Properties

Label 980.1.bq.a
Level 980980
Weight 11
Character orbit 980.bq
Analytic conductor 0.4890.489
Analytic rank 00
Dimension 1212
Projective image D21D_{21}
CM discriminant -20
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,1,Mod(39,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 21, 34])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.39"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 980=22572 980 = 2^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 980.bq (of order 4242, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4890837123800.489083712380
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ21)\Q(\zeta_{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+x9x8+x6x4+x3x+1 x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D21D_{21}
Projective field: Galois closure of Q[x]/(x21+)\mathbb{Q}[x]/(x^{21} + \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ424q2+(ζ427+ζ423)q3+ζ428q4ζ4219q5+(ζ4211ζ427)q6ζ428q7ζ4212q8+ζ4220q98+O(q100) q - \zeta_{42}^{4} q^{2} + (\zeta_{42}^{7} + \zeta_{42}^{3}) q^{3} + \zeta_{42}^{8} q^{4} - \zeta_{42}^{19} q^{5} + ( - \zeta_{42}^{11} - \zeta_{42}^{7}) q^{6} - \zeta_{42}^{8} q^{7} - \zeta_{42}^{12} q^{8} + \cdots - \zeta_{42}^{20} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12qq2+8q3+q4+q55q6q7+2q87q9q10+q122q142q15+q16+7q182q20q21+q23q24+q2512q27+q98+O(q100) 12 q - q^{2} + 8 q^{3} + q^{4} + q^{5} - 5 q^{6} - q^{7} + 2 q^{8} - 7 q^{9} - q^{10} + q^{12} - 2 q^{14} - 2 q^{15} + q^{16} + 7 q^{18} - 2 q^{20} - q^{21} + q^{23} - q^{24} + q^{25} - 12 q^{27}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/980Z)×\left(\mathbb{Z}/980\mathbb{Z}\right)^\times.

nn 101101 197197 491491
χ(n)\chi(n) ζ4210\zeta_{42}^{10} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
39.1
−0.733052 + 0.680173i
0.365341 0.930874i
0.365341 + 0.930874i
0.0747301 + 0.997204i
0.955573 + 0.294755i
0.826239 0.563320i
0.826239 + 0.563320i
0.0747301 0.997204i
−0.988831 0.149042i
−0.733052 0.680173i
0.955573 0.294755i
−0.988831 + 0.149042i
0.988831 + 0.149042i −0.123490 + 0.0841939i 0.955573 + 0.294755i 0.0747301 + 0.997204i −0.134659 + 0.0648483i −0.955573 0.294755i 0.900969 + 0.433884i −0.357180 + 0.910080i −0.0747301 + 0.997204i
179.1 −0.0747301 0.997204i 1.40097 + 0.432142i −0.988831 + 0.149042i −0.733052 + 0.680173i 0.326239 1.42935i 0.988831 0.149042i 0.222521 + 0.974928i 0.949729 + 0.647514i 0.733052 + 0.680173i
219.1 −0.0747301 + 0.997204i 1.40097 0.432142i −0.988831 0.149042i −0.733052 0.680173i 0.326239 + 1.42935i 0.988831 + 0.149042i 0.222521 0.974928i 0.949729 0.647514i 0.733052 0.680173i
319.1 −0.955573 + 0.294755i 0.722521 + 1.84095i 0.826239 0.563320i −0.988831 0.149042i −1.23305 1.54620i −0.826239 + 0.563320i −0.623490 + 0.781831i −2.13402 + 1.98008i 0.988831 0.149042i
359.1 −0.365341 0.930874i −0.123490 1.64786i −0.733052 + 0.680173i 0.826239 0.563320i −1.48883 + 0.716983i 0.733052 0.680173i 0.900969 + 0.433884i −1.71135 + 0.257945i −0.826239 0.563320i
499.1 0.733052 + 0.680173i 0.722521 + 0.108903i 0.0747301 + 0.997204i 0.365341 + 0.930874i 0.455573 + 0.571270i −0.0747301 0.997204i −0.623490 + 0.781831i −0.445396 0.137386i −0.365341 + 0.930874i
599.1 0.733052 0.680173i 0.722521 0.108903i 0.0747301 0.997204i 0.365341 0.930874i 0.455573 0.571270i −0.0747301 + 0.997204i −0.623490 0.781831i −0.445396 + 0.137386i −0.365341 0.930874i
639.1 −0.955573 0.294755i 0.722521 1.84095i 0.826239 + 0.563320i −0.988831 + 0.149042i −1.23305 + 1.54620i −0.826239 0.563320i −0.623490 0.781831i −2.13402 1.98008i 0.988831 + 0.149042i
739.1 −0.826239 0.563320i 1.40097 + 1.29991i 0.365341 + 0.930874i 0.955573 0.294755i −0.425270 1.86323i −0.365341 0.930874i 0.222521 0.974928i 0.198220 + 2.64506i −0.955573 0.294755i
779.1 0.988831 0.149042i −0.123490 0.0841939i 0.955573 0.294755i 0.0747301 0.997204i −0.134659 0.0648483i −0.955573 + 0.294755i 0.900969 0.433884i −0.357180 0.910080i −0.0747301 0.997204i
879.1 −0.365341 + 0.930874i −0.123490 + 1.64786i −0.733052 0.680173i 0.826239 + 0.563320i −1.48883 0.716983i 0.733052 + 0.680173i 0.900969 0.433884i −1.71135 0.257945i −0.826239 + 0.563320i
919.1 −0.826239 + 0.563320i 1.40097 1.29991i 0.365341 0.930874i 0.955573 + 0.294755i −0.425270 + 1.86323i −0.365341 + 0.930874i 0.222521 + 0.974928i 0.198220 2.64506i −0.955573 + 0.294755i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 39.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by Q(5)\Q(\sqrt{-5})
49.g even 21 1 inner
980.bq odd 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.1.bq.a 12
4.b odd 2 1 980.1.bq.b yes 12
5.b even 2 1 980.1.bq.b yes 12
20.d odd 2 1 CM 980.1.bq.a 12
49.g even 21 1 inner 980.1.bq.a 12
196.o odd 42 1 980.1.bq.b yes 12
245.t even 42 1 980.1.bq.b yes 12
980.bq odd 42 1 inner 980.1.bq.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
980.1.bq.a 12 1.a even 1 1 trivial
980.1.bq.a 12 20.d odd 2 1 CM
980.1.bq.a 12 49.g even 21 1 inner
980.1.bq.a 12 980.bq odd 42 1 inner
980.1.bq.b yes 12 4.b odd 2 1
980.1.bq.b yes 12 5.b even 2 1
980.1.bq.b yes 12 196.o odd 42 1
980.1.bq.b yes 12 245.t even 42 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3128T311+35T310104T39+230T38392T37+519T36++1 T_{3}^{12} - 8 T_{3}^{11} + 35 T_{3}^{10} - 104 T_{3}^{9} + 230 T_{3}^{8} - 392 T_{3}^{7} + 519 T_{3}^{6} + \cdots + 1 acting on S1new(980,[χ])S_{1}^{\mathrm{new}}(980, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
33 T128T11++1 T^{12} - 8 T^{11} + \cdots + 1 Copy content Toggle raw display
55 T12T11++1 T^{12} - T^{11} + \cdots + 1 Copy content Toggle raw display
77 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12T11++1 T^{12} - T^{11} + \cdots + 1 Copy content Toggle raw display
2929 T12+5T11++1 T^{12} + 5 T^{11} + \cdots + 1 Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4343 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4747 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
6767 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
8989 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less