Defining parameters
Level: | \( N \) | \(=\) | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 975.cq (of order \(60\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 325 \) |
Character field: | \(\Q(\zeta_{60})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(280\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2304 | 1120 | 1184 |
Cusp forms | 2176 | 1120 | 1056 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
975.2.cq.a | $1120$ | $7.785$ | None | \(0\) | \(0\) | \(8\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)