Properties

Label 980.1.bq.a
Level $980$
Weight $1$
Character orbit 980.bq
Analytic conductor $0.489$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,1,Mod(39,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 21, 34]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.39");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 980.bq (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.489083712380\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{42}^{4} q^{2} + (\zeta_{42}^{7} + \zeta_{42}^{3}) q^{3} + \zeta_{42}^{8} q^{4} - \zeta_{42}^{19} q^{5} + ( - \zeta_{42}^{11} - \zeta_{42}^{7}) q^{6} - \zeta_{42}^{8} q^{7} - \zeta_{42}^{12} q^{8} + \cdots - \zeta_{42}^{20} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + 8 q^{3} + q^{4} + q^{5} - 5 q^{6} - q^{7} + 2 q^{8} - 7 q^{9} - q^{10} + q^{12} - 2 q^{14} - 2 q^{15} + q^{16} + 7 q^{18} - 2 q^{20} - q^{21} + q^{23} - q^{24} + q^{25} - 12 q^{27}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(\zeta_{42}^{10}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
39.1
−0.733052 + 0.680173i
0.365341 0.930874i
0.365341 + 0.930874i
0.0747301 + 0.997204i
0.955573 + 0.294755i
0.826239 0.563320i
0.826239 + 0.563320i
0.0747301 0.997204i
−0.988831 0.149042i
−0.733052 0.680173i
0.955573 0.294755i
−0.988831 + 0.149042i
0.988831 + 0.149042i −0.123490 + 0.0841939i 0.955573 + 0.294755i 0.0747301 + 0.997204i −0.134659 + 0.0648483i −0.955573 0.294755i 0.900969 + 0.433884i −0.357180 + 0.910080i −0.0747301 + 0.997204i
179.1 −0.0747301 0.997204i 1.40097 + 0.432142i −0.988831 + 0.149042i −0.733052 + 0.680173i 0.326239 1.42935i 0.988831 0.149042i 0.222521 + 0.974928i 0.949729 + 0.647514i 0.733052 + 0.680173i
219.1 −0.0747301 + 0.997204i 1.40097 0.432142i −0.988831 0.149042i −0.733052 0.680173i 0.326239 + 1.42935i 0.988831 + 0.149042i 0.222521 0.974928i 0.949729 0.647514i 0.733052 0.680173i
319.1 −0.955573 + 0.294755i 0.722521 + 1.84095i 0.826239 0.563320i −0.988831 0.149042i −1.23305 1.54620i −0.826239 + 0.563320i −0.623490 + 0.781831i −2.13402 + 1.98008i 0.988831 0.149042i
359.1 −0.365341 0.930874i −0.123490 1.64786i −0.733052 + 0.680173i 0.826239 0.563320i −1.48883 + 0.716983i 0.733052 0.680173i 0.900969 + 0.433884i −1.71135 + 0.257945i −0.826239 0.563320i
499.1 0.733052 + 0.680173i 0.722521 + 0.108903i 0.0747301 + 0.997204i 0.365341 + 0.930874i 0.455573 + 0.571270i −0.0747301 0.997204i −0.623490 + 0.781831i −0.445396 0.137386i −0.365341 + 0.930874i
599.1 0.733052 0.680173i 0.722521 0.108903i 0.0747301 0.997204i 0.365341 0.930874i 0.455573 0.571270i −0.0747301 + 0.997204i −0.623490 0.781831i −0.445396 + 0.137386i −0.365341 0.930874i
639.1 −0.955573 0.294755i 0.722521 1.84095i 0.826239 + 0.563320i −0.988831 + 0.149042i −1.23305 + 1.54620i −0.826239 0.563320i −0.623490 0.781831i −2.13402 1.98008i 0.988831 + 0.149042i
739.1 −0.826239 0.563320i 1.40097 + 1.29991i 0.365341 + 0.930874i 0.955573 0.294755i −0.425270 1.86323i −0.365341 0.930874i 0.222521 0.974928i 0.198220 + 2.64506i −0.955573 0.294755i
779.1 0.988831 0.149042i −0.123490 0.0841939i 0.955573 0.294755i 0.0747301 0.997204i −0.134659 0.0648483i −0.955573 + 0.294755i 0.900969 0.433884i −0.357180 0.910080i −0.0747301 0.997204i
879.1 −0.365341 + 0.930874i −0.123490 + 1.64786i −0.733052 0.680173i 0.826239 + 0.563320i −1.48883 0.716983i 0.733052 + 0.680173i 0.900969 0.433884i −1.71135 0.257945i −0.826239 + 0.563320i
919.1 −0.826239 + 0.563320i 1.40097 1.29991i 0.365341 0.930874i 0.955573 + 0.294755i −0.425270 + 1.86323i −0.365341 + 0.930874i 0.222521 + 0.974928i 0.198220 2.64506i −0.955573 + 0.294755i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 39.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
49.g even 21 1 inner
980.bq odd 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.1.bq.a 12
4.b odd 2 1 980.1.bq.b yes 12
5.b even 2 1 980.1.bq.b yes 12
20.d odd 2 1 CM 980.1.bq.a 12
49.g even 21 1 inner 980.1.bq.a 12
196.o odd 42 1 980.1.bq.b yes 12
245.t even 42 1 980.1.bq.b yes 12
980.bq odd 42 1 inner 980.1.bq.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
980.1.bq.a 12 1.a even 1 1 trivial
980.1.bq.a 12 20.d odd 2 1 CM
980.1.bq.a 12 49.g even 21 1 inner
980.1.bq.a 12 980.bq odd 42 1 inner
980.1.bq.b yes 12 4.b odd 2 1
980.1.bq.b yes 12 5.b even 2 1
980.1.bq.b yes 12 196.o odd 42 1
980.1.bq.b yes 12 245.t even 42 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 8 T_{3}^{11} + 35 T_{3}^{10} - 104 T_{3}^{9} + 230 T_{3}^{8} - 392 T_{3}^{7} + 519 T_{3}^{6} + \cdots + 1 \) acting on \(S_{1}^{\mathrm{new}}(980, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{12} - 8 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{12} - T^{11} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} - T^{11} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{12} + 5 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} \) Copy content Toggle raw display
$41$ \( T^{12} - 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{12} + T^{11} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less