Properties

Label 9792.2.a.dc.1.1
Level $9792$
Weight $2$
Character 9792.1
Self dual yes
Analytic conductor $78.190$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9792,2,Mod(1,9792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9792, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9792.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9792.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.1895136592\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 9792.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.34017 q^{5} +0.630898 q^{7} -5.70928 q^{11} +3.07838 q^{13} -1.00000 q^{17} -3.41855 q^{19} +5.89269 q^{23} +13.8371 q^{25} +0.340173 q^{29} -6.78765 q^{31} -2.73820 q^{35} -0.340173 q^{37} -4.15676 q^{41} -5.26180 q^{43} -8.68035 q^{47} -6.60197 q^{49} +0.156755 q^{53} +24.7792 q^{55} -12.0989 q^{59} -7.17727 q^{61} -13.3607 q^{65} +6.83710 q^{67} +3.95055 q^{71} -4.83710 q^{73} -3.60197 q^{77} +8.94441 q^{79} -5.26180 q^{83} +4.34017 q^{85} -9.60197 q^{89} +1.94214 q^{91} +14.8371 q^{95} -12.8371 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{5} - 2 q^{7} - 10 q^{11} + 6 q^{13} - 3 q^{17} + 4 q^{19} + 6 q^{23} + 13 q^{25} - 10 q^{29} - 10 q^{31} - 16 q^{35} + 10 q^{37} - 6 q^{41} - 8 q^{43} - 4 q^{47} - q^{49} - 6 q^{53} + 16 q^{55}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.34017 −1.94098 −0.970492 0.241133i \(-0.922481\pi\)
−0.970492 + 0.241133i \(0.922481\pi\)
\(6\) 0 0
\(7\) 0.630898 0.238457 0.119228 0.992867i \(-0.461958\pi\)
0.119228 + 0.992867i \(0.461958\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.70928 −1.72141 −0.860706 0.509103i \(-0.829977\pi\)
−0.860706 + 0.509103i \(0.829977\pi\)
\(12\) 0 0
\(13\) 3.07838 0.853788 0.426894 0.904302i \(-0.359608\pi\)
0.426894 + 0.904302i \(0.359608\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −3.41855 −0.784269 −0.392135 0.919908i \(-0.628263\pi\)
−0.392135 + 0.919908i \(0.628263\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.89269 1.22871 0.614356 0.789029i \(-0.289416\pi\)
0.614356 + 0.789029i \(0.289416\pi\)
\(24\) 0 0
\(25\) 13.8371 2.76742
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.340173 0.0631685 0.0315843 0.999501i \(-0.489945\pi\)
0.0315843 + 0.999501i \(0.489945\pi\)
\(30\) 0 0
\(31\) −6.78765 −1.21910 −0.609549 0.792748i \(-0.708650\pi\)
−0.609549 + 0.792748i \(0.708650\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.73820 −0.462841
\(36\) 0 0
\(37\) −0.340173 −0.0559241 −0.0279620 0.999609i \(-0.508902\pi\)
−0.0279620 + 0.999609i \(0.508902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.15676 −0.649176 −0.324588 0.945855i \(-0.605226\pi\)
−0.324588 + 0.945855i \(0.605226\pi\)
\(42\) 0 0
\(43\) −5.26180 −0.802416 −0.401208 0.915987i \(-0.631410\pi\)
−0.401208 + 0.915987i \(0.631410\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.68035 −1.26616 −0.633079 0.774087i \(-0.718209\pi\)
−0.633079 + 0.774087i \(0.718209\pi\)
\(48\) 0 0
\(49\) −6.60197 −0.943138
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.156755 0.0215320 0.0107660 0.999942i \(-0.496573\pi\)
0.0107660 + 0.999942i \(0.496573\pi\)
\(54\) 0 0
\(55\) 24.7792 3.34123
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.0989 −1.57514 −0.787571 0.616224i \(-0.788662\pi\)
−0.787571 + 0.616224i \(0.788662\pi\)
\(60\) 0 0
\(61\) −7.17727 −0.918956 −0.459478 0.888189i \(-0.651963\pi\)
−0.459478 + 0.888189i \(0.651963\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.3607 −1.65719
\(66\) 0 0
\(67\) 6.83710 0.835285 0.417642 0.908611i \(-0.362856\pi\)
0.417642 + 0.908611i \(0.362856\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.95055 0.468844 0.234422 0.972135i \(-0.424680\pi\)
0.234422 + 0.972135i \(0.424680\pi\)
\(72\) 0 0
\(73\) −4.83710 −0.566140 −0.283070 0.959099i \(-0.591353\pi\)
−0.283070 + 0.959099i \(0.591353\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.60197 −0.410482
\(78\) 0 0
\(79\) 8.94441 1.00632 0.503162 0.864192i \(-0.332170\pi\)
0.503162 + 0.864192i \(0.332170\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.26180 −0.577557 −0.288779 0.957396i \(-0.593249\pi\)
−0.288779 + 0.957396i \(0.593249\pi\)
\(84\) 0 0
\(85\) 4.34017 0.470758
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.60197 −1.01781 −0.508903 0.860824i \(-0.669949\pi\)
−0.508903 + 0.860824i \(0.669949\pi\)
\(90\) 0 0
\(91\) 1.94214 0.203592
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.8371 1.52225
\(96\) 0 0
\(97\) −12.8371 −1.30341 −0.651705 0.758472i \(-0.725946\pi\)
−0.651705 + 0.758472i \(0.725946\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.92162 0.489720 0.244860 0.969558i \(-0.421258\pi\)
0.244860 + 0.969558i \(0.421258\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.8082 −1.72158 −0.860790 0.508959i \(-0.830030\pi\)
−0.860790 + 0.508959i \(0.830030\pi\)
\(108\) 0 0
\(109\) 1.81658 0.173997 0.0869985 0.996208i \(-0.472272\pi\)
0.0869985 + 0.996208i \(0.472272\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.9939 −1.03422 −0.517108 0.855920i \(-0.672991\pi\)
−0.517108 + 0.855920i \(0.672991\pi\)
\(114\) 0 0
\(115\) −25.5753 −2.38491
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.630898 −0.0578343
\(120\) 0 0
\(121\) 21.5958 1.96326
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −38.3545 −3.43054
\(126\) 0 0
\(127\) 6.73820 0.597919 0.298959 0.954266i \(-0.403360\pi\)
0.298959 + 0.954266i \(0.403360\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.38962 0.558264 0.279132 0.960253i \(-0.409953\pi\)
0.279132 + 0.960253i \(0.409953\pi\)
\(132\) 0 0
\(133\) −2.15676 −0.187014
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.5958 1.24701 0.623503 0.781821i \(-0.285709\pi\)
0.623503 + 0.781821i \(0.285709\pi\)
\(138\) 0 0
\(139\) 6.60424 0.560164 0.280082 0.959976i \(-0.409638\pi\)
0.280082 + 0.959976i \(0.409638\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −17.5753 −1.46972
\(144\) 0 0
\(145\) −1.47641 −0.122609
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 23.3607 1.91378 0.956891 0.290447i \(-0.0938038\pi\)
0.956891 + 0.290447i \(0.0938038\pi\)
\(150\) 0 0
\(151\) −16.0989 −1.31011 −0.655055 0.755581i \(-0.727354\pi\)
−0.655055 + 0.755581i \(0.727354\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 29.4596 2.36625
\(156\) 0 0
\(157\) 12.5236 0.999491 0.499746 0.866172i \(-0.333427\pi\)
0.499746 + 0.866172i \(0.333427\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.71769 0.292995
\(162\) 0 0
\(163\) 3.55252 0.278255 0.139127 0.990274i \(-0.455570\pi\)
0.139127 + 0.990274i \(0.455570\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.79380 0.138808 0.0694041 0.997589i \(-0.477890\pi\)
0.0694041 + 0.997589i \(0.477890\pi\)
\(168\) 0 0
\(169\) −3.52359 −0.271045
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.1773 1.15391 0.576953 0.816777i \(-0.304241\pi\)
0.576953 + 0.816777i \(0.304241\pi\)
\(174\) 0 0
\(175\) 8.72979 0.659910
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.2557 0.766543 0.383272 0.923636i \(-0.374797\pi\)
0.383272 + 0.923636i \(0.374797\pi\)
\(180\) 0 0
\(181\) −15.1773 −1.12812 −0.564059 0.825735i \(-0.690761\pi\)
−0.564059 + 0.825735i \(0.690761\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.47641 0.108548
\(186\) 0 0
\(187\) 5.70928 0.417504
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.6803 1.20695 0.603474 0.797383i \(-0.293783\pi\)
0.603474 + 0.797383i \(0.293783\pi\)
\(192\) 0 0
\(193\) 7.84324 0.564569 0.282285 0.959331i \(-0.408908\pi\)
0.282285 + 0.959331i \(0.408908\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.0205 0.927674 0.463837 0.885921i \(-0.346472\pi\)
0.463837 + 0.885921i \(0.346472\pi\)
\(198\) 0 0
\(199\) −18.3051 −1.29761 −0.648807 0.760953i \(-0.724732\pi\)
−0.648807 + 0.760953i \(0.724732\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.214614 0.0150630
\(204\) 0 0
\(205\) 18.0410 1.26004
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 19.5174 1.35005
\(210\) 0 0
\(211\) 6.38962 0.439880 0.219940 0.975513i \(-0.429414\pi\)
0.219940 + 0.975513i \(0.429414\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 22.8371 1.55748
\(216\) 0 0
\(217\) −4.28231 −0.290702
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.07838 −0.207074
\(222\) 0 0
\(223\) −15.6163 −1.04575 −0.522874 0.852410i \(-0.675140\pi\)
−0.522874 + 0.852410i \(0.675140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.65756 0.176388 0.0881942 0.996103i \(-0.471890\pi\)
0.0881942 + 0.996103i \(0.471890\pi\)
\(228\) 0 0
\(229\) 5.60197 0.370188 0.185094 0.982721i \(-0.440741\pi\)
0.185094 + 0.982721i \(0.440741\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.2039 1.38912 0.694558 0.719437i \(-0.255600\pi\)
0.694558 + 0.719437i \(0.255600\pi\)
\(234\) 0 0
\(235\) 37.6742 2.45759
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.1568 1.43320 0.716601 0.697484i \(-0.245697\pi\)
0.716601 + 0.697484i \(0.245697\pi\)
\(240\) 0 0
\(241\) 6.68035 0.430319 0.215159 0.976579i \(-0.430973\pi\)
0.215159 + 0.976579i \(0.430973\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28.6537 1.83062
\(246\) 0 0
\(247\) −10.5236 −0.669600
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −33.6430 −2.11512
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.92162 −0.307002 −0.153501 0.988148i \(-0.549055\pi\)
−0.153501 + 0.988148i \(0.549055\pi\)
\(258\) 0 0
\(259\) −0.214614 −0.0133355
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.09890 −0.499399 −0.249700 0.968323i \(-0.580332\pi\)
−0.249700 + 0.968323i \(0.580332\pi\)
\(264\) 0 0
\(265\) −0.680346 −0.0417933
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.5380 −1.25222 −0.626111 0.779734i \(-0.715354\pi\)
−0.626111 + 0.779734i \(0.715354\pi\)
\(270\) 0 0
\(271\) 7.51745 0.456652 0.228326 0.973585i \(-0.426675\pi\)
0.228326 + 0.973585i \(0.426675\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −78.9998 −4.76387
\(276\) 0 0
\(277\) 25.6475 1.54101 0.770506 0.637433i \(-0.220004\pi\)
0.770506 + 0.637433i \(0.220004\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.5236 0.985715 0.492857 0.870110i \(-0.335952\pi\)
0.492857 + 0.870110i \(0.335952\pi\)
\(282\) 0 0
\(283\) −19.6514 −1.16816 −0.584078 0.811698i \(-0.698544\pi\)
−0.584078 + 0.811698i \(0.698544\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.62249 −0.154801
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.68649 0.565891 0.282945 0.959136i \(-0.408688\pi\)
0.282945 + 0.959136i \(0.408688\pi\)
\(294\) 0 0
\(295\) 52.5113 3.05733
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.1399 1.04906
\(300\) 0 0
\(301\) −3.31965 −0.191342
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 31.1506 1.78368
\(306\) 0 0
\(307\) 22.1568 1.26455 0.632276 0.774743i \(-0.282121\pi\)
0.632276 + 0.774743i \(0.282121\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.6309 0.943052 0.471526 0.881852i \(-0.343703\pi\)
0.471526 + 0.881852i \(0.343703\pi\)
\(312\) 0 0
\(313\) 19.7275 1.11507 0.557533 0.830155i \(-0.311748\pi\)
0.557533 + 0.830155i \(0.311748\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.3402 −1.14242 −0.571209 0.820805i \(-0.693525\pi\)
−0.571209 + 0.820805i \(0.693525\pi\)
\(318\) 0 0
\(319\) −1.94214 −0.108739
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.41855 0.190213
\(324\) 0 0
\(325\) 42.5958 2.36279
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.47641 −0.301924
\(330\) 0 0
\(331\) −8.94828 −0.491842 −0.245921 0.969290i \(-0.579090\pi\)
−0.245921 + 0.969290i \(0.579090\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −29.6742 −1.62127
\(336\) 0 0
\(337\) 12.5236 0.682203 0.341102 0.940026i \(-0.389200\pi\)
0.341102 + 0.940026i \(0.389200\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 38.7526 2.09857
\(342\) 0 0
\(343\) −8.58145 −0.463355
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.7503 −1.48971 −0.744857 0.667224i \(-0.767483\pi\)
−0.744857 + 0.667224i \(0.767483\pi\)
\(348\) 0 0
\(349\) −8.15676 −0.436621 −0.218311 0.975879i \(-0.570055\pi\)
−0.218311 + 0.975879i \(0.570055\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.8371 −0.896148 −0.448074 0.893996i \(-0.647890\pi\)
−0.448074 + 0.893996i \(0.647890\pi\)
\(354\) 0 0
\(355\) −17.1461 −0.910019
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.20847 0.486005 0.243002 0.970026i \(-0.421868\pi\)
0.243002 + 0.970026i \(0.421868\pi\)
\(360\) 0 0
\(361\) −7.31351 −0.384922
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.9939 1.09887
\(366\) 0 0
\(367\) −20.0494 −1.04657 −0.523286 0.852157i \(-0.675294\pi\)
−0.523286 + 0.852157i \(0.675294\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0988967 0.00513446
\(372\) 0 0
\(373\) −5.54864 −0.287298 −0.143649 0.989629i \(-0.545884\pi\)
−0.143649 + 0.989629i \(0.545884\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.04718 0.0539326
\(378\) 0 0
\(379\) −1.70928 −0.0877996 −0.0438998 0.999036i \(-0.513978\pi\)
−0.0438998 + 0.999036i \(0.513978\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.4247 −0.532677 −0.266338 0.963880i \(-0.585814\pi\)
−0.266338 + 0.963880i \(0.585814\pi\)
\(384\) 0 0
\(385\) 15.6332 0.796740
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.9627 −1.16425 −0.582127 0.813098i \(-0.697779\pi\)
−0.582127 + 0.813098i \(0.697779\pi\)
\(390\) 0 0
\(391\) −5.89269 −0.298006
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −38.8203 −1.95326
\(396\) 0 0
\(397\) −1.70086 −0.0853640 −0.0426820 0.999089i \(-0.513590\pi\)
−0.0426820 + 0.999089i \(0.513590\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.9939 1.14826 0.574129 0.818765i \(-0.305341\pi\)
0.574129 + 0.818765i \(0.305341\pi\)
\(402\) 0 0
\(403\) −20.8950 −1.04085
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.94214 0.0962684
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.63317 −0.375603
\(414\) 0 0
\(415\) 22.8371 1.12103
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.7565 −0.720900 −0.360450 0.932779i \(-0.617377\pi\)
−0.360450 + 0.932779i \(0.617377\pi\)
\(420\) 0 0
\(421\) 35.0784 1.70962 0.854808 0.518945i \(-0.173675\pi\)
0.854808 + 0.518945i \(0.173675\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.8371 −0.671198
\(426\) 0 0
\(427\) −4.52813 −0.219131
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.3051 −1.26707 −0.633536 0.773713i \(-0.718397\pi\)
−0.633536 + 0.773713i \(0.718397\pi\)
\(432\) 0 0
\(433\) −14.9627 −0.719060 −0.359530 0.933134i \(-0.617063\pi\)
−0.359530 + 0.933134i \(0.617063\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −20.1445 −0.963641
\(438\) 0 0
\(439\) 17.0966 0.815978 0.407989 0.912987i \(-0.366230\pi\)
0.407989 + 0.912987i \(0.366230\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.52359 0.119899 0.0599497 0.998201i \(-0.480906\pi\)
0.0599497 + 0.998201i \(0.480906\pi\)
\(444\) 0 0
\(445\) 41.6742 1.97555
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.6742 1.30603 0.653013 0.757347i \(-0.273505\pi\)
0.653013 + 0.757347i \(0.273505\pi\)
\(450\) 0 0
\(451\) 23.7321 1.11750
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.42923 −0.395168
\(456\) 0 0
\(457\) 16.8059 0.786147 0.393074 0.919507i \(-0.371412\pi\)
0.393074 + 0.919507i \(0.371412\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.2039 1.36016 0.680081 0.733137i \(-0.261944\pi\)
0.680081 + 0.733137i \(0.261944\pi\)
\(462\) 0 0
\(463\) −8.19779 −0.380984 −0.190492 0.981689i \(-0.561008\pi\)
−0.190492 + 0.981689i \(0.561008\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.5692 1.41457 0.707286 0.706927i \(-0.249919\pi\)
0.707286 + 0.706927i \(0.249919\pi\)
\(468\) 0 0
\(469\) 4.31351 0.199179
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.0410 1.38129
\(474\) 0 0
\(475\) −47.3028 −2.17040
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 37.9916 1.73588 0.867940 0.496669i \(-0.165444\pi\)
0.867940 + 0.496669i \(0.165444\pi\)
\(480\) 0 0
\(481\) −1.04718 −0.0477473
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 55.7152 2.52990
\(486\) 0 0
\(487\) −15.0023 −0.679818 −0.339909 0.940458i \(-0.610396\pi\)
−0.339909 + 0.940458i \(0.610396\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.465732 0.0210182 0.0105091 0.999945i \(-0.496655\pi\)
0.0105091 + 0.999945i \(0.496655\pi\)
\(492\) 0 0
\(493\) −0.340173 −0.0153206
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.49239 0.111799
\(498\) 0 0
\(499\) −30.1217 −1.34843 −0.674216 0.738534i \(-0.735518\pi\)
−0.674216 + 0.738534i \(0.735518\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −39.8348 −1.77615 −0.888074 0.459701i \(-0.847957\pi\)
−0.888074 + 0.459701i \(0.847957\pi\)
\(504\) 0 0
\(505\) −21.3607 −0.950538
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.6742 0.872044 0.436022 0.899936i \(-0.356387\pi\)
0.436022 + 0.899936i \(0.356387\pi\)
\(510\) 0 0
\(511\) −3.05172 −0.135000
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 49.5585 2.17958
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.8904 −0.915226 −0.457613 0.889151i \(-0.651296\pi\)
−0.457613 + 0.889151i \(0.651296\pi\)
\(522\) 0 0
\(523\) −20.3135 −0.888248 −0.444124 0.895965i \(-0.646485\pi\)
−0.444124 + 0.895965i \(0.646485\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.78765 0.295675
\(528\) 0 0
\(529\) 11.7238 0.509732
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.7961 −0.554259
\(534\) 0 0
\(535\) 77.2905 3.34156
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 37.6925 1.62353
\(540\) 0 0
\(541\) −5.18956 −0.223117 −0.111558 0.993758i \(-0.535584\pi\)
−0.111558 + 0.993758i \(0.535584\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.88428 −0.337726
\(546\) 0 0
\(547\) −29.2267 −1.24964 −0.624822 0.780767i \(-0.714829\pi\)
−0.624822 + 0.780767i \(0.714829\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.16290 −0.0495411
\(552\) 0 0
\(553\) 5.64301 0.239965
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.5486 0.574074 0.287037 0.957919i \(-0.407330\pi\)
0.287037 + 0.957919i \(0.407330\pi\)
\(558\) 0 0
\(559\) −16.1978 −0.685094
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 46.0866 1.94232 0.971160 0.238431i \(-0.0766330\pi\)
0.971160 + 0.238431i \(0.0766330\pi\)
\(564\) 0 0
\(565\) 47.7152 2.00740
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 43.8720 1.83921 0.919605 0.392845i \(-0.128509\pi\)
0.919605 + 0.392845i \(0.128509\pi\)
\(570\) 0 0
\(571\) 16.3486 0.684167 0.342083 0.939670i \(-0.388867\pi\)
0.342083 + 0.939670i \(0.388867\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 81.5378 3.40036
\(576\) 0 0
\(577\) 19.3919 0.807295 0.403647 0.914915i \(-0.367742\pi\)
0.403647 + 0.914915i \(0.367742\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.31965 −0.137722
\(582\) 0 0
\(583\) −0.894960 −0.0370655
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.5814 0.849487 0.424744 0.905314i \(-0.360364\pi\)
0.424744 + 0.905314i \(0.360364\pi\)
\(588\) 0 0
\(589\) 23.2039 0.956102
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.21008 0.172887 0.0864436 0.996257i \(-0.472450\pi\)
0.0864436 + 0.996257i \(0.472450\pi\)
\(594\) 0 0
\(595\) 2.73820 0.112255
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.21008 0.253737 0.126868 0.991920i \(-0.459507\pi\)
0.126868 + 0.991920i \(0.459507\pi\)
\(600\) 0 0
\(601\) 4.95282 0.202030 0.101015 0.994885i \(-0.467791\pi\)
0.101015 + 0.994885i \(0.467791\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −93.7296 −3.81065
\(606\) 0 0
\(607\) −4.26406 −0.173073 −0.0865365 0.996249i \(-0.527580\pi\)
−0.0865365 + 0.996249i \(0.527580\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.7214 −1.08103
\(612\) 0 0
\(613\) −16.7214 −0.675370 −0.337685 0.941259i \(-0.609644\pi\)
−0.337685 + 0.941259i \(0.609644\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.15676 −0.167345 −0.0836723 0.996493i \(-0.526665\pi\)
−0.0836723 + 0.996493i \(0.526665\pi\)
\(618\) 0 0
\(619\) −19.2846 −0.775113 −0.387556 0.921846i \(-0.626681\pi\)
−0.387556 + 0.921846i \(0.626681\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.05786 −0.242703
\(624\) 0 0
\(625\) 97.2799 3.89119
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.340173 0.0135636
\(630\) 0 0
\(631\) −13.6286 −0.542547 −0.271274 0.962502i \(-0.587445\pi\)
−0.271274 + 0.962502i \(0.587445\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −29.2450 −1.16055
\(636\) 0 0
\(637\) −20.3234 −0.805241
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −31.2450 −1.23410 −0.617051 0.786923i \(-0.711673\pi\)
−0.617051 + 0.786923i \(0.711673\pi\)
\(642\) 0 0
\(643\) −37.0577 −1.46141 −0.730706 0.682692i \(-0.760809\pi\)
−0.730706 + 0.682692i \(0.760809\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −49.5052 −1.94625 −0.973124 0.230280i \(-0.926036\pi\)
−0.973124 + 0.230280i \(0.926036\pi\)
\(648\) 0 0
\(649\) 69.0759 2.71147
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.50307 0.0588197 0.0294099 0.999567i \(-0.490637\pi\)
0.0294099 + 0.999567i \(0.490637\pi\)
\(654\) 0 0
\(655\) −27.7321 −1.08358
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.7275 1.15802 0.579010 0.815320i \(-0.303439\pi\)
0.579010 + 0.815320i \(0.303439\pi\)
\(660\) 0 0
\(661\) −1.94668 −0.0757169 −0.0378585 0.999283i \(-0.512054\pi\)
−0.0378585 + 0.999283i \(0.512054\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.36069 0.362992
\(666\) 0 0
\(667\) 2.00453 0.0776159
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.9770 1.58190
\(672\) 0 0
\(673\) 8.63931 0.333021 0.166510 0.986040i \(-0.446750\pi\)
0.166510 + 0.986040i \(0.446750\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.2183 1.43042 0.715208 0.698912i \(-0.246332\pi\)
0.715208 + 0.698912i \(0.246332\pi\)
\(678\) 0 0
\(679\) −8.09890 −0.310807
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.8143 −0.949493 −0.474747 0.880122i \(-0.657460\pi\)
−0.474747 + 0.880122i \(0.657460\pi\)
\(684\) 0 0
\(685\) −63.3484 −2.42042
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.482553 0.0183838
\(690\) 0 0
\(691\) 24.2329 0.921862 0.460931 0.887436i \(-0.347516\pi\)
0.460931 + 0.887436i \(0.347516\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.6635 −1.08727
\(696\) 0 0
\(697\) 4.15676 0.157448
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.2823 0.841591 0.420796 0.907155i \(-0.361751\pi\)
0.420796 + 0.907155i \(0.361751\pi\)
\(702\) 0 0
\(703\) 1.16290 0.0438595
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.10504 0.116777
\(708\) 0 0
\(709\) −31.8043 −1.19444 −0.597218 0.802079i \(-0.703727\pi\)
−0.597218 + 0.802079i \(0.703727\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39.9976 −1.49792
\(714\) 0 0
\(715\) 76.2799 2.85271
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 47.2990 1.76395 0.881977 0.471293i \(-0.156213\pi\)
0.881977 + 0.471293i \(0.156213\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.70701 0.174814
\(726\) 0 0
\(727\) −0.680346 −0.0252326 −0.0126163 0.999920i \(-0.504016\pi\)
−0.0126163 + 0.999920i \(0.504016\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.26180 0.194615
\(732\) 0 0
\(733\) 24.0410 0.887976 0.443988 0.896033i \(-0.353563\pi\)
0.443988 + 0.896033i \(0.353563\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.0349 −1.43787
\(738\) 0 0
\(739\) 31.1050 1.14422 0.572109 0.820178i \(-0.306126\pi\)
0.572109 + 0.820178i \(0.306126\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.5730 −0.681379 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(744\) 0 0
\(745\) −101.389 −3.71462
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.2351 −0.410523
\(750\) 0 0
\(751\) 15.9337 0.581430 0.290715 0.956810i \(-0.406107\pi\)
0.290715 + 0.956810i \(0.406107\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 69.8720 2.54290
\(756\) 0 0
\(757\) −9.43293 −0.342846 −0.171423 0.985198i \(-0.554836\pi\)
−0.171423 + 0.985198i \(0.554836\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.2823 1.53273 0.766366 0.642404i \(-0.222063\pi\)
0.766366 + 0.642404i \(0.222063\pi\)
\(762\) 0 0
\(763\) 1.14608 0.0414908
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.2450 −1.34484
\(768\) 0 0
\(769\) −1.54864 −0.0558455 −0.0279228 0.999610i \(-0.508889\pi\)
−0.0279228 + 0.999610i \(0.508889\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.60197 −0.201489 −0.100744 0.994912i \(-0.532122\pi\)
−0.100744 + 0.994912i \(0.532122\pi\)
\(774\) 0 0
\(775\) −93.9214 −3.37376
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.2101 0.509129
\(780\) 0 0
\(781\) −22.5548 −0.807074
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −54.3545 −1.94000
\(786\) 0 0
\(787\) 49.3256 1.75827 0.879134 0.476574i \(-0.158122\pi\)
0.879134 + 0.476574i \(0.158122\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.93600 −0.246616
\(792\) 0 0
\(793\) −22.0944 −0.784594
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.3074 1.25065 0.625326 0.780364i \(-0.284966\pi\)
0.625326 + 0.780364i \(0.284966\pi\)
\(798\) 0 0
\(799\) 8.68035 0.307089
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.6163 0.974560
\(804\) 0 0
\(805\) −16.1354 −0.568698
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.1506 −1.58741 −0.793705 0.608302i \(-0.791851\pi\)
−0.793705 + 0.608302i \(0.791851\pi\)
\(810\) 0 0
\(811\) −19.0166 −0.667765 −0.333882 0.942615i \(-0.608359\pi\)
−0.333882 + 0.942615i \(0.608359\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.4186 −0.540088
\(816\) 0 0
\(817\) 17.9877 0.629310
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −50.2122 −1.75242 −0.876208 0.481932i \(-0.839935\pi\)
−0.876208 + 0.481932i \(0.839935\pi\)
\(822\) 0 0
\(823\) 2.30510 0.0803508 0.0401754 0.999193i \(-0.487208\pi\)
0.0401754 + 0.999193i \(0.487208\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.34244 −0.324868 −0.162434 0.986719i \(-0.551935\pi\)
−0.162434 + 0.986719i \(0.551935\pi\)
\(828\) 0 0
\(829\) 12.5236 0.434962 0.217481 0.976065i \(-0.430216\pi\)
0.217481 + 0.976065i \(0.430216\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.60197 0.228745
\(834\) 0 0
\(835\) −7.78539 −0.269424
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.5669 0.813620 0.406810 0.913513i \(-0.366641\pi\)
0.406810 + 0.913513i \(0.366641\pi\)
\(840\) 0 0
\(841\) −28.8843 −0.996010
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.2930 0.526095
\(846\) 0 0
\(847\) 13.6248 0.468152
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.00453 −0.0687146
\(852\) 0 0
\(853\) −4.28685 −0.146779 −0.0733895 0.997303i \(-0.523382\pi\)
−0.0733895 + 0.997303i \(0.523382\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.6803 −0.501471 −0.250736 0.968056i \(-0.580672\pi\)
−0.250736 + 0.968056i \(0.580672\pi\)
\(858\) 0 0
\(859\) 49.1461 1.67684 0.838421 0.545023i \(-0.183479\pi\)
0.838421 + 0.545023i \(0.183479\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.8843 −0.949192 −0.474596 0.880204i \(-0.657406\pi\)
−0.474596 + 0.880204i \(0.657406\pi\)
\(864\) 0 0
\(865\) −65.8720 −2.23972
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −51.0661 −1.73230
\(870\) 0 0
\(871\) 21.0472 0.713157
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −24.1978 −0.818035
\(876\) 0 0
\(877\) −9.86991 −0.333283 −0.166642 0.986018i \(-0.553292\pi\)
−0.166642 + 0.986018i \(0.553292\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.8248 1.57757 0.788784 0.614670i \(-0.210711\pi\)
0.788784 + 0.614670i \(0.210711\pi\)
\(882\) 0 0
\(883\) 4.84939 0.163195 0.0815974 0.996665i \(-0.473998\pi\)
0.0815974 + 0.996665i \(0.473998\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.5029 1.42711 0.713554 0.700600i \(-0.247084\pi\)
0.713554 + 0.700600i \(0.247084\pi\)
\(888\) 0 0
\(889\) 4.25112 0.142578
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 29.6742 0.993009
\(894\) 0 0
\(895\) −44.5113 −1.48785
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.30898 −0.0770087
\(900\) 0 0
\(901\) −0.156755 −0.00522228
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 65.8720 2.18966
\(906\) 0 0
\(907\) 36.0105 1.19571 0.597855 0.801605i \(-0.296020\pi\)
0.597855 + 0.801605i \(0.296020\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −43.7815 −1.45055 −0.725273 0.688461i \(-0.758286\pi\)
−0.725273 + 0.688461i \(0.758286\pi\)
\(912\) 0 0
\(913\) 30.0410 0.994213
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.03120 0.133122
\(918\) 0 0
\(919\) 13.1917 0.435152 0.217576 0.976043i \(-0.430185\pi\)
0.217576 + 0.976043i \(0.430185\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.1613 0.400294
\(924\) 0 0
\(925\) −4.70701 −0.154765
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.68035 −0.219175 −0.109588 0.993977i \(-0.534953\pi\)
−0.109588 + 0.993977i \(0.534953\pi\)
\(930\) 0 0
\(931\) 22.5692 0.739674
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −24.7792 −0.810368
\(936\) 0 0
\(937\) −26.3135 −0.859625 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.44975 0.177657 0.0888283 0.996047i \(-0.471688\pi\)
0.0888283 + 0.996047i \(0.471688\pi\)
\(942\) 0 0
\(943\) −24.4945 −0.797650
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.2784 −0.918926 −0.459463 0.888197i \(-0.651958\pi\)
−0.459463 + 0.888197i \(0.651958\pi\)
\(948\) 0 0
\(949\) −14.8904 −0.483364
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.71154 0.0878355 0.0439177 0.999035i \(-0.486016\pi\)
0.0439177 + 0.999035i \(0.486016\pi\)
\(954\) 0 0
\(955\) −72.3956 −2.34267
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.20847 0.297357
\(960\) 0 0
\(961\) 15.0722 0.486201
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −34.0410 −1.09582
\(966\) 0 0
\(967\) −48.9770 −1.57500 −0.787498 0.616318i \(-0.788624\pi\)
−0.787498 + 0.616318i \(0.788624\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.47187 0.111418 0.0557089 0.998447i \(-0.482258\pi\)
0.0557089 + 0.998447i \(0.482258\pi\)
\(972\) 0 0
\(973\) 4.16660 0.133575
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.8248 −0.602259 −0.301130 0.953583i \(-0.597364\pi\)
−0.301130 + 0.953583i \(0.597364\pi\)
\(978\) 0 0
\(979\) 54.8203 1.75206
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.3158 −0.360917 −0.180459 0.983583i \(-0.557758\pi\)
−0.180459 + 0.983583i \(0.557758\pi\)
\(984\) 0 0
\(985\) −56.5113 −1.80060
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31.0061 −0.985938
\(990\) 0 0
\(991\) −40.9977 −1.30234 −0.651168 0.758934i \(-0.725721\pi\)
−0.651168 + 0.758934i \(0.725721\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 79.4473 2.51865
\(996\) 0 0
\(997\) 48.6537 1.54088 0.770439 0.637514i \(-0.220037\pi\)
0.770439 + 0.637514i \(0.220037\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9792.2.a.dc.1.1 3
3.2 odd 2 1088.2.a.v.1.1 3
4.3 odd 2 9792.2.a.dd.1.1 3
8.3 odd 2 4896.2.a.bf.1.3 3
8.5 even 2 4896.2.a.be.1.3 3
12.11 even 2 1088.2.a.u.1.3 3
24.5 odd 2 544.2.a.i.1.3 3
24.11 even 2 544.2.a.j.1.1 yes 3
408.101 odd 2 9248.2.a.u.1.1 3
408.203 even 2 9248.2.a.t.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.a.i.1.3 3 24.5 odd 2
544.2.a.j.1.1 yes 3 24.11 even 2
1088.2.a.u.1.3 3 12.11 even 2
1088.2.a.v.1.1 3 3.2 odd 2
4896.2.a.be.1.3 3 8.5 even 2
4896.2.a.bf.1.3 3 8.3 odd 2
9248.2.a.t.1.3 3 408.203 even 2
9248.2.a.u.1.1 3 408.101 odd 2
9792.2.a.dc.1.1 3 1.1 even 1 trivial
9792.2.a.dd.1.1 3 4.3 odd 2