gp: [N,k,chi] = [980,1,Mod(39,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([21, 21, 34]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.39");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [12,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 980 Z ) × \left(\mathbb{Z}/980\mathbb{Z}\right)^\times ( Z / 9 8 0 Z ) × .
n n n
101 101 1 0 1
197 197 1 9 7
491 491 4 9 1
χ ( n ) \chi(n) χ ( n )
ζ 42 10 \zeta_{42}^{10} ζ 4 2 1 0
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 12 − 8 T 3 11 + 35 T 3 10 − 104 T 3 9 + 230 T 3 8 − 392 T 3 7 + 519 T 3 6 + ⋯ + 1 T_{3}^{12} - 8 T_{3}^{11} + 35 T_{3}^{10} - 104 T_{3}^{9} + 230 T_{3}^{8} - 392 T_{3}^{7} + 519 T_{3}^{6} + \cdots + 1 T 3 1 2 − 8 T 3 1 1 + 3 5 T 3 1 0 − 1 0 4 T 3 9 + 2 3 0 T 3 8 − 3 9 2 T 3 7 + 5 1 9 T 3 6 + ⋯ + 1
T3^12 - 8*T3^11 + 35*T3^10 - 104*T3^9 + 230*T3^8 - 392*T3^7 + 519*T3^6 - 518*T3^5 + 349*T3^4 - 118*T3^3 + 6*T3 + 1
acting on S 1 n e w ( 980 , [ χ ] ) S_{1}^{\mathrm{new}}(980, [\chi]) S 1 n e w ( 9 8 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 - T^9 - T^8 + T^6 - T^4 - T^3 + T + 1
3 3 3
T 12 − 8 T 11 + ⋯ + 1 T^{12} - 8 T^{11} + \cdots + 1 T 1 2 − 8 T 1 1 + ⋯ + 1
T^12 - 8*T^11 + 35*T^10 - 104*T^9 + 230*T^8 - 392*T^7 + 519*T^6 - 518*T^5 + 349*T^4 - 118*T^3 + 6*T + 1
5 5 5
T 12 − T 11 + ⋯ + 1 T^{12} - T^{11} + \cdots + 1 T 1 2 − T 1 1 + ⋯ + 1
T^12 - T^11 + T^9 - T^8 + T^6 - T^4 + T^3 - T + 1
7 7 7
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 - T^9 - T^8 + T^6 - T^4 - T^3 + T + 1
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
T 12 T^{12} T 1 2
T^12
17 17 1 7
T 12 T^{12} T 1 2
T^12
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
T 12 − T 11 + ⋯ + 1 T^{12} - T^{11} + \cdots + 1 T 1 2 − T 1 1 + ⋯ + 1
T^12 - T^11 + T^9 + 6*T^8 + 21*T^7 - 20*T^6 + 69*T^4 + 29*T^3 + 49*T^2 + 13*T + 1
29 29 2 9
T 12 + 5 T 11 + ⋯ + 1 T^{12} + 5 T^{11} + \cdots + 1 T 1 2 + 5 T 1 1 + ⋯ + 1
T^12 + 5*T^11 + 17*T^10 + 38*T^9 + 68*T^8 + 92*T^7 + 105*T^6 + 92*T^5 + 61*T^4 + 10*T^3 + 45*T^2 + 12*T + 1
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
T 12 T^{12} T 1 2
T^12
41 41 4 1
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 + 3*T^10 - 4*T^9 + 12*T^8 - 6*T^7 + 7*T^6 - 6*T^5 + 54*T^4 + 94*T^3 + 52*T^2 + 5*T + 1
43 43 4 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 3*T^10 + 4*T^9 + 12*T^8 + 6*T^7 + 7*T^6 + 6*T^5 + 54*T^4 - 94*T^3 + 52*T^2 - 5*T + 1
47 47 4 7
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 6*T^9 + 12*T^8 - 7*T^7 + T^6 + 28*T^5 + 3*T^4 - 8*T^3 + 7*T^2 - 3*T + 1
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 - T^9 - 15*T^8 + 22*T^6 + 21*T^5 + 48*T^4 - 71*T^3 + 28*T^2 + 8*T + 1
67 67 6 7
( T 2 + T + 1 ) 6 (T^{2} + T + 1)^{6} ( T 2 + T + 1 ) 6
(T^2 + T + 1)^6
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 T^{12} T 1 2
T^12
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 3*T^10 + 4*T^9 + 12*T^8 + 6*T^7 + 7*T^6 + 6*T^5 + 54*T^4 - 94*T^3 + 52*T^2 - 5*T + 1
89 89 8 9
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 - T^9 - 15*T^8 + 22*T^6 + 21*T^5 + 48*T^4 - 71*T^3 + 28*T^2 + 8*T + 1
97 97 9 7
T 12 T^{12} T 1 2
T^12
show more
show less