Properties

Label 975.2.cq
Level $975$
Weight $2$
Character orbit 975.cq
Rep. character $\chi_{975}(28,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $1120$
Newform subspaces $1$
Sturm bound $280$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.cq (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 325 \)
Character field: \(\Q(\zeta_{60})\)
Newform subspaces: \( 1 \)
Sturm bound: \(280\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).

Total New Old
Modular forms 2304 1120 1184
Cusp forms 2176 1120 1056
Eisenstein series 128 0 128

Trace form

\( 1120 q - 140 q^{4} + 8 q^{5} - 16 q^{12} + 4 q^{15} + 140 q^{16} + 20 q^{17} - 32 q^{18} + 20 q^{19} + 100 q^{20} + 28 q^{22} + 8 q^{23} + 20 q^{25} - 40 q^{29} + 60 q^{32} + 8 q^{33} - 40 q^{34} + 60 q^{37}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.2.cq.a 975.cq 325.ai $1120$ $7.785$ None 975.2.cq.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{60}]$

Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)