Properties

Label 9747.2.a.y
Level $9747$
Weight $2$
Character orbit 9747.a
Self dual yes
Analytic conductor $77.830$
Analytic rank $1$
Dimension $3$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9747,2,Mod(1,9747)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9747, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9747.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9747 = 3^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9747.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.8301868501\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{4} + ( - \beta_{2} - 2 \beta_1) q^{7} + ( - 3 \beta_{2} + 4 \beta_1) q^{13} + 4 q^{16} - 5 q^{25} + (2 \beta_{2} + 4 \beta_1) q^{28} + (5 \beta_{2} - 6 \beta_1) q^{31} + (4 \beta_{2} - 7 \beta_1) q^{37}+ \cdots + 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{4} + 12 q^{16} - 15 q^{25} + 21 q^{49} - 24 q^{64} - 24 q^{91} + 57 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
0 0 −2.00000 0 0 −5.29086 0 0 0
1.2 0 0 −2.00000 0 0 2.57398 0 0 0
1.3 0 0 −2.00000 0 0 2.71688 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9747.2.a.y 3
3.b odd 2 1 CM 9747.2.a.y 3
19.b odd 2 1 9747.2.a.z 3
19.f odd 18 2 513.2.y.b 6
57.d even 2 1 9747.2.a.z 3
57.j even 18 2 513.2.y.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.2.y.b 6 19.f odd 18 2
513.2.y.b 6 57.j even 18 2
9747.2.a.y 3 1.a even 1 1 trivial
9747.2.a.y 3 3.b odd 2 1 CM
9747.2.a.z 3 19.b odd 2 1
9747.2.a.z 3 57.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9747))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{3} - 21T_{7} + 37 \) Copy content Toggle raw display
\( T_{13}^{3} - 39T_{13} + 89 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 21T + 37 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 39T + 89 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 93T - 289 \) Copy content Toggle raw display
$37$ \( T^{3} - 111T - 433 \) Copy content Toggle raw display
$41$ \( T^{3} \) Copy content Toggle raw display
$43$ \( T^{3} - 129T - 449 \) Copy content Toggle raw display
$47$ \( T^{3} \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( T^{3} \) Copy content Toggle raw display
$61$ \( T^{3} - 183T + 901 \) Copy content Toggle raw display
$67$ \( T^{3} - 201T - 127 \) Copy content Toggle raw display
$71$ \( T^{3} \) Copy content Toggle raw display
$73$ \( T^{3} - 219T + 919 \) Copy content Toggle raw display
$79$ \( T^{3} - 237T + 503 \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( (T - 19)^{3} \) Copy content Toggle raw display
show more
show less