Properties

Label 980.2.c.e.979.14
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(979,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.979");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.14
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.e.979.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14730 - 0.826865i) q^{2} +1.52335i q^{3} +(0.632590 + 1.89732i) q^{4} +(-0.0967363 + 2.23397i) q^{5} +(1.25961 - 1.74774i) q^{6} +(0.843059 - 2.69986i) q^{8} +0.679393 q^{9} +(1.95818 - 2.48305i) q^{10} +4.56056i q^{11} +(-2.89029 + 0.963658i) q^{12} +2.19514 q^{13} +(-3.40313 - 0.147364i) q^{15} +(-3.19966 + 2.40045i) q^{16} +6.22202 q^{17} +(-0.779467 - 0.561766i) q^{18} +3.83396 q^{19} +(-4.29976 + 1.22965i) q^{20} +(3.77097 - 5.23233i) q^{22} -0.430261 q^{23} +(4.11284 + 1.28428i) q^{24} +(-4.98128 - 0.432213i) q^{25} +(-2.51848 - 1.81508i) q^{26} +5.60502i q^{27} -0.473706 q^{29} +(3.78256 + 2.98300i) q^{30} +7.59779 q^{31} +(5.65582 - 0.108351i) q^{32} -6.94735 q^{33} +(-7.13851 - 5.14477i) q^{34} +(0.429777 + 1.28903i) q^{36} -8.44308i q^{37} +(-4.39870 - 3.17017i) q^{38} +3.34397i q^{39} +(5.94987 + 2.14455i) q^{40} +1.45831i q^{41} -8.58232 q^{43} +(-8.65285 + 2.88496i) q^{44} +(-0.0657220 + 1.51775i) q^{45} +(0.493638 + 0.355767i) q^{46} -4.48893i q^{47} +(-3.65674 - 4.87421i) q^{48} +(5.35764 + 4.61473i) q^{50} +9.47833i q^{51} +(1.38862 + 4.16488i) q^{52} +9.23911i q^{53} +(4.63459 - 6.43063i) q^{54} +(-10.1882 - 0.441172i) q^{55} +5.84048i q^{57} +(0.543482 + 0.391691i) q^{58} -3.13601 q^{59} +(-1.87319 - 6.55006i) q^{60} +5.71165i q^{61} +(-8.71694 - 6.28235i) q^{62} +(-6.57850 - 4.55228i) q^{64} +(-0.212349 + 4.90388i) q^{65} +(7.97068 + 5.74451i) q^{66} -14.9459 q^{67} +(3.93598 + 11.8052i) q^{68} -0.655439i q^{69} -4.57799i q^{71} +(0.572768 - 1.83427i) q^{72} -12.2715 q^{73} +(-6.98128 + 9.68674i) q^{74} +(0.658413 - 7.58826i) q^{75} +(2.42532 + 7.27425i) q^{76} +(2.76501 - 3.83653i) q^{78} -6.20417i q^{79} +(-5.05303 - 7.38017i) q^{80} -6.50025 q^{81} +(1.20583 - 1.67312i) q^{82} +7.69966i q^{83} +(-0.601895 + 13.8998i) q^{85} +(9.84648 + 7.09641i) q^{86} -0.721622i q^{87} +(12.3129 + 3.84482i) q^{88} -9.32432i q^{89} +(1.33037 - 1.68697i) q^{90} +(-0.272178 - 0.816343i) q^{92} +11.5741i q^{93} +(-3.71174 + 5.15014i) q^{94} +(-0.370883 + 8.56497i) q^{95} +(0.165057 + 8.61581i) q^{96} +9.05280 q^{97} +3.09841i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 16 q^{4} - 64 q^{9} + 16 q^{16} - 16 q^{25} - 48 q^{29} - 8 q^{30} + 176 q^{36} - 48 q^{44} - 32 q^{46} + 32 q^{50} + 24 q^{60} - 80 q^{64} - 16 q^{65} - 112 q^{74} - 48 q^{81} - 64 q^{85} - 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14730 0.826865i −0.811263 0.584682i
\(3\) 1.52335i 0.879509i 0.898118 + 0.439754i \(0.144935\pi\)
−0.898118 + 0.439754i \(0.855065\pi\)
\(4\) 0.632590 + 1.89732i 0.316295 + 0.948661i
\(5\) −0.0967363 + 2.23397i −0.0432618 + 0.999064i
\(6\) 1.25961 1.74774i 0.514233 0.713513i
\(7\) 0 0
\(8\) 0.843059 2.69986i 0.298066 0.954545i
\(9\) 0.679393 0.226464
\(10\) 1.95818 2.48305i 0.619231 0.785209i
\(11\) 4.56056i 1.37506i 0.726156 + 0.687530i \(0.241305\pi\)
−0.726156 + 0.687530i \(0.758695\pi\)
\(12\) −2.89029 + 0.963658i −0.834356 + 0.278184i
\(13\) 2.19514 0.608822 0.304411 0.952541i \(-0.401540\pi\)
0.304411 + 0.952541i \(0.401540\pi\)
\(14\) 0 0
\(15\) −3.40313 0.147364i −0.878685 0.0380491i
\(16\) −3.19966 + 2.40045i −0.799915 + 0.600113i
\(17\) 6.22202 1.50906 0.754530 0.656265i \(-0.227865\pi\)
0.754530 + 0.656265i \(0.227865\pi\)
\(18\) −0.779467 0.561766i −0.183722 0.132410i
\(19\) 3.83396 0.879571 0.439785 0.898103i \(-0.355055\pi\)
0.439785 + 0.898103i \(0.355055\pi\)
\(20\) −4.29976 + 1.22965i −0.961456 + 0.274958i
\(21\) 0 0
\(22\) 3.77097 5.23233i 0.803973 1.11554i
\(23\) −0.430261 −0.0897155 −0.0448578 0.998993i \(-0.514283\pi\)
−0.0448578 + 0.998993i \(0.514283\pi\)
\(24\) 4.11284 + 1.28428i 0.839531 + 0.262152i
\(25\) −4.98128 0.432213i −0.996257 0.0864426i
\(26\) −2.51848 1.81508i −0.493914 0.355967i
\(27\) 5.60502i 1.07869i
\(28\) 0 0
\(29\) −0.473706 −0.0879650 −0.0439825 0.999032i \(-0.514005\pi\)
−0.0439825 + 0.999032i \(0.514005\pi\)
\(30\) 3.78256 + 2.98300i 0.690598 + 0.544619i
\(31\) 7.59779 1.36460 0.682302 0.731070i \(-0.260979\pi\)
0.682302 + 0.731070i \(0.260979\pi\)
\(32\) 5.65582 0.108351i 0.999817 0.0191539i
\(33\) −6.94735 −1.20938
\(34\) −7.13851 5.14477i −1.22424 0.882320i
\(35\) 0 0
\(36\) 0.429777 + 1.28903i 0.0716295 + 0.214838i
\(37\) 8.44308i 1.38803i −0.719959 0.694017i \(-0.755839\pi\)
0.719959 0.694017i \(-0.244161\pi\)
\(38\) −4.39870 3.17017i −0.713563 0.514269i
\(39\) 3.34397i 0.535464i
\(40\) 5.94987 + 2.14455i 0.940757 + 0.339083i
\(41\) 1.45831i 0.227750i 0.993495 + 0.113875i \(0.0363264\pi\)
−0.993495 + 0.113875i \(0.963674\pi\)
\(42\) 0 0
\(43\) −8.58232 −1.30879 −0.654396 0.756152i \(-0.727077\pi\)
−0.654396 + 0.756152i \(0.727077\pi\)
\(44\) −8.65285 + 2.88496i −1.30447 + 0.434925i
\(45\) −0.0657220 + 1.51775i −0.00979725 + 0.226252i
\(46\) 0.493638 + 0.355767i 0.0727829 + 0.0524550i
\(47\) 4.48893i 0.654778i −0.944890 0.327389i \(-0.893831\pi\)
0.944890 0.327389i \(-0.106169\pi\)
\(48\) −3.65674 4.87421i −0.527805 0.703532i
\(49\) 0 0
\(50\) 5.35764 + 4.61473i 0.757685 + 0.652621i
\(51\) 9.47833i 1.32723i
\(52\) 1.38862 + 4.16488i 0.192567 + 0.577565i
\(53\) 9.23911i 1.26909i 0.772886 + 0.634544i \(0.218812\pi\)
−0.772886 + 0.634544i \(0.781188\pi\)
\(54\) 4.63459 6.43063i 0.630688 0.875098i
\(55\) −10.1882 0.441172i −1.37377 0.0594876i
\(56\) 0 0
\(57\) 5.84048i 0.773590i
\(58\) 0.543482 + 0.391691i 0.0713627 + 0.0514315i
\(59\) −3.13601 −0.408273 −0.204137 0.978942i \(-0.565439\pi\)
−0.204137 + 0.978942i \(0.565439\pi\)
\(60\) −1.87319 6.55006i −0.241828 0.845609i
\(61\) 5.71165i 0.731302i 0.930752 + 0.365651i \(0.119154\pi\)
−0.930752 + 0.365651i \(0.880846\pi\)
\(62\) −8.71694 6.28235i −1.10705 0.797859i
\(63\) 0 0
\(64\) −6.57850 4.55228i −0.822313 0.569035i
\(65\) −0.212349 + 4.90388i −0.0263387 + 0.608252i
\(66\) 7.97068 + 5.74451i 0.981123 + 0.707101i
\(67\) −14.9459 −1.82593 −0.912967 0.408033i \(-0.866215\pi\)
−0.912967 + 0.408033i \(0.866215\pi\)
\(68\) 3.93598 + 11.8052i 0.477308 + 1.43159i
\(69\) 0.655439i 0.0789056i
\(70\) 0 0
\(71\) 4.57799i 0.543308i −0.962395 0.271654i \(-0.912429\pi\)
0.962395 0.271654i \(-0.0875706\pi\)
\(72\) 0.572768 1.83427i 0.0675014 0.216170i
\(73\) −12.2715 −1.43627 −0.718134 0.695905i \(-0.755003\pi\)
−0.718134 + 0.695905i \(0.755003\pi\)
\(74\) −6.98128 + 9.68674i −0.811558 + 1.12606i
\(75\) 0.658413 7.58826i 0.0760270 0.876217i
\(76\) 2.42532 + 7.27425i 0.278204 + 0.834414i
\(77\) 0 0
\(78\) 2.76501 3.83653i 0.313076 0.434402i
\(79\) 6.20417i 0.698024i −0.937118 0.349012i \(-0.886517\pi\)
0.937118 0.349012i \(-0.113483\pi\)
\(80\) −5.05303 7.38017i −0.564946 0.825128i
\(81\) −6.50025 −0.722250
\(82\) 1.20583 1.67312i 0.133161 0.184765i
\(83\) 7.69966i 0.845148i 0.906329 + 0.422574i \(0.138873\pi\)
−0.906329 + 0.422574i \(0.861127\pi\)
\(84\) 0 0
\(85\) −0.601895 + 13.8998i −0.0652847 + 1.50765i
\(86\) 9.84648 + 7.09641i 1.06177 + 0.765226i
\(87\) 0.721622i 0.0773660i
\(88\) 12.3129 + 3.84482i 1.31256 + 0.409859i
\(89\) 9.32432i 0.988376i −0.869355 0.494188i \(-0.835466\pi\)
0.869355 0.494188i \(-0.164534\pi\)
\(90\) 1.33037 1.68697i 0.140234 0.177822i
\(91\) 0 0
\(92\) −0.272178 0.816343i −0.0283766 0.0851096i
\(93\) 11.5741i 1.20018i
\(94\) −3.71174 + 5.15014i −0.382836 + 0.531197i
\(95\) −0.370883 + 8.56497i −0.0380518 + 0.878747i
\(96\) 0.165057 + 8.61581i 0.0168460 + 0.879347i
\(97\) 9.05280 0.919172 0.459586 0.888133i \(-0.347998\pi\)
0.459586 + 0.888133i \(0.347998\pi\)
\(98\) 0 0
\(99\) 3.09841i 0.311402i
\(100\) −2.33106 9.72451i −0.233106 0.972451i
\(101\) 7.99802i 0.795832i 0.917422 + 0.397916i \(0.130267\pi\)
−0.917422 + 0.397916i \(0.869733\pi\)
\(102\) 7.83730 10.8745i 0.776008 1.07673i
\(103\) 12.5017i 1.23183i −0.787813 0.615914i \(-0.788787\pi\)
0.787813 0.615914i \(-0.211213\pi\)
\(104\) 1.85063 5.92657i 0.181469 0.581148i
\(105\) 0 0
\(106\) 7.63949 10.6000i 0.742013 1.02956i
\(107\) 14.4668 1.39855 0.699277 0.714851i \(-0.253505\pi\)
0.699277 + 0.714851i \(0.253505\pi\)
\(108\) −10.6345 + 3.54568i −1.02331 + 0.341183i
\(109\) 18.2962 1.75246 0.876230 0.481892i \(-0.160050\pi\)
0.876230 + 0.481892i \(0.160050\pi\)
\(110\) 11.3241 + 8.93040i 1.07971 + 0.851480i
\(111\) 12.8618 1.22079
\(112\) 0 0
\(113\) 1.13588i 0.106854i 0.998572 + 0.0534272i \(0.0170145\pi\)
−0.998572 + 0.0534272i \(0.982986\pi\)
\(114\) 4.82928 6.70077i 0.452304 0.627585i
\(115\) 0.0416218 0.961191i 0.00388126 0.0896315i
\(116\) −0.299662 0.898773i −0.0278229 0.0834490i
\(117\) 1.49136 0.137876
\(118\) 3.59794 + 2.59305i 0.331217 + 0.238710i
\(119\) 0 0
\(120\) −3.26690 + 9.06375i −0.298226 + 0.827404i
\(121\) −9.79871 −0.890791
\(122\) 4.72277 6.55298i 0.427579 0.593278i
\(123\) −2.22153 −0.200309
\(124\) 4.80629 + 14.4155i 0.431617 + 1.29455i
\(125\) 1.44742 11.0863i 0.129462 0.991584i
\(126\) 0 0
\(127\) −8.33473 −0.739588 −0.369794 0.929114i \(-0.620572\pi\)
−0.369794 + 0.929114i \(0.620572\pi\)
\(128\) 3.78339 + 10.6624i 0.334407 + 0.942429i
\(129\) 13.0739i 1.15109i
\(130\) 4.29847 5.45063i 0.377001 0.478052i
\(131\) −5.68203 −0.496441 −0.248220 0.968704i \(-0.579846\pi\)
−0.248220 + 0.968704i \(0.579846\pi\)
\(132\) −4.39482 13.1814i −0.382520 1.14729i
\(133\) 0 0
\(134\) 17.1474 + 12.3583i 1.48131 + 1.06759i
\(135\) −12.5215 0.542209i −1.07768 0.0466659i
\(136\) 5.24553 16.7986i 0.449800 1.44047i
\(137\) 14.7846i 1.26313i 0.775321 + 0.631567i \(0.217588\pi\)
−0.775321 + 0.631567i \(0.782412\pi\)
\(138\) −0.541959 + 0.751985i −0.0461347 + 0.0640132i
\(139\) −1.11362 −0.0944558 −0.0472279 0.998884i \(-0.515039\pi\)
−0.0472279 + 0.998884i \(0.515039\pi\)
\(140\) 0 0
\(141\) 6.83823 0.575883
\(142\) −3.78538 + 5.25233i −0.317662 + 0.440766i
\(143\) 10.0111i 0.837166i
\(144\) −2.17383 + 1.63085i −0.181152 + 0.135904i
\(145\) 0.0458246 1.05825i 0.00380552 0.0878826i
\(146\) 14.0790 + 10.1468i 1.16519 + 0.839759i
\(147\) 0 0
\(148\) 16.0192 5.34101i 1.31677 0.439028i
\(149\) 6.87811 0.563476 0.281738 0.959491i \(-0.409089\pi\)
0.281738 + 0.959491i \(0.409089\pi\)
\(150\) −7.02986 + 8.16158i −0.573986 + 0.666390i
\(151\) 21.2380i 1.72832i −0.503215 0.864161i \(-0.667850\pi\)
0.503215 0.864161i \(-0.332150\pi\)
\(152\) 3.23225 10.3512i 0.262170 0.839590i
\(153\) 4.22720 0.341748
\(154\) 0 0
\(155\) −0.734983 + 16.9733i −0.0590352 + 1.36333i
\(156\) −6.34459 + 2.11536i −0.507974 + 0.169364i
\(157\) 2.32742 0.185748 0.0928741 0.995678i \(-0.470395\pi\)
0.0928741 + 0.995678i \(0.470395\pi\)
\(158\) −5.13001 + 7.11804i −0.408122 + 0.566281i
\(159\) −14.0744 −1.11617
\(160\) −0.305070 + 12.6454i −0.0241179 + 0.999709i
\(161\) 0 0
\(162\) 7.45773 + 5.37482i 0.585934 + 0.422286i
\(163\) −3.06683 −0.240213 −0.120106 0.992761i \(-0.538324\pi\)
−0.120106 + 0.992761i \(0.538324\pi\)
\(164\) −2.76689 + 0.922515i −0.216058 + 0.0720363i
\(165\) 0.672061 15.5202i 0.0523199 1.20825i
\(166\) 6.36658 8.83381i 0.494142 0.685637i
\(167\) 13.0431i 1.00930i 0.863323 + 0.504652i \(0.168379\pi\)
−0.863323 + 0.504652i \(0.831621\pi\)
\(168\) 0 0
\(169\) −8.18137 −0.629336
\(170\) 12.1838 15.4496i 0.934457 1.18493i
\(171\) 2.60477 0.199191
\(172\) −5.42909 16.2834i −0.413964 1.24160i
\(173\) −11.0602 −0.840895 −0.420448 0.907317i \(-0.638127\pi\)
−0.420448 + 0.907317i \(0.638127\pi\)
\(174\) −0.596684 + 0.827916i −0.0452345 + 0.0627642i
\(175\) 0 0
\(176\) −10.9474 14.5922i −0.825192 1.09993i
\(177\) 4.77725i 0.359080i
\(178\) −7.70995 + 10.6978i −0.577885 + 0.801832i
\(179\) 22.0450i 1.64772i −0.566794 0.823860i \(-0.691816\pi\)
0.566794 0.823860i \(-0.308184\pi\)
\(180\) −2.92123 + 0.835415i −0.217736 + 0.0622682i
\(181\) 2.49964i 0.185797i −0.995676 0.0928984i \(-0.970387\pi\)
0.995676 0.0928984i \(-0.0296132\pi\)
\(182\) 0 0
\(183\) −8.70087 −0.643187
\(184\) −0.362735 + 1.16164i −0.0267412 + 0.0856375i
\(185\) 18.8616 + 0.816752i 1.38673 + 0.0600488i
\(186\) 9.57024 13.2790i 0.701724 0.973662i
\(187\) 28.3759i 2.07505i
\(188\) 8.51694 2.83965i 0.621162 0.207103i
\(189\) 0 0
\(190\) 7.50758 9.51991i 0.544657 0.690647i
\(191\) 7.76066i 0.561542i 0.959775 + 0.280771i \(0.0905901\pi\)
−0.959775 + 0.280771i \(0.909410\pi\)
\(192\) 6.93474 10.0214i 0.500472 0.723231i
\(193\) 6.03714i 0.434563i −0.976109 0.217281i \(-0.930281\pi\)
0.976109 0.217281i \(-0.0697189\pi\)
\(194\) −10.3863 7.48544i −0.745690 0.537423i
\(195\) −7.47035 0.323483i −0.534963 0.0231651i
\(196\) 0 0
\(197\) 9.74467i 0.694279i −0.937813 0.347140i \(-0.887153\pi\)
0.937813 0.347140i \(-0.112847\pi\)
\(198\) 2.56197 3.55481i 0.182071 0.252629i
\(199\) −17.2535 −1.22307 −0.611535 0.791217i \(-0.709448\pi\)
−0.611535 + 0.791217i \(0.709448\pi\)
\(200\) −5.36643 + 13.0844i −0.379464 + 0.925207i
\(201\) 22.7679i 1.60593i
\(202\) 6.61328 9.17612i 0.465309 0.645629i
\(203\) 0 0
\(204\) −17.9834 + 5.99590i −1.25909 + 0.419797i
\(205\) −3.25784 0.141072i −0.227537 0.00985289i
\(206\) −10.3372 + 14.3432i −0.720227 + 0.999336i
\(207\) −0.292316 −0.0203174
\(208\) −7.02369 + 5.26932i −0.487006 + 0.365362i
\(209\) 17.4850i 1.20946i
\(210\) 0 0
\(211\) 26.8147i 1.84600i −0.384796 0.923002i \(-0.625728\pi\)
0.384796 0.923002i \(-0.374272\pi\)
\(212\) −17.5296 + 5.84456i −1.20393 + 0.401406i
\(213\) 6.97391 0.477844
\(214\) −16.5977 11.9620i −1.13459 0.817709i
\(215\) 0.830222 19.1727i 0.0566207 1.30757i
\(216\) 15.1328 + 4.72536i 1.02965 + 0.321520i
\(217\) 0 0
\(218\) −20.9912 15.1285i −1.42171 1.02463i
\(219\) 18.6938i 1.26321i
\(220\) −5.60789 19.6093i −0.378084 1.32206i
\(221\) 13.6582 0.918749
\(222\) −14.7563 10.6350i −0.990380 0.713772i
\(223\) 17.6054i 1.17894i −0.807789 0.589472i \(-0.799336\pi\)
0.807789 0.589472i \(-0.200664\pi\)
\(224\) 0 0
\(225\) −3.38425 0.293642i −0.225617 0.0195762i
\(226\) 0.939217 1.30319i 0.0624758 0.0866870i
\(227\) 8.79143i 0.583508i 0.956493 + 0.291754i \(0.0942388\pi\)
−0.956493 + 0.291754i \(0.905761\pi\)
\(228\) −11.0813 + 3.69463i −0.733875 + 0.244683i
\(229\) 17.0838i 1.12893i 0.825457 + 0.564466i \(0.190918\pi\)
−0.825457 + 0.564466i \(0.809082\pi\)
\(230\) −0.842528 + 1.06836i −0.0555546 + 0.0704454i
\(231\) 0 0
\(232\) −0.399362 + 1.27894i −0.0262194 + 0.0839666i
\(233\) 14.1823i 0.929114i −0.885543 0.464557i \(-0.846214\pi\)
0.885543 0.464557i \(-0.153786\pi\)
\(234\) −1.71104 1.23315i −0.111854 0.0806138i
\(235\) 10.0282 + 0.434242i 0.654164 + 0.0283269i
\(236\) −1.98381 5.95001i −0.129135 0.387313i
\(237\) 9.45115 0.613918
\(238\) 0 0
\(239\) 13.6734i 0.884456i 0.896903 + 0.442228i \(0.145812\pi\)
−0.896903 + 0.442228i \(0.854188\pi\)
\(240\) 11.2426 7.69755i 0.725707 0.496875i
\(241\) 3.35937i 0.216396i 0.994129 + 0.108198i \(0.0345080\pi\)
−0.994129 + 0.108198i \(0.965492\pi\)
\(242\) 11.2420 + 8.10220i 0.722666 + 0.520829i
\(243\) 6.91288i 0.443461i
\(244\) −10.8368 + 3.61313i −0.693758 + 0.231307i
\(245\) 0 0
\(246\) 2.54876 + 1.83690i 0.162503 + 0.117117i
\(247\) 8.41607 0.535502
\(248\) 6.40539 20.5130i 0.406742 1.30258i
\(249\) −11.7293 −0.743315
\(250\) −10.8275 + 11.5224i −0.684788 + 0.728742i
\(251\) 26.2007 1.65377 0.826887 0.562368i \(-0.190110\pi\)
0.826887 + 0.562368i \(0.190110\pi\)
\(252\) 0 0
\(253\) 1.96223i 0.123364i
\(254\) 9.56243 + 6.89170i 0.600000 + 0.432423i
\(255\) −21.1744 0.916899i −1.32599 0.0574184i
\(256\) 4.47565 15.3613i 0.279728 0.960079i
\(257\) 22.2810 1.38985 0.694926 0.719081i \(-0.255437\pi\)
0.694926 + 0.719081i \(0.255437\pi\)
\(258\) −10.8104 + 14.9997i −0.673023 + 0.933839i
\(259\) 0 0
\(260\) −9.43857 + 2.69925i −0.585355 + 0.167400i
\(261\) −0.321833 −0.0199209
\(262\) 6.51898 + 4.69827i 0.402744 + 0.290260i
\(263\) 13.7838 0.849944 0.424972 0.905207i \(-0.360284\pi\)
0.424972 + 0.905207i \(0.360284\pi\)
\(264\) −5.85702 + 18.7569i −0.360475 + 1.15441i
\(265\) −20.6399 0.893757i −1.26790 0.0549031i
\(266\) 0 0
\(267\) 14.2042 0.869285
\(268\) −9.45463 28.3572i −0.577534 1.73219i
\(269\) 5.86157i 0.357386i −0.983905 0.178693i \(-0.942813\pi\)
0.983905 0.178693i \(-0.0571869\pi\)
\(270\) 13.9175 + 10.9756i 0.846994 + 0.667956i
\(271\) 17.3982 1.05687 0.528433 0.848975i \(-0.322780\pi\)
0.528433 + 0.848975i \(0.322780\pi\)
\(272\) −19.9083 + 14.9357i −1.20712 + 0.905607i
\(273\) 0 0
\(274\) 12.2249 16.9624i 0.738532 1.02473i
\(275\) 1.97113 22.7174i 0.118864 1.36991i
\(276\) 1.24358 0.414624i 0.0748547 0.0249574i
\(277\) 4.01044i 0.240964i 0.992716 + 0.120482i \(0.0384440\pi\)
−0.992716 + 0.120482i \(0.961556\pi\)
\(278\) 1.27765 + 0.920811i 0.0766285 + 0.0552266i
\(279\) 5.16189 0.309034
\(280\) 0 0
\(281\) −11.7101 −0.698566 −0.349283 0.937017i \(-0.613575\pi\)
−0.349283 + 0.937017i \(0.613575\pi\)
\(282\) −7.84549 5.65429i −0.467192 0.336708i
\(283\) 17.6039i 1.04644i −0.852197 0.523221i \(-0.824730\pi\)
0.852197 0.523221i \(-0.175270\pi\)
\(284\) 8.68593 2.89599i 0.515415 0.171846i
\(285\) −13.0475 0.564986i −0.772866 0.0334669i
\(286\) 8.27779 11.4857i 0.489476 0.679162i
\(287\) 0 0
\(288\) 3.84252 0.0736129i 0.226423 0.00433768i
\(289\) 21.7135 1.27726
\(290\) −0.927602 + 1.17624i −0.0544706 + 0.0690709i
\(291\) 13.7906i 0.808420i
\(292\) −7.76281 23.2829i −0.454284 1.36253i
\(293\) −23.5436 −1.37543 −0.687715 0.725980i \(-0.741386\pi\)
−0.687715 + 0.725980i \(0.741386\pi\)
\(294\) 0 0
\(295\) 0.303366 7.00576i 0.0176626 0.407891i
\(296\) −22.7951 7.11801i −1.32494 0.413726i
\(297\) −25.5620 −1.48326
\(298\) −7.89124 5.68726i −0.457127 0.329454i
\(299\) −0.944481 −0.0546208
\(300\) 14.8139 3.55103i 0.855279 0.205019i
\(301\) 0 0
\(302\) −17.5609 + 24.3663i −1.01052 + 1.40212i
\(303\) −12.1838 −0.699941
\(304\) −12.2674 + 9.20324i −0.703582 + 0.527842i
\(305\) −12.7597 0.552524i −0.730618 0.0316375i
\(306\) −4.84986 3.49532i −0.277248 0.199814i
\(307\) 11.0383i 0.629989i 0.949093 + 0.314995i \(0.102003\pi\)
−0.949093 + 0.314995i \(0.897997\pi\)
\(308\) 0 0
\(309\) 19.0445 1.08340
\(310\) 14.8778 18.8657i 0.845005 1.07150i
\(311\) 21.6665 1.22859 0.614297 0.789075i \(-0.289440\pi\)
0.614297 + 0.789075i \(0.289440\pi\)
\(312\) 9.02826 + 2.81916i 0.511124 + 0.159604i
\(313\) −3.82369 −0.216128 −0.108064 0.994144i \(-0.534465\pi\)
−0.108064 + 0.994144i \(0.534465\pi\)
\(314\) −2.67025 1.92446i −0.150691 0.108604i
\(315\) 0 0
\(316\) 11.7713 3.92469i 0.662188 0.220781i
\(317\) 8.73885i 0.490823i −0.969419 0.245411i \(-0.921077\pi\)
0.969419 0.245411i \(-0.0789230\pi\)
\(318\) 16.1476 + 11.6376i 0.905511 + 0.652607i
\(319\) 2.16036i 0.120957i
\(320\) 10.8061 14.2558i 0.604077 0.796926i
\(321\) 22.0380i 1.23004i
\(322\) 0 0
\(323\) 23.8550 1.32733
\(324\) −4.11199 12.3331i −0.228444 0.685170i
\(325\) −10.9346 0.948767i −0.606543 0.0526281i
\(326\) 3.51857 + 2.53585i 0.194876 + 0.140448i
\(327\) 27.8716i 1.54130i
\(328\) 3.93725 + 1.22944i 0.217398 + 0.0678847i
\(329\) 0 0
\(330\) −13.6042 + 17.2506i −0.748884 + 0.949614i
\(331\) 9.68144i 0.532140i 0.963954 + 0.266070i \(0.0857252\pi\)
−0.963954 + 0.266070i \(0.914275\pi\)
\(332\) −14.6087 + 4.87073i −0.801758 + 0.267316i
\(333\) 5.73617i 0.314340i
\(334\) 10.7849 14.9643i 0.590121 0.818810i
\(335\) 1.44581 33.3888i 0.0789932 1.82422i
\(336\) 0 0
\(337\) 9.54187i 0.519779i −0.965638 0.259889i \(-0.916314\pi\)
0.965638 0.259889i \(-0.0836861\pi\)
\(338\) 9.38648 + 6.76489i 0.510557 + 0.367961i
\(339\) −1.73034 −0.0939793
\(340\) −26.7532 + 7.65090i −1.45090 + 0.414928i
\(341\) 34.6502i 1.87641i
\(342\) −2.98844 2.15379i −0.161597 0.116464i
\(343\) 0 0
\(344\) −7.23540 + 23.1711i −0.390106 + 1.24930i
\(345\) 1.46423 + 0.0634048i 0.0788317 + 0.00341360i
\(346\) 12.6894 + 9.14533i 0.682187 + 0.491656i
\(347\) −24.1787 −1.29798 −0.648991 0.760796i \(-0.724809\pi\)
−0.648991 + 0.760796i \(0.724809\pi\)
\(348\) 1.36915 0.456491i 0.0733941 0.0244705i
\(349\) 8.31416i 0.445047i −0.974927 0.222523i \(-0.928571\pi\)
0.974927 0.222523i \(-0.0714294\pi\)
\(350\) 0 0
\(351\) 12.3038i 0.656727i
\(352\) 0.494141 + 25.7937i 0.0263378 + 1.37481i
\(353\) 10.5285 0.560377 0.280189 0.959945i \(-0.409603\pi\)
0.280189 + 0.959945i \(0.409603\pi\)
\(354\) −3.95014 + 5.48093i −0.209947 + 0.291308i
\(355\) 10.2271 + 0.442858i 0.542799 + 0.0235045i
\(356\) 17.6912 5.89847i 0.937633 0.312618i
\(357\) 0 0
\(358\) −18.2282 + 25.2922i −0.963391 + 1.33673i
\(359\) 11.1046i 0.586080i 0.956100 + 0.293040i \(0.0946669\pi\)
−0.956100 + 0.293040i \(0.905333\pi\)
\(360\) 4.04230 + 1.45699i 0.213048 + 0.0767901i
\(361\) −4.30076 −0.226356
\(362\) −2.06686 + 2.86783i −0.108632 + 0.150730i
\(363\) 14.9269i 0.783459i
\(364\) 0 0
\(365\) 1.18710 27.4142i 0.0621355 1.43492i
\(366\) 9.98250 + 7.19444i 0.521794 + 0.376060i
\(367\) 23.3837i 1.22062i −0.792164 0.610309i \(-0.791045\pi\)
0.792164 0.610309i \(-0.208955\pi\)
\(368\) 1.37669 1.03282i 0.0717648 0.0538395i
\(369\) 0.990769i 0.0515774i
\(370\) −20.9646 16.5331i −1.08990 0.859513i
\(371\) 0 0
\(372\) −21.9598 + 7.32168i −1.13857 + 0.379611i
\(373\) 8.59223i 0.444889i 0.974945 + 0.222444i \(0.0714035\pi\)
−0.974945 + 0.222444i \(0.928596\pi\)
\(374\) 23.4630 32.5556i 1.21324 1.68341i
\(375\) 16.8883 + 2.20494i 0.872107 + 0.113863i
\(376\) −12.1195 3.78443i −0.625015 0.195167i
\(377\) −1.03985 −0.0535550
\(378\) 0 0
\(379\) 5.57279i 0.286255i −0.989704 0.143128i \(-0.954284\pi\)
0.989704 0.143128i \(-0.0457159\pi\)
\(380\) −16.4851 + 4.71443i −0.845669 + 0.241845i
\(381\) 12.6967i 0.650474i
\(382\) 6.41701 8.90380i 0.328323 0.455558i
\(383\) 12.2341i 0.625135i −0.949896 0.312567i \(-0.898811\pi\)
0.949896 0.312567i \(-0.101189\pi\)
\(384\) −16.2426 + 5.76344i −0.828874 + 0.294114i
\(385\) 0 0
\(386\) −4.99190 + 6.92640i −0.254081 + 0.352545i
\(387\) −5.83077 −0.296395
\(388\) 5.72671 + 17.1761i 0.290730 + 0.871983i
\(389\) −3.98430 −0.202012 −0.101006 0.994886i \(-0.532206\pi\)
−0.101006 + 0.994886i \(0.532206\pi\)
\(390\) 8.30324 + 6.54810i 0.420451 + 0.331576i
\(391\) −2.67709 −0.135386
\(392\) 0 0
\(393\) 8.65574i 0.436624i
\(394\) −8.05753 + 11.1801i −0.405932 + 0.563243i
\(395\) 13.8600 + 0.600168i 0.697370 + 0.0301978i
\(396\) −5.87869 + 1.96002i −0.295415 + 0.0984949i
\(397\) 39.7805 1.99653 0.998263 0.0589121i \(-0.0187632\pi\)
0.998263 + 0.0589121i \(0.0187632\pi\)
\(398\) 19.7950 + 14.2663i 0.992231 + 0.715107i
\(399\) 0 0
\(400\) 16.9759 10.5744i 0.848796 0.528720i
\(401\) 0.431925 0.0215693 0.0107847 0.999942i \(-0.496567\pi\)
0.0107847 + 0.999942i \(0.496567\pi\)
\(402\) −18.8260 + 26.1216i −0.938955 + 1.30283i
\(403\) 16.6782 0.830800
\(404\) −15.1748 + 5.05946i −0.754975 + 0.251718i
\(405\) 0.628810 14.5214i 0.0312458 0.721573i
\(406\) 0 0
\(407\) 38.5052 1.90863
\(408\) 25.5902 + 7.99079i 1.26690 + 0.395603i
\(409\) 18.3685i 0.908263i 0.890935 + 0.454132i \(0.150050\pi\)
−0.890935 + 0.454132i \(0.849950\pi\)
\(410\) 3.62107 + 2.85564i 0.178832 + 0.141030i
\(411\) −22.5222 −1.11094
\(412\) 23.7197 7.90844i 1.16859 0.389621i
\(413\) 0 0
\(414\) 0.335374 + 0.241706i 0.0164827 + 0.0118792i
\(415\) −17.2008 0.744837i −0.844356 0.0365626i
\(416\) 12.4153 0.237845i 0.608710 0.0116613i
\(417\) 1.69643i 0.0830747i
\(418\) 14.4577 20.0605i 0.707151 0.981192i
\(419\) −23.3512 −1.14078 −0.570389 0.821375i \(-0.693208\pi\)
−0.570389 + 0.821375i \(0.693208\pi\)
\(420\) 0 0
\(421\) 35.7600 1.74283 0.871417 0.490543i \(-0.163201\pi\)
0.871417 + 0.490543i \(0.163201\pi\)
\(422\) −22.1722 + 30.7645i −1.07932 + 1.49759i
\(423\) 3.04975i 0.148284i
\(424\) 24.9443 + 7.78911i 1.21140 + 0.378273i
\(425\) −30.9936 2.68924i −1.50341 0.130447i
\(426\) −8.00116 5.76648i −0.387657 0.279387i
\(427\) 0 0
\(428\) 9.15152 + 27.4481i 0.442355 + 1.32675i
\(429\) −15.2504 −0.736295
\(430\) −16.8057 + 21.3103i −0.810444 + 1.02767i
\(431\) 14.6244i 0.704430i 0.935919 + 0.352215i \(0.114571\pi\)
−0.935919 + 0.352215i \(0.885429\pi\)
\(432\) −13.4546 17.9342i −0.647334 0.862857i
\(433\) −2.12837 −0.102283 −0.0511414 0.998691i \(-0.516286\pi\)
−0.0511414 + 0.998691i \(0.516286\pi\)
\(434\) 0 0
\(435\) 1.61208 + 0.0698070i 0.0772936 + 0.00334699i
\(436\) 11.5740 + 34.7138i 0.554294 + 1.66249i
\(437\) −1.64960 −0.0789111
\(438\) −15.4572 + 21.4474i −0.738575 + 1.02480i
\(439\) 24.6770 1.17777 0.588884 0.808217i \(-0.299567\pi\)
0.588884 + 0.808217i \(0.299567\pi\)
\(440\) −9.78033 + 27.1347i −0.466259 + 1.29360i
\(441\) 0 0
\(442\) −15.6700 11.2935i −0.745347 0.537175i
\(443\) 16.1404 0.766855 0.383427 0.923571i \(-0.374744\pi\)
0.383427 + 0.923571i \(0.374744\pi\)
\(444\) 8.13624 + 24.4030i 0.386129 + 1.15811i
\(445\) 20.8303 + 0.902000i 0.987450 + 0.0427589i
\(446\) −14.5573 + 20.1987i −0.689307 + 0.956434i
\(447\) 10.4778i 0.495582i
\(448\) 0 0
\(449\) −28.5162 −1.34576 −0.672882 0.739750i \(-0.734944\pi\)
−0.672882 + 0.739750i \(0.734944\pi\)
\(450\) 3.63994 + 3.13521i 0.171589 + 0.147795i
\(451\) −6.65073 −0.313171
\(452\) −2.15512 + 0.718544i −0.101369 + 0.0337975i
\(453\) 32.3530 1.52007
\(454\) 7.26932 10.0864i 0.341166 0.473378i
\(455\) 0 0
\(456\) 15.7685 + 4.92386i 0.738427 + 0.230581i
\(457\) 23.3827i 1.09380i 0.837199 + 0.546899i \(0.184192\pi\)
−0.837199 + 0.546899i \(0.815808\pi\)
\(458\) 14.1260 19.6003i 0.660065 0.915860i
\(459\) 34.8745i 1.62780i
\(460\) 1.85002 0.529070i 0.0862576 0.0246680i
\(461\) 9.92550i 0.462277i −0.972921 0.231138i \(-0.925755\pi\)
0.972921 0.231138i \(-0.0742450\pi\)
\(462\) 0 0
\(463\) 16.8887 0.784887 0.392443 0.919776i \(-0.371630\pi\)
0.392443 + 0.919776i \(0.371630\pi\)
\(464\) 1.51570 1.13711i 0.0703645 0.0527890i
\(465\) −25.8563 1.11964i −1.19906 0.0519220i
\(466\) −11.7269 + 16.2714i −0.543236 + 0.753756i
\(467\) 30.7573i 1.42328i 0.702546 + 0.711638i \(0.252046\pi\)
−0.702546 + 0.711638i \(0.747954\pi\)
\(468\) 0.943420 + 2.82959i 0.0436096 + 0.130798i
\(469\) 0 0
\(470\) −11.1462 8.79013i −0.514137 0.405458i
\(471\) 3.54548i 0.163367i
\(472\) −2.64384 + 8.46678i −0.121692 + 0.389715i
\(473\) 39.1402i 1.79967i
\(474\) −10.8433 7.81482i −0.498049 0.358946i
\(475\) −19.0980 1.65709i −0.876278 0.0760324i
\(476\) 0 0
\(477\) 6.27698i 0.287403i
\(478\) 11.3060 15.6874i 0.517125 0.717526i
\(479\) 15.7534 0.719792 0.359896 0.932992i \(-0.382812\pi\)
0.359896 + 0.932992i \(0.382812\pi\)
\(480\) −19.2635 0.464729i −0.879253 0.0212119i
\(481\) 18.5337i 0.845065i
\(482\) 2.77774 3.85420i 0.126523 0.175554i
\(483\) 0 0
\(484\) −6.19856 18.5913i −0.281753 0.845059i
\(485\) −0.875734 + 20.2237i −0.0397650 + 0.918312i
\(486\) 5.71601 7.93114i 0.259284 0.359764i
\(487\) 13.5048 0.611963 0.305981 0.952038i \(-0.401015\pi\)
0.305981 + 0.952038i \(0.401015\pi\)
\(488\) 15.4207 + 4.81526i 0.698061 + 0.217977i
\(489\) 4.67187i 0.211269i
\(490\) 0 0
\(491\) 3.87067i 0.174681i −0.996179 0.0873404i \(-0.972163\pi\)
0.996179 0.0873404i \(-0.0278368\pi\)
\(492\) −1.40532 4.21496i −0.0633566 0.190025i
\(493\) −2.94741 −0.132745
\(494\) −9.65574 6.95895i −0.434432 0.313098i
\(495\) −6.92178 0.299729i −0.311111 0.0134718i
\(496\) −24.3104 + 18.2381i −1.09157 + 0.818917i
\(497\) 0 0
\(498\) 13.4570 + 9.69855i 0.603024 + 0.434602i
\(499\) 24.3694i 1.09092i 0.838136 + 0.545462i \(0.183646\pi\)
−0.838136 + 0.545462i \(0.816354\pi\)
\(500\) 21.9498 4.26682i 0.981625 0.190818i
\(501\) −19.8692 −0.887691
\(502\) −30.0600 21.6644i −1.34165 0.966931i
\(503\) 11.2245i 0.500475i −0.968184 0.250238i \(-0.919491\pi\)
0.968184 0.250238i \(-0.0805087\pi\)
\(504\) 0 0
\(505\) −17.8674 0.773699i −0.795087 0.0344291i
\(506\) −1.62250 + 2.25126i −0.0721288 + 0.100081i
\(507\) 12.4631i 0.553507i
\(508\) −5.27247 15.8137i −0.233928 0.701618i
\(509\) 14.3783i 0.637308i −0.947871 0.318654i \(-0.896769\pi\)
0.947871 0.318654i \(-0.103231\pi\)
\(510\) 23.5352 + 18.5603i 1.04215 + 0.821863i
\(511\) 0 0
\(512\) −17.8366 + 13.9232i −0.788274 + 0.615325i
\(513\) 21.4894i 0.948781i
\(514\) −25.5630 18.4234i −1.12754 0.812621i
\(515\) 27.9284 + 1.20937i 1.23067 + 0.0532911i
\(516\) 24.8054 8.27042i 1.09200 0.364085i
\(517\) 20.4720 0.900359
\(518\) 0 0
\(519\) 16.8487i 0.739575i
\(520\) 13.0608 + 4.70757i 0.572753 + 0.206441i
\(521\) 25.8122i 1.13085i 0.824799 + 0.565426i \(0.191288\pi\)
−0.824799 + 0.565426i \(0.808712\pi\)
\(522\) 0.369238 + 0.266112i 0.0161611 + 0.0116474i
\(523\) 4.42548i 0.193513i −0.995308 0.0967563i \(-0.969153\pi\)
0.995308 0.0967563i \(-0.0308468\pi\)
\(524\) −3.59439 10.7806i −0.157022 0.470954i
\(525\) 0 0
\(526\) −15.8141 11.3973i −0.689528 0.496946i
\(527\) 47.2736 2.05927
\(528\) 22.2291 16.6768i 0.967400 0.725764i
\(529\) −22.8149 −0.991951
\(530\) 22.9412 + 18.0918i 0.996500 + 0.785859i
\(531\) −2.13058 −0.0924593
\(532\) 0 0
\(533\) 3.20120i 0.138659i
\(534\) −16.2965 11.7450i −0.705219 0.508255i
\(535\) −1.39946 + 32.3184i −0.0605039 + 1.39724i
\(536\) −12.6003 + 40.3519i −0.544249 + 1.74294i
\(537\) 33.5823 1.44918
\(538\) −4.84672 + 6.72497i −0.208957 + 0.289934i
\(539\) 0 0
\(540\) −6.89221 24.1002i −0.296593 1.03711i
\(541\) 4.10160 0.176342 0.0881708 0.996105i \(-0.471898\pi\)
0.0881708 + 0.996105i \(0.471898\pi\)
\(542\) −19.9610 14.3860i −0.857396 0.617930i
\(543\) 3.80784 0.163410
\(544\) 35.1906 0.674161i 1.50878 0.0289044i
\(545\) −1.76991 + 40.8733i −0.0758146 + 1.75082i
\(546\) 0 0
\(547\) 4.16833 0.178225 0.0891125 0.996022i \(-0.471597\pi\)
0.0891125 + 0.996022i \(0.471597\pi\)
\(548\) −28.0512 + 9.35259i −1.19829 + 0.399523i
\(549\) 3.88046i 0.165614i
\(550\) −21.0457 + 24.4338i −0.897393 + 1.04186i
\(551\) −1.81617 −0.0773714
\(552\) −1.76959 0.552574i −0.0753190 0.0235191i
\(553\) 0 0
\(554\) 3.31609 4.60117i 0.140887 0.195485i
\(555\) −1.24420 + 28.7329i −0.0528135 + 1.21964i
\(556\) −0.704463 2.11289i −0.0298759 0.0896065i
\(557\) 12.1574i 0.515124i 0.966262 + 0.257562i \(0.0829192\pi\)
−0.966262 + 0.257562i \(0.917081\pi\)
\(558\) −5.92223 4.26818i −0.250708 0.180687i
\(559\) −18.8394 −0.796820
\(560\) 0 0
\(561\) −43.2265 −1.82502
\(562\) 13.4350 + 9.68267i 0.566721 + 0.408439i
\(563\) 24.9027i 1.04952i 0.851249 + 0.524762i \(0.175846\pi\)
−0.851249 + 0.524762i \(0.824154\pi\)
\(564\) 4.32579 + 12.9743i 0.182149 + 0.546317i
\(565\) −2.53752 0.109881i −0.106754 0.00462271i
\(566\) −14.5560 + 20.1969i −0.611835 + 0.848939i
\(567\) 0 0
\(568\) −12.3600 3.85952i −0.518612 0.161942i
\(569\) −29.5875 −1.24037 −0.620187 0.784454i \(-0.712943\pi\)
−0.620187 + 0.784454i \(0.712943\pi\)
\(570\) 14.5022 + 11.4367i 0.607430 + 0.479031i
\(571\) 24.5175i 1.02603i −0.858381 0.513013i \(-0.828529\pi\)
0.858381 0.513013i \(-0.171471\pi\)
\(572\) −18.9942 + 6.33289i −0.794187 + 0.264791i
\(573\) −11.8222 −0.493881
\(574\) 0 0
\(575\) 2.14325 + 0.185964i 0.0893797 + 0.00775524i
\(576\) −4.46939 3.09279i −0.186225 0.128866i
\(577\) 13.5476 0.563993 0.281997 0.959415i \(-0.409003\pi\)
0.281997 + 0.959415i \(0.409003\pi\)
\(578\) −24.9119 17.9541i −1.03620 0.746793i
\(579\) 9.19670 0.382202
\(580\) 2.03682 0.582492i 0.0845745 0.0241867i
\(581\) 0 0
\(582\) 11.4030 15.8220i 0.472668 0.655841i
\(583\) −42.1355 −1.74507
\(584\) −10.3456 + 33.1313i −0.428103 + 1.37098i
\(585\) −0.144269 + 3.33166i −0.00596478 + 0.137747i
\(586\) 27.0115 + 19.4674i 1.11584 + 0.804189i
\(587\) 26.8772i 1.10934i −0.832070 0.554671i \(-0.812844\pi\)
0.832070 0.554671i \(-0.187156\pi\)
\(588\) 0 0
\(589\) 29.1296 1.20027
\(590\) −6.14086 + 7.78686i −0.252815 + 0.320580i
\(591\) 14.8446 0.610625
\(592\) 20.2672 + 27.0150i 0.832977 + 1.11031i
\(593\) 0.947148 0.0388947 0.0194473 0.999811i \(-0.493809\pi\)
0.0194473 + 0.999811i \(0.493809\pi\)
\(594\) 29.3273 + 21.1363i 1.20331 + 0.867234i
\(595\) 0 0
\(596\) 4.35102 + 13.0500i 0.178225 + 0.534548i
\(597\) 26.2832i 1.07570i
\(598\) 1.08360 + 0.780958i 0.0443118 + 0.0319357i
\(599\) 22.0707i 0.901786i 0.892578 + 0.450893i \(0.148894\pi\)
−0.892578 + 0.450893i \(0.851106\pi\)
\(600\) −19.9322 8.17497i −0.813727 0.333742i
\(601\) 20.5283i 0.837367i −0.908132 0.418684i \(-0.862492\pi\)
0.908132 0.418684i \(-0.137508\pi\)
\(602\) 0 0
\(603\) −10.1542 −0.413509
\(604\) 40.2953 13.4349i 1.63959 0.546660i
\(605\) 0.947891 21.8901i 0.0385372 0.889957i
\(606\) 13.9785 + 10.0744i 0.567837 + 0.409243i
\(607\) 25.0474i 1.01664i 0.861168 + 0.508321i \(0.169734\pi\)
−0.861168 + 0.508321i \(0.830266\pi\)
\(608\) 21.6842 0.415413i 0.879409 0.0168472i
\(609\) 0 0
\(610\) 14.1823 + 11.1844i 0.574225 + 0.452845i
\(611\) 9.85381i 0.398643i
\(612\) 2.67408 + 8.02035i 0.108093 + 0.324203i
\(613\) 23.4199i 0.945921i −0.881084 0.472961i \(-0.843185\pi\)
0.881084 0.472961i \(-0.156815\pi\)
\(614\) 9.12718 12.6642i 0.368343 0.511087i
\(615\) 0.214903 4.96284i 0.00866571 0.200121i
\(616\) 0 0
\(617\) 16.7405i 0.673948i −0.941514 0.336974i \(-0.890597\pi\)
0.941514 0.336974i \(-0.109403\pi\)
\(618\) −21.8497 15.7472i −0.878925 0.633446i
\(619\) 27.3839 1.10065 0.550326 0.834950i \(-0.314504\pi\)
0.550326 + 0.834950i \(0.314504\pi\)
\(620\) −32.6687 + 9.34262i −1.31201 + 0.375209i
\(621\) 2.41162i 0.0967749i
\(622\) −24.8579 17.9153i −0.996712 0.718336i
\(623\) 0 0
\(624\) −8.02704 10.6996i −0.321339 0.428326i
\(625\) 24.6264 + 4.30595i 0.985055 + 0.172238i
\(626\) 4.38691 + 3.16167i 0.175336 + 0.126366i
\(627\) −26.6358 −1.06373
\(628\) 1.47230 + 4.41586i 0.0587512 + 0.176212i
\(629\) 52.5330i 2.09463i
\(630\) 0 0
\(631\) 3.77099i 0.150121i 0.997179 + 0.0750604i \(0.0239150\pi\)
−0.997179 + 0.0750604i \(0.976085\pi\)
\(632\) −16.7504 5.23048i −0.666295 0.208057i
\(633\) 40.8483 1.62358
\(634\) −7.22585 + 10.0261i −0.286975 + 0.398186i
\(635\) 0.806271 18.6196i 0.0319959 0.738896i
\(636\) −8.90334 26.7037i −0.353040 1.05887i
\(637\) 0 0
\(638\) −1.78633 + 2.47858i −0.0707214 + 0.0981281i
\(639\) 3.11026i 0.123040i
\(640\) −24.1854 + 7.42056i −0.956013 + 0.293323i
\(641\) 25.1167 0.992051 0.496026 0.868308i \(-0.334792\pi\)
0.496026 + 0.868308i \(0.334792\pi\)
\(642\) 18.2224 25.2842i 0.719182 0.997886i
\(643\) 12.8390i 0.506319i 0.967424 + 0.253160i \(0.0814698\pi\)
−0.967424 + 0.253160i \(0.918530\pi\)
\(644\) 0 0
\(645\) 29.2068 + 1.26472i 1.15002 + 0.0497984i
\(646\) −27.3688 19.7248i −1.07681 0.776063i
\(647\) 4.44061i 0.174578i 0.996183 + 0.0872892i \(0.0278204\pi\)
−0.996183 + 0.0872892i \(0.972180\pi\)
\(648\) −5.48009 + 17.5498i −0.215278 + 0.689420i
\(649\) 14.3019i 0.561400i
\(650\) 11.7608 + 10.1300i 0.461295 + 0.397330i
\(651\) 0 0
\(652\) −1.94005 5.81877i −0.0759781 0.227880i
\(653\) 37.9879i 1.48658i −0.668968 0.743291i \(-0.733264\pi\)
0.668968 0.743291i \(-0.266736\pi\)
\(654\) 23.0461 31.9771i 0.901172 1.25040i
\(655\) 0.549658 12.6935i 0.0214769 0.495976i
\(656\) −3.50061 4.66611i −0.136676 0.182181i
\(657\) −8.33715 −0.325263
\(658\) 0 0
\(659\) 19.5420i 0.761248i 0.924730 + 0.380624i \(0.124291\pi\)
−0.924730 + 0.380624i \(0.875709\pi\)
\(660\) 29.8719 8.54280i 1.16276 0.332528i
\(661\) 22.8705i 0.889560i −0.895640 0.444780i \(-0.853282\pi\)
0.895640 0.444780i \(-0.146718\pi\)
\(662\) 8.00524 11.1075i 0.311132 0.431705i
\(663\) 20.8062i 0.808048i
\(664\) 20.7880 + 6.49127i 0.806731 + 0.251910i
\(665\) 0 0
\(666\) −4.74304 + 6.58110i −0.183789 + 0.255013i
\(667\) 0.203817 0.00789183
\(668\) −24.7469 + 8.25092i −0.957487 + 0.319238i
\(669\) 26.8193 1.03689
\(670\) −29.2668 + 37.1114i −1.13068 + 1.43374i
\(671\) −26.0483 −1.00559
\(672\) 0 0
\(673\) 23.0022i 0.886670i 0.896356 + 0.443335i \(0.146205\pi\)
−0.896356 + 0.443335i \(0.853795\pi\)
\(674\) −7.88983 + 10.9474i −0.303905 + 0.421677i
\(675\) 2.42256 27.9202i 0.0932444 1.07465i
\(676\) −5.17545 15.5227i −0.199056 0.597027i
\(677\) −40.7663 −1.56678 −0.783388 0.621533i \(-0.786510\pi\)
−0.783388 + 0.621533i \(0.786510\pi\)
\(678\) 1.98522 + 1.43076i 0.0762419 + 0.0549480i
\(679\) 0 0
\(680\) 37.0202 + 13.3434i 1.41966 + 0.511696i
\(681\) −13.3925 −0.513200
\(682\) 28.6510 39.7541i 1.09710 1.52226i
\(683\) 10.9004 0.417092 0.208546 0.978013i \(-0.433127\pi\)
0.208546 + 0.978013i \(0.433127\pi\)
\(684\) 1.64775 + 4.94208i 0.0630032 + 0.188965i
\(685\) −33.0284 1.43021i −1.26195 0.0546455i
\(686\) 0 0
\(687\) −26.0247 −0.992905
\(688\) 27.4605 20.6014i 1.04692 0.785423i
\(689\) 20.2811i 0.772649i
\(690\) −1.62749 1.28347i −0.0619574 0.0488608i
\(691\) 16.0135 0.609183 0.304591 0.952483i \(-0.401480\pi\)
0.304591 + 0.952483i \(0.401480\pi\)
\(692\) −6.99660 20.9849i −0.265971 0.797724i
\(693\) 0 0
\(694\) 27.7402 + 19.9925i 1.05301 + 0.758907i
\(695\) 0.107727 2.48779i 0.00408633 0.0943674i
\(696\) −1.94828 0.608370i −0.0738493 0.0230602i
\(697\) 9.07366i 0.343689i
\(698\) −6.87468 + 9.53882i −0.260211 + 0.361050i
\(699\) 21.6047 0.817164
\(700\) 0 0
\(701\) 22.0640 0.833346 0.416673 0.909057i \(-0.363196\pi\)
0.416673 + 0.909057i \(0.363196\pi\)
\(702\) 10.1736 14.1161i 0.383976 0.532779i
\(703\) 32.3704i 1.22087i
\(704\) 20.7610 30.0017i 0.782458 1.13073i
\(705\) −0.661505 + 15.2764i −0.0249137 + 0.575343i
\(706\) −12.0794 8.70567i −0.454613 0.327642i
\(707\) 0 0
\(708\) 9.06398 3.02204i 0.340645 0.113575i
\(709\) −37.1908 −1.39673 −0.698364 0.715743i \(-0.746088\pi\)
−0.698364 + 0.715743i \(0.746088\pi\)
\(710\) −11.3674 8.96454i −0.426610 0.336433i
\(711\) 4.21507i 0.158077i
\(712\) −25.1744 7.86095i −0.943449 0.294601i
\(713\) −3.26903 −0.122426
\(714\) 0 0
\(715\) −22.3644 0.968433i −0.836383 0.0362173i
\(716\) 41.8264 13.9454i 1.56313 0.521165i
\(717\) −20.8294 −0.777887
\(718\) 9.18203 12.7403i 0.342670 0.475465i
\(719\) −36.3717 −1.35644 −0.678218 0.734861i \(-0.737247\pi\)
−0.678218 + 0.734861i \(0.737247\pi\)
\(720\) −3.43299 5.01404i −0.127940 0.186862i
\(721\) 0 0
\(722\) 4.93425 + 3.55614i 0.183634 + 0.132346i
\(723\) −5.11751 −0.190322
\(724\) 4.74262 1.58125i 0.176258 0.0587666i
\(725\) 2.35966 + 0.204742i 0.0876357 + 0.00760392i
\(726\) −12.3425 + 17.1256i −0.458074 + 0.635591i
\(727\) 34.1872i 1.26793i 0.773360 + 0.633967i \(0.218575\pi\)
−0.773360 + 0.633967i \(0.781425\pi\)
\(728\) 0 0
\(729\) −30.0315 −1.11228
\(730\) −24.0298 + 30.4707i −0.889381 + 1.12777i
\(731\) −53.3993 −1.97505
\(732\) −5.50408 16.5084i −0.203437 0.610166i
\(733\) −22.5349 −0.832345 −0.416172 0.909286i \(-0.636629\pi\)
−0.416172 + 0.909286i \(0.636629\pi\)
\(734\) −19.3351 + 26.8281i −0.713673 + 0.990242i
\(735\) 0 0
\(736\) −2.43348 + 0.0466191i −0.0896991 + 0.00171840i
\(737\) 68.1618i 2.51077i
\(738\) 0.819232 1.13671i 0.0301563 0.0418428i
\(739\) 7.02861i 0.258552i 0.991609 + 0.129276i \(0.0412652\pi\)
−0.991609 + 0.129276i \(0.958735\pi\)
\(740\) 10.3820 + 36.3032i 0.381651 + 1.33453i
\(741\) 12.8206i 0.470978i
\(742\) 0 0
\(743\) 0.0257779 0.000945701 0.000472850 1.00000i \(-0.499849\pi\)
0.000472850 1.00000i \(0.499849\pi\)
\(744\) 31.2485 + 9.75767i 1.14563 + 0.357734i
\(745\) −0.665363 + 15.3655i −0.0243770 + 0.562949i
\(746\) 7.10461 9.85785i 0.260118 0.360922i
\(747\) 5.23110i 0.191396i
\(748\) −53.8382 + 17.9503i −1.96852 + 0.656328i
\(749\) 0 0
\(750\) −17.5527 16.4940i −0.640935 0.602277i
\(751\) 10.3551i 0.377865i −0.981990 0.188932i \(-0.939497\pi\)
0.981990 0.188932i \(-0.0605027\pi\)
\(752\) 10.7755 + 14.3630i 0.392941 + 0.523766i
\(753\) 39.9129i 1.45451i
\(754\) 1.19302 + 0.859815i 0.0434472 + 0.0313126i
\(755\) 47.4451 + 2.05448i 1.72670 + 0.0747703i
\(756\) 0 0
\(757\) 36.2159i 1.31629i −0.752892 0.658145i \(-0.771342\pi\)
0.752892 0.658145i \(-0.228658\pi\)
\(758\) −4.60795 + 6.39366i −0.167368 + 0.232228i
\(759\) 2.98917 0.108500
\(760\) 22.8115 + 8.22210i 0.827462 + 0.298247i
\(761\) 25.8142i 0.935765i −0.883791 0.467883i \(-0.845017\pi\)
0.883791 0.467883i \(-0.154983\pi\)
\(762\) −10.4985 + 14.5670i −0.380320 + 0.527706i
\(763\) 0 0
\(764\) −14.7245 + 4.90931i −0.532713 + 0.177613i
\(765\) −0.408923 + 9.44345i −0.0147847 + 0.341429i
\(766\) −10.1160 + 14.0362i −0.365505 + 0.507149i
\(767\) −6.88396 −0.248566
\(768\) 23.4006 + 6.81800i 0.844398 + 0.246023i
\(769\) 17.9643i 0.647810i 0.946090 + 0.323905i \(0.104996\pi\)
−0.946090 + 0.323905i \(0.895004\pi\)
\(770\) 0 0
\(771\) 33.9419i 1.22239i
\(772\) 11.4544 3.81903i 0.412253 0.137450i
\(773\) 4.26473 0.153392 0.0766958 0.997055i \(-0.475563\pi\)
0.0766958 + 0.997055i \(0.475563\pi\)
\(774\) 6.68963 + 4.82125i 0.240454 + 0.173296i
\(775\) −37.8468 3.28386i −1.35950 0.117960i
\(776\) 7.63204 24.4413i 0.273974 0.877392i
\(777\) 0 0
\(778\) 4.57118 + 3.29448i 0.163885 + 0.118113i
\(779\) 5.59112i 0.200323i
\(780\) −4.11191 14.3783i −0.147230 0.514825i
\(781\) 20.8782 0.747081
\(782\) 3.07142 + 2.21359i 0.109834 + 0.0791578i
\(783\) 2.65513i 0.0948866i
\(784\) 0 0
\(785\) −0.225146 + 5.19939i −0.00803580 + 0.185574i
\(786\) −7.15712 + 9.93072i −0.255286 + 0.354217i
\(787\) 37.6885i 1.34345i 0.740801 + 0.671725i \(0.234446\pi\)
−0.740801 + 0.671725i \(0.765554\pi\)
\(788\) 18.4888 6.16438i 0.658636 0.219597i
\(789\) 20.9976i 0.747533i
\(790\) −15.4053 12.1489i −0.548094 0.432238i
\(791\) 0 0
\(792\) 8.36529 + 2.61214i 0.297247 + 0.0928185i
\(793\) 12.5379i 0.445233i
\(794\) −45.6401 32.8931i −1.61971 1.16733i
\(795\) 1.36151 31.4419i 0.0482877 1.11513i
\(796\) −10.9144 32.7355i −0.386851 1.16028i
\(797\) −12.2918 −0.435398 −0.217699 0.976016i \(-0.569855\pi\)
−0.217699 + 0.976016i \(0.569855\pi\)
\(798\) 0 0
\(799\) 27.9302i 0.988099i
\(800\) −28.2201 1.90479i −0.997730 0.0673445i
\(801\) 6.33488i 0.223832i
\(802\) −0.495547 0.357144i −0.0174984 0.0126112i
\(803\) 55.9648i 1.97495i
\(804\) 43.1981 14.4028i 1.52348 0.507946i
\(805\) 0 0
\(806\) −19.1349 13.7906i −0.673997 0.485754i
\(807\) 8.92924 0.314324
\(808\) 21.5935 + 6.74280i 0.759658 + 0.237211i
\(809\) −27.1048 −0.952952 −0.476476 0.879187i \(-0.658086\pi\)
−0.476476 + 0.879187i \(0.658086\pi\)
\(810\) −12.7287 + 16.1404i −0.447239 + 0.567117i
\(811\) −41.9273 −1.47227 −0.736133 0.676837i \(-0.763350\pi\)
−0.736133 + 0.676837i \(0.763350\pi\)
\(812\) 0 0
\(813\) 26.5036i 0.929523i
\(814\) −44.1769 31.8386i −1.54840 1.11594i
\(815\) 0.296674 6.85122i 0.0103920 0.239988i
\(816\) −22.7523 30.3274i −0.796489 1.06167i
\(817\) −32.9043 −1.15117
\(818\) 15.1882 21.0741i 0.531045 0.736840i
\(819\) 0 0
\(820\) −1.79322 6.27041i −0.0626218 0.218972i
\(821\) 36.4251 1.27125 0.635623 0.771999i \(-0.280743\pi\)
0.635623 + 0.771999i \(0.280743\pi\)
\(822\) 25.8397 + 18.6228i 0.901263 + 0.649545i
\(823\) −39.7814 −1.38669 −0.693346 0.720604i \(-0.743864\pi\)
−0.693346 + 0.720604i \(0.743864\pi\)
\(824\) −33.7528 10.5397i −1.17584 0.367166i
\(825\) 34.6067 + 3.00273i 1.20485 + 0.104542i
\(826\) 0 0
\(827\) −1.33392 −0.0463851 −0.0231925 0.999731i \(-0.507383\pi\)
−0.0231925 + 0.999731i \(0.507383\pi\)
\(828\) −0.184916 0.554618i −0.00642628 0.0192743i
\(829\) 13.4098i 0.465743i −0.972508 0.232872i \(-0.925188\pi\)
0.972508 0.232872i \(-0.0748122\pi\)
\(830\) 19.1186 + 15.0773i 0.663617 + 0.523341i
\(831\) −6.10931 −0.211930
\(832\) −14.4407 9.99289i −0.500642 0.346441i
\(833\) 0 0
\(834\) −1.40272 + 1.94632i −0.0485722 + 0.0673954i
\(835\) −29.1379 1.26174i −1.00836 0.0436643i
\(836\) −33.1747 + 11.0608i −1.14737 + 0.382547i
\(837\) 42.5858i 1.47198i
\(838\) 26.7908 + 19.3082i 0.925471 + 0.666992i
\(839\) 14.3910 0.496834 0.248417 0.968653i \(-0.420090\pi\)
0.248417 + 0.968653i \(0.420090\pi\)
\(840\) 0 0
\(841\) −28.7756 −0.992262
\(842\) −41.0274 29.5687i −1.41390 1.01900i
\(843\) 17.8386i 0.614395i
\(844\) 50.8762 16.9627i 1.75123 0.583881i
\(845\) 0.791436 18.2770i 0.0272262 0.628747i
\(846\) −2.52173 + 3.49897i −0.0866988 + 0.120297i
\(847\) 0 0
\(848\) −22.1780 29.5620i −0.761597 1.01516i
\(849\) 26.8169 0.920355
\(850\) 33.3353 + 28.7129i 1.14339 + 0.984844i
\(851\) 3.63272i 0.124528i
\(852\) 4.41162 + 13.2317i 0.151140 + 0.453312i
\(853\) 33.2591 1.13877 0.569385 0.822071i \(-0.307181\pi\)
0.569385 + 0.822071i \(0.307181\pi\)
\(854\) 0 0
\(855\) −0.251975 + 5.81898i −0.00861738 + 0.199005i
\(856\) 12.1963 39.0582i 0.416862 1.33498i
\(857\) 1.72832 0.0590384 0.0295192 0.999564i \(-0.490602\pi\)
0.0295192 + 0.999564i \(0.490602\pi\)
\(858\) 17.4967 + 12.6100i 0.597329 + 0.430498i
\(859\) 17.5725 0.599565 0.299783 0.954008i \(-0.403086\pi\)
0.299783 + 0.954008i \(0.403086\pi\)
\(860\) 36.9019 10.5532i 1.25835 0.359863i
\(861\) 0 0
\(862\) 12.0924 16.7785i 0.411867 0.571478i
\(863\) 41.6307 1.41713 0.708563 0.705648i \(-0.249344\pi\)
0.708563 + 0.705648i \(0.249344\pi\)
\(864\) 0.607309 + 31.7010i 0.0206611 + 1.07849i
\(865\) 1.06993 24.7083i 0.0363786 0.840108i
\(866\) 2.44187 + 1.75987i 0.0829783 + 0.0598029i
\(867\) 33.0773i 1.12337i
\(868\) 0 0
\(869\) 28.2945 0.959825
\(870\) −1.79182 1.41307i −0.0607485 0.0479074i
\(871\) −32.8083 −1.11167
\(872\) 15.4248 49.3973i 0.522349 1.67280i
\(873\) 6.15041 0.208160
\(874\) 1.89259 + 1.36400i 0.0640177 + 0.0461379i
\(875\) 0 0
\(876\) 35.4681 11.8255i 1.19836 0.399547i
\(877\) 44.4208i 1.49998i 0.661448 + 0.749991i \(0.269942\pi\)
−0.661448 + 0.749991i \(0.730058\pi\)
\(878\) −28.3119 20.4045i −0.955480 0.688620i
\(879\) 35.8652i 1.20970i
\(880\) 33.6577 23.0446i 1.13460 0.776834i
\(881\) 25.0886i 0.845257i 0.906303 + 0.422628i \(0.138892\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(882\) 0 0
\(883\) −7.23066 −0.243331 −0.121666 0.992571i \(-0.538824\pi\)
−0.121666 + 0.992571i \(0.538824\pi\)
\(884\) 8.64003 + 25.9140i 0.290596 + 0.871581i
\(885\) 10.6722 + 0.462133i 0.358744 + 0.0155344i
\(886\) −18.5179 13.3460i −0.622121 0.448366i
\(887\) 38.2195i 1.28328i −0.767004 0.641642i \(-0.778253\pi\)
0.767004 0.641642i \(-0.221747\pi\)
\(888\) 10.8433 34.7251i 0.363876 1.16530i
\(889\) 0 0
\(890\) −23.1527 18.2587i −0.776081 0.612033i
\(891\) 29.6448i 0.993137i
\(892\) 33.4031 11.1370i 1.11842 0.372894i
\(893\) 17.2104i 0.575923i
\(894\) 8.66371 12.0212i 0.289758 0.402048i
\(895\) 49.2479 + 2.13255i 1.64618 + 0.0712833i
\(896\) 0 0
\(897\) 1.43878i 0.0480394i
\(898\) 32.7166 + 23.5791i 1.09177 + 0.786843i
\(899\) −3.59912 −0.120037
\(900\) −1.58371 6.60677i −0.0527903 0.220226i
\(901\) 57.4859i 1.91513i
\(902\) 7.63038 + 5.49925i 0.254064 + 0.183105i
\(903\) 0 0
\(904\) 3.06671 + 0.957611i 0.101997 + 0.0318497i
\(905\) 5.58413 + 0.241806i 0.185623 + 0.00803790i
\(906\) −37.1185 26.7515i −1.23318 0.888760i
\(907\) −18.4940 −0.614085 −0.307042 0.951696i \(-0.599339\pi\)
−0.307042 + 0.951696i \(0.599339\pi\)
\(908\) −16.6802 + 5.56137i −0.553551 + 0.184561i
\(909\) 5.43380i 0.180228i
\(910\) 0 0
\(911\) 14.7738i 0.489477i −0.969589 0.244739i \(-0.921298\pi\)
0.969589 0.244739i \(-0.0787022\pi\)
\(912\) −14.0198 18.6875i −0.464242 0.618806i
\(913\) −35.1148 −1.16213
\(914\) 19.3343 26.8270i 0.639523 0.887357i
\(915\) 0.841690 19.4375i 0.0278254 0.642585i
\(916\) −32.4135 + 10.8071i −1.07097 + 0.357075i
\(917\) 0 0
\(918\) 28.8365 40.0115i 0.951746 1.32058i
\(919\) 28.1692i 0.929217i −0.885516 0.464609i \(-0.846195\pi\)
0.885516 0.464609i \(-0.153805\pi\)
\(920\) −2.55999 0.922714i −0.0844005 0.0304210i
\(921\) −16.8152 −0.554081
\(922\) −8.20704 + 11.3875i −0.270285 + 0.375028i
\(923\) 10.0493i 0.330778i
\(924\) 0 0
\(925\) −3.64921 + 42.0574i −0.119985 + 1.38284i
\(926\) −19.3764 13.9647i −0.636749 0.458909i
\(927\) 8.49356i 0.278965i
\(928\) −2.67919 + 0.0513265i −0.0879489 + 0.00168487i
\(929\) 10.6309i 0.348787i 0.984676 + 0.174394i \(0.0557965\pi\)
−0.984676 + 0.174394i \(0.944203\pi\)
\(930\) 28.7391 + 22.6642i 0.942393 + 0.743189i
\(931\) 0 0
\(932\) 26.9084 8.97159i 0.881414 0.293874i
\(933\) 33.0057i 1.08056i
\(934\) 25.4321 35.2878i 0.832163 1.15465i
\(935\) −63.3910 2.74498i −2.07311 0.0897704i
\(936\) 1.25731 4.02647i 0.0410963 0.131609i
\(937\) 58.4711 1.91017 0.955084 0.296334i \(-0.0957641\pi\)
0.955084 + 0.296334i \(0.0957641\pi\)
\(938\) 0 0
\(939\) 5.82483i 0.190086i
\(940\) 5.51981 + 19.3013i 0.180036 + 0.629540i
\(941\) 44.8301i 1.46142i −0.682688 0.730710i \(-0.739189\pi\)
0.682688 0.730710i \(-0.260811\pi\)
\(942\) 2.93163 4.06773i 0.0955178 0.132534i
\(943\) 0.627455i 0.0204328i
\(944\) 10.0342 7.52783i 0.326584 0.245010i
\(945\) 0 0
\(946\) −32.3636 + 44.9055i −1.05223 + 1.46000i
\(947\) −14.4192 −0.468560 −0.234280 0.972169i \(-0.575273\pi\)
−0.234280 + 0.972169i \(0.575273\pi\)
\(948\) 5.97870 + 17.9319i 0.194179 + 0.582400i
\(949\) −26.9376 −0.874430
\(950\) 20.5410 + 17.6927i 0.666437 + 0.574026i
\(951\) 13.3124 0.431683
\(952\) 0 0
\(953\) 3.56629i 0.115523i 0.998330 + 0.0577617i \(0.0183964\pi\)
−0.998330 + 0.0577617i \(0.981604\pi\)
\(954\) 5.19022 7.20158i 0.168039 0.233160i
\(955\) −17.3371 0.750737i −0.561016 0.0242933i
\(956\) −25.9428 + 8.64962i −0.839049 + 0.279749i
\(957\) 3.29100 0.106383
\(958\) −18.0739 13.0259i −0.583941 0.420849i
\(959\) 0 0
\(960\) 21.7167 + 16.4615i 0.700903 + 0.531291i
\(961\) 26.7265 0.862144
\(962\) −15.3249 + 21.2637i −0.494094 + 0.685570i
\(963\) 9.82861 0.316723
\(964\) −6.37380 + 2.12510i −0.205286 + 0.0684449i
\(965\) 13.4868 + 0.584011i 0.434156 + 0.0188000i
\(966\) 0 0
\(967\) −17.8167 −0.572946 −0.286473 0.958088i \(-0.592483\pi\)
−0.286473 + 0.958088i \(0.592483\pi\)
\(968\) −8.26088 + 26.4551i −0.265515 + 0.850301i
\(969\) 36.3395i 1.16739i
\(970\) 17.7270 22.4785i 0.569180 0.721742i
\(971\) 26.4818 0.849842 0.424921 0.905231i \(-0.360302\pi\)
0.424921 + 0.905231i \(0.360302\pi\)
\(972\) −13.1160 + 4.37302i −0.420694 + 0.140265i
\(973\) 0 0
\(974\) −15.4941 11.1667i −0.496463 0.357803i
\(975\) 1.44531 16.6573i 0.0462869 0.533460i
\(976\) −13.7106 18.2754i −0.438864 0.584980i
\(977\) 9.22921i 0.295269i 0.989042 + 0.147634i \(0.0471659\pi\)
−0.989042 + 0.147634i \(0.952834\pi\)
\(978\) −3.86300 + 5.36003i −0.123525 + 0.171395i
\(979\) 42.5241 1.35908
\(980\) 0 0
\(981\) 12.4303 0.396870
\(982\) −3.20052 + 4.44081i −0.102133 + 0.141712i
\(983\) 46.1255i 1.47117i 0.677430 + 0.735587i \(0.263094\pi\)
−0.677430 + 0.735587i \(0.736906\pi\)
\(984\) −1.87288 + 5.99782i −0.0597052 + 0.191204i
\(985\) 21.7694 + 0.942664i 0.693629 + 0.0300358i
\(986\) 3.38156 + 2.43711i 0.107691 + 0.0776133i
\(987\) 0 0
\(988\) 5.32392 + 15.9680i 0.169376 + 0.508009i
\(989\) 3.69263 0.117419
\(990\) 7.69351 + 6.06725i 0.244516 + 0.192830i
\(991\) 8.81233i 0.279933i 0.990156 + 0.139966i \(0.0446995\pi\)
−0.990156 + 0.139966i \(0.955301\pi\)
\(992\) 42.9717 0.823228i 1.36435 0.0261375i
\(993\) −14.7483 −0.468022
\(994\) 0 0
\(995\) 1.66904 38.5439i 0.0529122 1.22193i
\(996\) −7.41984 22.2543i −0.235107 0.705154i
\(997\) 33.9240 1.07438 0.537192 0.843460i \(-0.319485\pi\)
0.537192 + 0.843460i \(0.319485\pi\)
\(998\) 20.1502 27.9590i 0.637843 0.885026i
\(999\) 47.3236 1.49725
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.c.e.979.14 yes 48
4.3 odd 2 inner 980.2.c.e.979.33 yes 48
5.4 even 2 inner 980.2.c.e.979.35 yes 48
7.2 even 3 980.2.s.g.619.21 96
7.3 odd 6 980.2.s.g.19.43 96
7.4 even 3 980.2.s.g.19.44 96
7.5 odd 6 980.2.s.g.619.22 96
7.6 odd 2 inner 980.2.c.e.979.13 48
20.19 odd 2 inner 980.2.c.e.979.16 yes 48
28.3 even 6 980.2.s.g.19.28 96
28.11 odd 6 980.2.s.g.19.27 96
28.19 even 6 980.2.s.g.619.5 96
28.23 odd 6 980.2.s.g.619.6 96
28.27 even 2 inner 980.2.c.e.979.34 yes 48
35.4 even 6 980.2.s.g.19.5 96
35.9 even 6 980.2.s.g.619.28 96
35.19 odd 6 980.2.s.g.619.27 96
35.24 odd 6 980.2.s.g.19.6 96
35.34 odd 2 inner 980.2.c.e.979.36 yes 48
140.19 even 6 980.2.s.g.619.44 96
140.39 odd 6 980.2.s.g.19.22 96
140.59 even 6 980.2.s.g.19.21 96
140.79 odd 6 980.2.s.g.619.43 96
140.139 even 2 inner 980.2.c.e.979.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.c.e.979.13 48 7.6 odd 2 inner
980.2.c.e.979.14 yes 48 1.1 even 1 trivial
980.2.c.e.979.15 yes 48 140.139 even 2 inner
980.2.c.e.979.16 yes 48 20.19 odd 2 inner
980.2.c.e.979.33 yes 48 4.3 odd 2 inner
980.2.c.e.979.34 yes 48 28.27 even 2 inner
980.2.c.e.979.35 yes 48 5.4 even 2 inner
980.2.c.e.979.36 yes 48 35.34 odd 2 inner
980.2.s.g.19.5 96 35.4 even 6
980.2.s.g.19.6 96 35.24 odd 6
980.2.s.g.19.21 96 140.59 even 6
980.2.s.g.19.22 96 140.39 odd 6
980.2.s.g.19.27 96 28.11 odd 6
980.2.s.g.19.28 96 28.3 even 6
980.2.s.g.19.43 96 7.3 odd 6
980.2.s.g.19.44 96 7.4 even 3
980.2.s.g.619.5 96 28.19 even 6
980.2.s.g.619.6 96 28.23 odd 6
980.2.s.g.619.21 96 7.2 even 3
980.2.s.g.619.22 96 7.5 odd 6
980.2.s.g.619.27 96 35.19 odd 6
980.2.s.g.619.28 96 35.9 even 6
980.2.s.g.619.43 96 140.79 odd 6
980.2.s.g.619.44 96 140.19 even 6