Properties

Label 975.2.ci
Level $975$
Weight $2$
Character orbit 975.ci
Rep. character $\chi_{975}(112,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $560$
Newform subspaces $1$
Sturm bound $280$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.ci (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 325 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(280\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).

Total New Old
Modular forms 1152 560 592
Cusp forms 1088 560 528
Eisenstein series 64 0 64

Trace form

\( 560 q + 140 q^{4} - 8 q^{5} - 8 q^{12} + 12 q^{13} - 4 q^{15} - 140 q^{16} + 28 q^{17} - 16 q^{18} - 20 q^{19} - 100 q^{20} + 32 q^{22} - 8 q^{23} + 4 q^{25} + 40 q^{29} - 20 q^{33} + 40 q^{34} - 12 q^{37}+ \cdots - 440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.2.ci.a 975.ci 325.ae $560$ $7.785$ None 975.2.bx.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{20}]$

Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)