.9037 0.808264 0.404132 0.914701i \(-0.367574\pi\)
0.404132 + 0.914701i \(0.367574\pi\)
\(548\) −10.8425 −0.463170
\(549\) 0 0
\(550\) 12.7312 0.542861
\(551\) 0 0
\(552\) 0 0
\(553\) 7.92810 0.337137
\(554\) −9.72393 −0.413130
\(555\) 0 0
\(556\) −24.1678 −1.02494
\(557\) −28.6766 −1.21507 −0.607533 0.794294i \(-0.707841\pi\)
−0.607533 + 0.794294i \(0.707841\pi\)
\(558\) 0 0
\(559\) 4.37164 0.184901
\(560\) −11.2301 −0.474558
\(561\) 0 0
\(562\) 15.7816 0.665705
\(563\) 15.6386 0.659087 0.329544 0.944140i \(-0.393105\pi\)
0.329544 + 0.944140i \(0.393105\pi\)
\(564\) 0 0
\(565\) −28.8871 −1.21529
\(566\) −45.4131 −1.90885
\(567\) 0 0
\(568\) −5.38122 −0.225791
\(569\) 9.76683 0.409447 0.204723 0.978820i \(-0.434371\pi\)
0.204723 + 0.978820i \(0.434371\pi\)
\(570\) 0 0
\(571\) 0.453585 0.0189820 0.00949098 0.999955i \(-0.496979\pi\)
0.00949098 + 0.999955i \(0.496979\pi\)
\(572\) 12.1397 0.507585
\(573\) 0 0
\(574\) −22.1505 −0.924542
\(575\) −2.28615 −0.0953390
\(576\) 0 0
\(577\) −9.78994 −0.407560 −0.203780 0.979017i \(-0.565323\pi\)
−0.203780 + 0.979017i \(0.565323\pi\)
\(578\) 60.8262 2.53004
\(579\) 0 0
\(580\) −15.9303 −0.661469
\(581\) −3.85618 −0.159981
\(582\) 0 0
\(583\) 37.9491 1.57169
\(584\) 6.09042 0.252023
\(585\) 0 0
\(586\) 48.3605 1.99775
\(587\) 33.1511 1.36829 0.684147 0.729344i \(-0.260175\pi\)
0.684147 + 0.729344i \(0.260175\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 18.6040 0.765914
\(591\) 0 0
\(592\) 17.1029 0.702923
\(593\) 36.3941 1.49453 0.747264 0.664527i \(-0.231367\pi\)
0.747264 + 0.664527i \(0.231367\pi\)
\(594\) 0 0
\(595\) 17.1722 0.703992
\(596\) −23.2452 −0.952160
\(597\) 0 0
\(598\) −4.81170 −0.196765
\(599\) −26.4734 −1.08167 −0.540836 0.841128i \(-0.681892\pi\)
−0.540836 + 0.841128i \(0.681892\pi\)
\(600\) 0 0
\(601\) 13.0309 0.531543 0.265772 0.964036i \(-0.414373\pi\)
0.265772 + 0.964036i \(0.414373\pi\)
\(602\) −8.16587 −0.332816
\(603\) 0 0
\(604\) 18.6040 0.756986
\(605\) 42.0899 1.71120
\(606\) 0 0
\(607\) 43.5320 1.76691 0.883455 0.468515i \(-0.155211\pi\)
0.883455 + 0.468515i \(0.155211\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 28.8484 1.16804
\(611\) −3.94766 −0.159705
\(612\) 0 0
\(613\) 46.6111 1.88260 0.941302 0.337566i \(-0.109604\pi\)
0.941302 + 0.337566i \(0.109604\pi\)
\(614\) −17.6183 −0.711017
\(615\) 0 0
\(616\) 4.70020 0.189376
\(617\) −28.0582 −1.12958 −0.564791 0.825234i \(-0.691043\pi\)
−0.564791 + 0.825234i \(0.691043\pi\)
\(618\) 0 0
\(619\) 15.0922 0.606605 0.303302 0.952894i \(-0.401911\pi\)
0.303302 + 0.952894i \(0.401911\pi\)
\(620\) −31.1850 −1.25242
\(621\) 0 0
\(622\) −14.7577 −0.591730
\(623\) 7.55850 0.302825
\(624\) 0 0
\(625\) −17.7970 −0.711879
\(626\) −13.4908 −0.539199
\(627\) 0 0
\(628\) 25.5963 1.02141
\(629\) −26.1524 −1.04277
\(630\) 0 0
\(631\) 10.4663 0.416659 0.208329 0.978059i \(-0.433197\pi\)
0.208329 + 0.978059i \(0.433197\pi\)
\(632\) −4.14600 −0.164919
\(633\) 0 0
\(634\) −31.4151 −1.24765
\(635\) 35.9967 1.42848
\(636\) 0 0
\(637\) 6.97127 0.276212
\(638\) 53.5508 2.12010
\(639\) 0 0
\(640\) 10.1316 0.400486
\(641\) −11.5638 −0.456742 −0.228371 0.973574i \(-0.573340\pi\)
−0.228371 + 0.973574i \(0.573340\pi\)
\(642\) 0 0
\(643\) 48.7789 1.92365 0.961826 0.273661i \(-0.0882346\pi\)
0.961826 + 0.273661i \(0.0882346\pi\)
\(644\) 4.07192 0.160456
\(645\) 0 0
\(646\) 0 0
\(647\) −6.14233 −0.241480 −0.120740 0.992684i \(-0.538527\pi\)
−0.120740 + 0.992684i \(0.538527\pi\)
\(648\) 0 0
\(649\) −28.3329 −1.11217
\(650\) 2.87051 0.112591
\(651\) 0 0
\(652\) −2.54906 −0.0998289
\(653\) 22.2496 0.870695 0.435347 0.900263i \(-0.356626\pi\)
0.435347 + 0.900263i \(0.356626\pi\)
\(654\) 0 0
\(655\) −13.3401 −0.521239
\(656\) 42.1498 1.64567
\(657\) 0 0
\(658\) 7.37390 0.287465
\(659\) −43.4003 −1.69064 −0.845319 0.534263i \(-0.820589\pi\)
−0.845319 + 0.534263i \(0.820589\pi\)
\(660\) 0 0
\(661\) −41.0353 −1.59609 −0.798045 0.602598i \(-0.794132\pi\)
−0.798045 + 0.602598i \(0.794132\pi\)
\(662\) 36.5608 1.42097
\(663\) 0 0
\(664\) 2.01659 0.0782589
\(665\) 0 0
\(666\) 0 0
\(667\) −9.61614 −0.372338
\(668\) −30.6533 −1.18601
\(669\) 0 0
\(670\) −17.1722 −0.663421
\(671\) −43.9347 −1.69608
\(672\) 0 0
\(673\) −34.7212 −1.33840 −0.669202 0.743081i \(-0.733364\pi\)
−0.669202 + 0.743081i \(0.733364\pi\)
\(674\) −12.7024 −0.489277
\(675\) 0 0
\(676\) −18.7989 −0.723036
\(677\) −5.52927 −0.212507 −0.106254 0.994339i \(-0.533886\pi\)
−0.106254 + 0.994339i \(0.533886\pi\)
\(678\) 0 0
\(679\) 17.3285 0.665007
\(680\) −8.98021 −0.344375
\(681\) 0 0
\(682\) 104.831 4.01417
\(683\) 47.5130 1.81803 0.909016 0.416760i \(-0.136835\pi\)
0.909016 + 0.416760i \(0.136835\pi\)
\(684\) 0 0
\(685\) −12.8124 −0.489536
\(686\) −29.8288 −1.13887
\(687\) 0 0
\(688\) 15.5387 0.592408
\(689\) 8.55638 0.325972
\(690\) 0 0
\(691\) 19.8623 0.755598 0.377799 0.925888i \(-0.376681\pi\)
0.377799 + 0.925888i \(0.376681\pi\)
\(692\) −9.47073 −0.360023
\(693\) 0 0
\(694\) −64.6681 −2.45477
\(695\) −28.5586 −1.08329
\(696\) 0 0
\(697\) −64.4523 −2.44131
\(698\) 28.1126 1.06408
\(699\) 0 0
\(700\) −2.42918 −0.0918144
\(701\) 21.3027 0.804591 0.402296 0.915510i \(-0.368212\pi\)
0.402296 + 0.915510i \(0.368212\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 28.8333 1.08670
\(705\) 0 0
\(706\) 13.5752 0.510911
\(707\) 15.9303 0.599120
\(708\) 0 0
\(709\) 21.5457 0.809167 0.404584 0.914501i \(-0.367416\pi\)
0.404584 + 0.914501i \(0.367416\pi\)
\(710\) 30.6781 1.15133
\(711\) 0 0
\(712\) −3.95272 −0.148134
\(713\) −18.8245 −0.704982
\(714\) 0 0
\(715\) 14.3452 0.536479
\(716\) −24.6285 −0.920408
\(717\) 0 0
\(718\) −47.0498 −1.75588
\(719\) −47.4085 −1.76804 −0.884019 0.467451i \(-0.845172\pi\)
−0.884019 + 0.467451i \(0.845172\pi\)
\(720\) 0 0
\(721\) 3.08625 0.114938
\(722\) 0 0
\(723\) 0 0
\(724\) −33.9900 −1.26323
\(725\) 5.73669 0.213055
\(726\) 0 0
\(727\) 16.5860 0.615140 0.307570 0.951525i \(-0.400484\pi\)
0.307570 + 0.951525i \(0.400484\pi\)
\(728\) 1.05975 0.0392771
\(729\) 0 0
\(730\) −34.7212 −1.28509
\(731\) −23.7606 −0.878819
\(732\) 0 0
\(733\) 7.00438 0.258713 0.129356 0.991598i \(-0.458709\pi\)
0.129356 + 0.991598i \(0.458709\pi\)
\(734\) 23.6559 0.873157
\(735\) 0 0
\(736\) −14.5321 −0.535659
\(737\) 26.1524 0.963337
\(738\) 0 0
\(739\) −7.57149 −0.278522 −0.139261 0.990256i \(-0.544473\pi\)
−0.139261 + 0.990256i \(0.544473\pi\)
\(740\) −12.1397 −0.446263
\(741\) 0 0
\(742\) −15.9826 −0.586741
\(743\) −0.0576321 −0.00211432 −0.00105716 0.999999i \(-0.500337\pi\)
−0.00105716 + 0.999999i \(0.500337\pi\)
\(744\) 0 0
\(745\) −27.4683 −1.00636
\(746\) 13.6881 0.501155
\(747\) 0 0
\(748\) −65.9813 −2.41251
\(749\) −16.8546 −0.615854
\(750\) 0 0
\(751\) 28.1172 1.02601 0.513006 0.858385i \(-0.328532\pi\)
0.513006 + 0.858385i \(0.328532\pi\)
\(752\) −14.0317 −0.511683
\(753\) 0 0
\(754\) 12.0741 0.439713
\(755\) 21.9839 0.800077
\(756\) 0 0
\(757\) −0.934664 −0.0339709 −0.0169855 0.999856i \(-0.505407\pi\)
−0.0169855 + 0.999856i \(0.505407\pi\)
\(758\) −27.1604 −0.986509
\(759\) 0 0
\(760\) 0 0
\(761\) −42.7470 −1.54958 −0.774789 0.632220i \(-0.782144\pi\)
−0.774789 + 0.632220i \(0.782144\pi\)
\(762\) 0 0
\(763\) −16.7743 −0.607271
\(764\) 30.5601 1.10563
\(765\) 0 0
\(766\) −37.1324 −1.34165
\(767\) −6.38823 −0.230666
\(768\) 0 0
\(769\) −39.9742 −1.44151 −0.720754 0.693191i \(-0.756204\pi\)
−0.720754 + 0.693191i \(0.756204\pi\)
\(770\) −26.7956 −0.965647
\(771\) 0 0
\(772\) 42.1338 1.51643
\(773\) 23.7763 0.855173 0.427586 0.903974i \(-0.359364\pi\)
0.427586 + 0.903974i \(0.359364\pi\)
\(774\) 0 0
\(775\) 11.2301 0.403397
\(776\) −9.06194 −0.325305
\(777\) 0 0
\(778\) 13.9878 0.501486
\(779\) 0 0
\(780\) 0 0
\(781\) −46.7212 −1.67182
\(782\) 26.1524 0.935209
\(783\) 0 0
\(784\) 24.7789 0.884961
\(785\) 30.2466 1.07955
\(786\) 0 0
\(787\) 16.2201 0.578184 0.289092 0.957301i \(-0.406647\pi\)
0.289092 + 0.957301i \(0.406647\pi\)
\(788\) −7.50181 −0.267241
\(789\) 0 0
\(790\) 23.6362 0.840937
\(791\) −18.5284 −0.658793
\(792\) 0 0
\(793\) −9.90595 −0.351771
\(794\) −33.7488 −1.19770
\(795\) 0 0
\(796\) 14.1826 0.502688
\(797\) −31.8038 −1.12655 −0.563273 0.826271i \(-0.690458\pi\)
−0.563273 + 0.826271i \(0.690458\pi\)
\(798\) 0 0
\(799\) 21.4562 0.759067
\(800\) 8.66938 0.306509
\(801\) 0 0
\(802\) −38.3977 −1.35587
\(803\) 52.8786 1.86605
\(804\) 0 0
\(805\) 4.81170 0.169590
\(806\) 23.6362 0.832548
\(807\) 0 0
\(808\) −8.33074 −0.293074
\(809\) 18.4860 0.649933 0.324966 0.945726i \(-0.394647\pi\)
0.324966 + 0.945726i \(0.394647\pi\)
\(810\) 0 0
\(811\) −29.4026 −1.03247 −0.516233 0.856448i \(-0.672666\pi\)
−0.516233 + 0.856448i \(0.672666\pi\)
\(812\) −10.2178 −0.358573
\(813\) 0 0
\(814\) 40.8084 1.43033
\(815\) −3.01217 −0.105512
\(816\) 0 0
\(817\) 0 0
\(818\) −19.4480 −0.679984
\(819\) 0 0
\(820\) −29.9181 −1.04478
\(821\) −8.61538 −0.300679 −0.150339 0.988634i \(-0.548037\pi\)
−0.150339 + 0.988634i \(0.548037\pi\)
\(822\) 0 0
\(823\) 50.9786 1.77700 0.888502 0.458874i \(-0.151747\pi\)
0.888502 + 0.458874i \(0.151747\pi\)
\(824\) −1.61395 −0.0562247
\(825\) 0 0
\(826\) 11.9327 0.415192
\(827\) −18.8047 −0.653902 −0.326951 0.945041i \(-0.606021\pi\)
−0.326951 + 0.945041i \(0.606021\pi\)
\(828\) 0 0
\(829\) −27.0476 −0.939400 −0.469700 0.882826i \(-0.655638\pi\)
−0.469700 + 0.882826i \(0.655638\pi\)
\(830\) −11.4965 −0.399049
\(831\) 0 0
\(832\) 6.50105 0.225383
\(833\) −37.8901 −1.31281
\(834\) 0 0
\(835\) −36.2223 −1.25352
\(836\) 0 0
\(837\) 0 0
\(838\) −31.5320 −1.08926
\(839\) −34.7591 −1.20002 −0.600009 0.799993i \(-0.704836\pi\)
−0.600009 + 0.799993i \(0.704836\pi\)
\(840\) 0 0
\(841\) −4.87000 −0.167931
\(842\) 42.4624 1.46335
\(843\) 0 0
\(844\) −24.2610 −0.835099
\(845\) −22.2143 −0.764194
\(846\) 0 0
\(847\) 26.9967 0.927617
\(848\) 30.4131 1.04439
\(849\) 0 0
\(850\) −15.6017 −0.535135
\(851\) −7.32797 −0.251200
\(852\) 0 0
\(853\) 23.6291 0.809046 0.404523 0.914528i \(-0.367438\pi\)
0.404523 + 0.914528i \(0.367438\pi\)
\(854\) 18.5035 0.633177
\(855\) 0 0
\(856\) 8.81411 0.301260
\(857\) 18.0871 0.617843 0.308922 0.951087i \(-0.400032\pi\)
0.308922 + 0.951087i \(0.400032\pi\)
\(858\) 0 0
\(859\) 5.56379 0.189834 0.0949171 0.995485i \(-0.469741\pi\)
0.0949171 + 0.995485i \(0.469741\pi\)
\(860\) −11.0294 −0.376100
\(861\) 0 0
\(862\) 59.5508 2.02831
\(863\) −35.8865 −1.22159 −0.610795 0.791789i \(-0.709150\pi\)
−0.610795 + 0.791789i \(0.709150\pi\)
\(864\) 0 0
\(865\) −11.1913 −0.380517
\(866\) 14.5321 0.493820
\(867\) 0 0
\(868\) −20.0022 −0.678919
\(869\) −35.9967 −1.22110
\(870\) 0 0
\(871\) 5.89659 0.199798
\(872\) 8.77212 0.297061
\(873\) 0 0
\(874\) 0 0
\(875\) −15.1603 −0.512513
\(876\) 0 0
\(877\) 8.33074 0.281309 0.140655 0.990059i \(-0.455079\pi\)
0.140655 + 0.990059i \(0.455079\pi\)
\(878\) −49.4789 −1.66983
\(879\) 0 0
\(880\) 50.9890 1.71884
\(881\) −0.117999 −0.00397547 −0.00198774 0.999998i \(-0.500633\pi\)
−0.00198774 + 0.999998i \(0.500633\pi\)
\(882\) 0 0
\(883\) −34.9140 −1.17495 −0.587474 0.809243i \(-0.699878\pi\)
−0.587474 + 0.809243i \(0.699878\pi\)
\(884\) −14.8768 −0.500361
\(885\) 0 0
\(886\) 18.8296 0.632594
\(887\) 8.54400 0.286879 0.143440 0.989659i \(-0.454184\pi\)
0.143440 + 0.989659i \(0.454184\pi\)
\(888\) 0 0
\(889\) 23.0885 0.774362
\(890\) 22.5343 0.755350
\(891\) 0 0
\(892\) 38.0619 1.27441
\(893\) 0 0
\(894\) 0 0
\(895\) −29.1029 −0.972802
\(896\) 6.49846 0.217098
\(897\) 0 0
\(898\) −76.6128 −2.55660
\(899\) 47.2367 1.57543
\(900\) 0 0
\(901\) −46.5055 −1.54932
\(902\) 100.572 3.34867
\(903\) 0 0
\(904\) 9.68940 0.322265
\(905\) −40.1652 −1.33514
\(906\) 0 0
\(907\) −21.6902 −0.720213 −0.360106 0.932911i \(-0.617260\pi\)
−0.360106 + 0.932911i \(0.617260\pi\)
\(908\) 14.4406 0.479228
\(909\) 0 0
\(910\) −6.04161 −0.200277
\(911\) 26.5361 0.879179 0.439590 0.898199i \(-0.355124\pi\)
0.439590 + 0.898199i \(0.355124\pi\)
\(912\) 0 0
\(913\) 17.5086 0.579449
\(914\) 68.9113 2.27938
\(915\) 0 0
\(916\) −29.9390 −0.989214
\(917\) −8.55638 −0.282557
\(918\) 0 0
\(919\) −31.4811 −1.03846 −0.519232 0.854633i \(-0.673782\pi\)
−0.519232 + 0.854633i \(0.673782\pi\)
\(920\) −2.51628 −0.0829592
\(921\) 0 0
\(922\) −35.0497 −1.15430
\(923\) −10.5342 −0.346738
\(924\) 0 0
\(925\) 4.37164 0.143739
\(926\) 49.6738 1.63238
\(927\) 0 0
\(928\) 36.4657 1.19704
\(929\) −44.7636 −1.46865 −0.734323 0.678800i \(-0.762500\pi\)
−0.734323 + 0.678800i \(0.762500\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 26.1058 0.855124
\(933\) 0 0
\(934\) −24.4768 −0.800904
\(935\) −77.9686 −2.54985
\(936\) 0 0
\(937\) 53.9287 1.76177 0.880887 0.473327i \(-0.156947\pi\)
0.880887 + 0.473327i \(0.156947\pi\)
\(938\) −11.0143 −0.359631
\(939\) 0 0
\(940\) 9.95974 0.324851
\(941\) −21.0000 −0.684580 −0.342290 0.939594i \(-0.611203\pi\)
−0.342290 + 0.939594i \(0.611203\pi\)
\(942\) 0 0
\(943\) −18.0597 −0.588105
\(944\) −22.7065 −0.739035
\(945\) 0 0
\(946\) 37.0762 1.20545
\(947\) −45.3178 −1.47263 −0.736315 0.676638i \(-0.763436\pi\)
−0.736315 + 0.676638i \(0.763436\pi\)
\(948\) 0 0
\(949\) 11.9225 0.387022
\(950\) 0 0
\(951\) 0 0
\(952\) −5.75995 −0.186681
\(953\) −17.5163 −0.567408 −0.283704 0.958912i \(-0.591563\pi\)
−0.283704 + 0.958912i \(0.591563\pi\)
\(954\) 0 0
\(955\) 36.1122 1.16856
\(956\) 44.5479 1.44078
\(957\) 0 0
\(958\) −7.48672 −0.241885
\(959\) −8.21792 −0.265371
\(960\) 0 0
\(961\) 61.4701 1.98290
\(962\) 9.20107 0.296654
\(963\) 0 0
\(964\) −44.4501 −1.43164
\(965\) 49.7886 1.60275
\(966\) 0 0
\(967\) 34.5930 1.11244 0.556218 0.831036i \(-0.312252\pi\)
0.556218 + 0.831036i \(0.312252\pi\)
\(968\) −14.1179 −0.453767
\(969\) 0 0
\(970\) 51.6617 1.65876
\(971\) 10.2127 0.327741 0.163871 0.986482i \(-0.447602\pi\)
0.163871 + 0.986482i \(0.447602\pi\)
\(972\) 0 0
\(973\) −18.3176 −0.587236
\(974\) 21.6902 0.695000
\(975\) 0 0
\(976\) −35.2101 −1.12705
\(977\) 37.6834 1.20560 0.602800 0.797892i \(-0.294052\pi\)
0.602800 + 0.797892i \(0.294052\pi\)
\(978\) 0 0
\(979\) −34.3185 −1.09683
\(980\) −17.5882 −0.561833
\(981\) 0 0
\(982\) 43.6061 1.39153
\(983\) 27.8409 0.887988 0.443994 0.896030i \(-0.353561\pi\)
0.443994 + 0.896030i \(0.353561\pi\)
\(984\) 0 0
\(985\) −8.86471 −0.282453
\(986\) −65.6249 −2.08992
\(987\) 0 0
\(988\) 0 0
\(989\) −6.65779 −0.211705
\(990\) 0 0
\(991\) 10.4989 0.333508 0.166754 0.985999i \(-0.446671\pi\)
0.166754 + 0.985999i \(0.446671\pi\)
\(992\) 71.3849 2.26647
\(993\) 0 0
\(994\) 19.6771 0.624119
\(995\) 16.7592 0.531303
\(996\) 0 0
\(997\) 13.3460 0.422673 0.211336 0.977413i \(-0.432218\pi\)
0.211336 + 0.977413i \(0.432218\pi\)
\(998\) 58.8084 1.86155
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9747.2.a.bk.1.6 yes 6
3.2 odd 2 9747.2.a.bt.1.1 yes 6
19.18 odd 2 9747.2.a.bt.1.2 yes 6
57.56 even 2 inner 9747.2.a.bk.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9747.2.a.bk.1.5 6 57.56 even 2 inner
9747.2.a.bk.1.6 yes 6 1.1 even 1 trivial
9747.2.a.bt.1.1 yes 6 3.2 odd 2
9747.2.a.bt.1.2 yes 6 19.18 odd 2