Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(29,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 7, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.bd (of order \(14\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.82533939809\) |
Analytic rank: | \(0\) |
Dimension: | \(168\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | 0 | −3.08880 | + | 0.704999i | 0 | 2.21123 | + | 0.332343i | 0 | −2.59041 | − | 0.538307i | 0 | 6.34078 | − | 3.05356i | 0 | ||||||||||
29.2 | 0 | −2.98304 | + | 0.680860i | 0 | 0.808094 | + | 2.08494i | 0 | 2.38737 | + | 1.14038i | 0 | 5.73208 | − | 2.76042i | 0 | ||||||||||
29.3 | 0 | −2.74305 | + | 0.626084i | 0 | −2.22364 | + | 0.235416i | 0 | 0.0771841 | − | 2.64463i | 0 | 4.42946 | − | 2.13311i | 0 | ||||||||||
29.4 | 0 | −2.55828 | + | 0.583912i | 0 | −1.96921 | − | 1.05934i | 0 | −1.86517 | + | 1.87647i | 0 | 3.50096 | − | 1.68597i | 0 | ||||||||||
29.5 | 0 | −2.19846 | + | 0.501785i | 0 | −1.31265 | + | 1.81023i | 0 | 0.228420 | + | 2.63587i | 0 | 1.87855 | − | 0.904663i | 0 | ||||||||||
29.6 | 0 | −1.89281 | + | 0.432022i | 0 | −0.697623 | − | 2.12446i | 0 | −2.41857 | + | 1.07263i | 0 | 0.693184 | − | 0.333820i | 0 | ||||||||||
29.7 | 0 | −1.87433 | + | 0.427803i | 0 | 1.93896 | − | 1.11375i | 0 | 1.31675 | + | 2.29481i | 0 | 0.627182 | − | 0.302035i | 0 | ||||||||||
29.8 | 0 | −1.72524 | + | 0.393776i | 0 | 1.68714 | − | 1.46750i | 0 | 1.73556 | − | 1.99695i | 0 | 0.118499 | − | 0.0570660i | 0 | ||||||||||
29.9 | 0 | −1.42811 | + | 0.325956i | 0 | 1.41538 | + | 1.73110i | 0 | 1.54156 | − | 2.15025i | 0 | −0.769660 | + | 0.370649i | 0 | ||||||||||
29.10 | 0 | −0.984698 | + | 0.224751i | 0 | −1.10153 | + | 1.94593i | 0 | −2.10132 | − | 1.60762i | 0 | −1.78379 | + | 0.859028i | 0 | ||||||||||
29.11 | 0 | −0.631234 | + | 0.144075i | 0 | −2.01504 | − | 0.969345i | 0 | 1.64972 | − | 2.06843i | 0 | −2.32521 | + | 1.11976i | 0 | ||||||||||
29.12 | 0 | −0.622220 | + | 0.142018i | 0 | 1.29465 | + | 1.82315i | 0 | −2.58484 | + | 0.564461i | 0 | −2.33592 | + | 1.12492i | 0 | ||||||||||
29.13 | 0 | −0.441575 | + | 0.100787i | 0 | −0.605716 | − | 2.15247i | 0 | 1.86214 | + | 1.87948i | 0 | −2.51808 | + | 1.21264i | 0 | ||||||||||
29.14 | 0 | −0.332725 | + | 0.0759423i | 0 | −2.22696 | + | 0.201644i | 0 | 2.62035 | + | 0.365762i | 0 | −2.59797 | + | 1.25112i | 0 | ||||||||||
29.15 | 0 | 0.332725 | − | 0.0759423i | 0 | 2.09391 | − | 0.784566i | 0 | −2.62035 | − | 0.365762i | 0 | −2.59797 | + | 1.25112i | 0 | ||||||||||
29.16 | 0 | 0.441575 | − | 0.100787i | 0 | −0.388188 | − | 2.20211i | 0 | −1.86214 | − | 1.87948i | 0 | −2.51808 | + | 1.21264i | 0 | ||||||||||
29.17 | 0 | 0.622220 | − | 0.142018i | 0 | −0.375399 | + | 2.20433i | 0 | 2.58484 | − | 0.564461i | 0 | −2.33592 | + | 1.12492i | 0 | ||||||||||
29.18 | 0 | 0.631234 | − | 0.144075i | 0 | 1.39490 | − | 1.74764i | 0 | −1.64972 | + | 2.06843i | 0 | −2.32521 | + | 1.11976i | 0 | ||||||||||
29.19 | 0 | 0.984698 | − | 0.224751i | 0 | 1.83675 | + | 1.27529i | 0 | 2.10132 | + | 1.60762i | 0 | −1.78379 | + | 0.859028i | 0 | ||||||||||
29.20 | 0 | 1.42811 | − | 0.325956i | 0 | −0.524117 | + | 2.17378i | 0 | −1.54156 | + | 2.15025i | 0 | −0.769660 | + | 0.370649i | 0 | ||||||||||
See next 80 embeddings (of 168 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
49.e | even | 7 | 1 | inner |
245.p | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.bd.a | ✓ | 168 |
5.b | even | 2 | 1 | inner | 980.2.bd.a | ✓ | 168 |
49.e | even | 7 | 1 | inner | 980.2.bd.a | ✓ | 168 |
245.p | even | 14 | 1 | inner | 980.2.bd.a | ✓ | 168 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
980.2.bd.a | ✓ | 168 | 1.a | even | 1 | 1 | trivial |
980.2.bd.a | ✓ | 168 | 5.b | even | 2 | 1 | inner |
980.2.bd.a | ✓ | 168 | 49.e | even | 7 | 1 | inner |
980.2.bd.a | ✓ | 168 | 245.p | even | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(980, [\chi])\).