Properties

Label 980.2.s.g.19.27
Level $980$
Weight $2$
Character 980.19
Analytic conductor $7.825$
Analytic rank $0$
Dimension $96$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(19,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.27
Character \(\chi\) \(=\) 980.19
Dual form 980.2.s.g.619.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.142436 + 1.40702i) q^{2} +(-1.31926 + 0.761677i) q^{3} +(-1.95942 + 0.400822i) q^{4} +(-1.88631 - 1.20076i) q^{5} +(-1.25961 - 1.74774i) q^{6} +(-0.843059 - 2.69986i) q^{8} +(-0.339697 + 0.588372i) q^{9} +(1.42082 - 2.82511i) q^{10} +(-3.94956 + 2.28028i) q^{11} +(2.27970 - 2.02124i) q^{12} +2.19514 q^{13} +(3.40313 + 0.147364i) q^{15} +(3.67868 - 1.57076i) q^{16} +(-3.11101 - 5.38842i) q^{17} +(-0.876237 - 0.394155i) q^{18} +(1.91698 - 3.32031i) q^{19} +(4.17737 + 1.59673i) q^{20} +(-3.77097 - 5.23233i) q^{22} +(-0.215130 + 0.372617i) q^{23} +(3.16864 + 2.91969i) q^{24} +(2.11633 + 4.53003i) q^{25} +(0.312667 + 3.08861i) q^{26} -5.60502i q^{27} -0.473706 q^{29} +(0.277386 + 4.80928i) q^{30} +(3.79890 + 6.57988i) q^{31} +(2.73407 + 4.95226i) q^{32} +(3.47367 - 6.01658i) q^{33} +(7.13851 - 5.14477i) q^{34} +(0.429777 - 1.28903i) q^{36} +(7.31192 + 4.22154i) q^{37} +(4.94479 + 2.22430i) q^{38} +(-2.89596 + 1.67199i) q^{39} +(-1.65162 + 6.10509i) q^{40} +1.45831i q^{41} +8.58232 q^{43} +(6.82488 - 6.05111i) q^{44} +(1.34727 - 0.701957i) q^{45} +(-0.554922 - 0.249619i) q^{46} +(-3.88753 - 2.24446i) q^{47} +(-3.65674 + 4.87421i) q^{48} +(-6.07240 + 3.62297i) q^{50} +(8.20848 + 4.73917i) q^{51} +(-4.30120 + 0.879860i) q^{52} +(8.00130 - 4.61955i) q^{53} +(7.88639 - 0.798358i) q^{54} +(10.1882 + 0.441172i) q^{55} +5.84048i q^{57} +(-0.0674729 - 0.666515i) q^{58} +(-1.56800 - 2.71586i) q^{59} +(-6.72725 + 1.07530i) q^{60} +(-4.94644 - 2.85583i) q^{61} +(-8.71694 + 6.28235i) q^{62} +(-6.57850 + 4.55228i) q^{64} +(-4.14071 - 2.63584i) q^{65} +(8.96024 + 4.03056i) q^{66} +(-7.47296 - 12.9435i) q^{67} +(8.25558 + 9.31125i) q^{68} -0.655439i q^{69} +4.57799i q^{71} +(1.87491 + 0.421102i) q^{72} +(6.13574 + 10.6274i) q^{73} +(-4.89832 + 10.8893i) q^{74} +(-6.24242 - 4.36433i) q^{75} +(-2.42532 + 7.27425i) q^{76} +(-2.76501 - 3.83653i) q^{78} +(-5.37297 - 3.10208i) q^{79} +(-8.82525 - 1.45429i) q^{80} +(3.25012 + 5.62938i) q^{81} +(-2.05188 + 0.207717i) q^{82} -7.69966i q^{83} +(-0.601895 + 13.8998i) q^{85} +(1.22243 + 12.0755i) q^{86} +(0.624943 - 0.360811i) q^{87} +(9.48615 + 8.74086i) q^{88} +(8.07509 + 4.66216i) q^{89} +(1.17957 + 1.79565i) q^{90} +(0.272178 - 0.816343i) q^{92} +(-10.0235 - 5.78706i) q^{93} +(2.60429 - 5.78953i) q^{94} +(-7.60292 + 3.96129i) q^{95} +(-7.37898 - 4.45085i) q^{96} +9.05280 q^{97} -3.09841i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 16 q^{4} + 64 q^{9} - 16 q^{16} + 16 q^{25} - 96 q^{29} + 8 q^{30} + 352 q^{36} + 48 q^{44} + 32 q^{46} + 64 q^{50} - 24 q^{60} - 160 q^{64} + 16 q^{65} + 112 q^{74} + 48 q^{81} - 128 q^{85} + 112 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.142436 + 1.40702i 0.100718 + 0.994915i
\(3\) −1.31926 + 0.761677i −0.761677 + 0.439754i −0.829898 0.557916i \(-0.811601\pi\)
0.0682206 + 0.997670i \(0.478268\pi\)
\(4\) −1.95942 + 0.400822i −0.979712 + 0.200411i
\(5\) −1.88631 1.20076i −0.843584 0.536998i
\(6\) −1.25961 1.74774i −0.514233 0.713513i
\(7\) 0 0
\(8\) −0.843059 2.69986i −0.298066 0.954545i
\(9\) −0.339697 + 0.588372i −0.113232 + 0.196124i
\(10\) 1.42082 2.82511i 0.449303 0.893379i
\(11\) −3.94956 + 2.28028i −1.19084 + 0.687530i −0.958497 0.285104i \(-0.907972\pi\)
−0.232341 + 0.972634i \(0.574638\pi\)
\(12\) 2.27970 2.02124i 0.658092 0.583481i
\(13\) 2.19514 0.608822 0.304411 0.952541i \(-0.401540\pi\)
0.304411 + 0.952541i \(0.401540\pi\)
\(14\) 0 0
\(15\) 3.40313 + 0.147364i 0.878685 + 0.0380491i
\(16\) 3.67868 1.57076i 0.919671 0.392690i
\(17\) −3.11101 5.38842i −0.754530 1.30688i −0.945607 0.325310i \(-0.894531\pi\)
0.191077 0.981575i \(-0.438802\pi\)
\(18\) −0.876237 0.394155i −0.206531 0.0929033i
\(19\) 1.91698 3.32031i 0.439785 0.761730i −0.557887 0.829917i \(-0.688388\pi\)
0.997673 + 0.0681862i \(0.0217212\pi\)
\(20\) 4.17737 + 1.59673i 0.934089 + 0.357040i
\(21\) 0 0
\(22\) −3.77097 5.23233i −0.803973 1.11554i
\(23\) −0.215130 + 0.372617i −0.0448578 + 0.0776959i −0.887583 0.460649i \(-0.847617\pi\)
0.842725 + 0.538345i \(0.180950\pi\)
\(24\) 3.16864 + 2.91969i 0.646796 + 0.595979i
\(25\) 2.11633 + 4.53003i 0.423267 + 0.906005i
\(26\) 0.312667 + 3.08861i 0.0613191 + 0.605726i
\(27\) 5.60502i 1.07869i
\(28\) 0 0
\(29\) −0.473706 −0.0879650 −0.0439825 0.999032i \(-0.514005\pi\)
−0.0439825 + 0.999032i \(0.514005\pi\)
\(30\) 0.277386 + 4.80928i 0.0506435 + 0.878049i
\(31\) 3.79890 + 6.57988i 0.682302 + 1.18178i 0.974277 + 0.225356i \(0.0723544\pi\)
−0.291975 + 0.956426i \(0.594312\pi\)
\(32\) 2.73407 + 4.95226i 0.483320 + 0.875443i
\(33\) 3.47367 6.01658i 0.604689 1.04735i
\(34\) 7.13851 5.14477i 1.22424 0.882320i
\(35\) 0 0
\(36\) 0.429777 1.28903i 0.0716295 0.214838i
\(37\) 7.31192 + 4.22154i 1.20207 + 0.694017i 0.961016 0.276494i \(-0.0891726\pi\)
0.241057 + 0.970511i \(0.422506\pi\)
\(38\) 4.94479 + 2.22430i 0.802151 + 0.360829i
\(39\) −2.89596 + 1.67199i −0.463725 + 0.267732i
\(40\) −1.65162 + 6.10509i −0.261145 + 0.965300i
\(41\) 1.45831i 0.227750i 0.993495 + 0.113875i \(0.0363264\pi\)
−0.993495 + 0.113875i \(0.963674\pi\)
\(42\) 0 0
\(43\) 8.58232 1.30879 0.654396 0.756152i \(-0.272923\pi\)
0.654396 + 0.756152i \(0.272923\pi\)
\(44\) 6.82488 6.05111i 1.02889 0.912239i
\(45\) 1.34727 0.701957i 0.200839 0.104641i
\(46\) −0.554922 0.249619i −0.0818188 0.0368043i
\(47\) −3.88753 2.24446i −0.567054 0.327389i 0.188918 0.981993i \(-0.439502\pi\)
−0.755972 + 0.654604i \(0.772835\pi\)
\(48\) −3.65674 + 4.87421i −0.527805 + 0.703532i
\(49\) 0 0
\(50\) −6.07240 + 3.62297i −0.858768 + 0.512365i
\(51\) 8.20848 + 4.73917i 1.14942 + 0.663616i
\(52\) −4.30120 + 0.879860i −0.596470 + 0.122015i
\(53\) 8.00130 4.61955i 1.09906 0.634544i 0.163088 0.986611i \(-0.447854\pi\)
0.935975 + 0.352067i \(0.114521\pi\)
\(54\) 7.88639 0.798358i 1.07320 0.108643i
\(55\) 10.1882 + 0.441172i 1.37377 + 0.0594876i
\(56\) 0 0
\(57\) 5.84048i 0.773590i
\(58\) −0.0674729 0.666515i −0.00885963 0.0875177i
\(59\) −1.56800 2.71586i −0.204137 0.353575i 0.745721 0.666259i \(-0.232105\pi\)
−0.949857 + 0.312684i \(0.898772\pi\)
\(60\) −6.72725 + 1.07530i −0.868484 + 0.138821i
\(61\) −4.94644 2.85583i −0.633326 0.365651i 0.148713 0.988880i \(-0.452487\pi\)
−0.782039 + 0.623229i \(0.785820\pi\)
\(62\) −8.71694 + 6.28235i −1.10705 + 0.797859i
\(63\) 0 0
\(64\) −6.57850 + 4.55228i −0.822313 + 0.569035i
\(65\) −4.14071 2.63584i −0.513592 0.326936i
\(66\) 8.96024 + 4.03056i 1.10293 + 0.496127i
\(67\) −7.47296 12.9435i −0.912967 1.58131i −0.809850 0.586636i \(-0.800452\pi\)
−0.103117 0.994669i \(-0.532882\pi\)
\(68\) 8.25558 + 9.31125i 1.00114 + 1.12915i
\(69\) 0.655439i 0.0789056i
\(70\) 0 0
\(71\) 4.57799i 0.543308i 0.962395 + 0.271654i \(0.0875706\pi\)
−0.962395 + 0.271654i \(0.912429\pi\)
\(72\) 1.87491 + 0.421102i 0.220960 + 0.0496273i
\(73\) 6.13574 + 10.6274i 0.718134 + 1.24384i 0.961738 + 0.273969i \(0.0883367\pi\)
−0.243605 + 0.969875i \(0.578330\pi\)
\(74\) −4.89832 + 10.8893i −0.569418 + 1.26586i
\(75\) −6.24242 4.36433i −0.720812 0.503950i
\(76\) −2.42532 + 7.27425i −0.278204 + 0.834414i
\(77\) 0 0
\(78\) −2.76501 3.83653i −0.313076 0.434402i
\(79\) −5.37297 3.10208i −0.604506 0.349012i 0.166306 0.986074i \(-0.446816\pi\)
−0.770812 + 0.637062i \(0.780149\pi\)
\(80\) −8.82525 1.45429i −0.986693 0.162594i
\(81\) 3.25012 + 5.62938i 0.361125 + 0.625486i
\(82\) −2.05188 + 0.207717i −0.226592 + 0.0229385i
\(83\) 7.69966i 0.845148i −0.906329 0.422574i \(-0.861127\pi\)
0.906329 0.422574i \(-0.138873\pi\)
\(84\) 0 0
\(85\) −0.601895 + 13.8998i −0.0652847 + 1.50765i
\(86\) 1.22243 + 12.0755i 0.131818 + 1.30214i
\(87\) 0.624943 0.360811i 0.0670009 0.0386830i
\(88\) 9.48615 + 8.74086i 1.01123 + 0.931778i
\(89\) 8.07509 + 4.66216i 0.855958 + 0.494188i 0.862657 0.505790i \(-0.168799\pi\)
−0.00669845 + 0.999978i \(0.502132\pi\)
\(90\) 1.17957 + 1.79565i 0.124337 + 0.189278i
\(91\) 0 0
\(92\) 0.272178 0.816343i 0.0283766 0.0851096i
\(93\) −10.0235 5.78706i −1.03939 0.600091i
\(94\) 2.60429 5.78953i 0.268612 0.597144i
\(95\) −7.60292 + 3.96129i −0.780043 + 0.406420i
\(96\) −7.37898 4.45085i −0.753114 0.454263i
\(97\) 9.05280 0.919172 0.459586 0.888133i \(-0.347998\pi\)
0.459586 + 0.888133i \(0.347998\pi\)
\(98\) 0 0
\(99\) 3.09841i 0.311402i
\(100\) −5.96253 8.02797i −0.596253 0.802797i
\(101\) 6.92648 3.99901i 0.689211 0.397916i −0.114105 0.993469i \(-0.536400\pi\)
0.803316 + 0.595552i \(0.203067\pi\)
\(102\) −5.49893 + 12.2245i −0.544475 + 1.21041i
\(103\) −10.8268 6.25084i −1.06679 0.615914i −0.139490 0.990223i \(-0.544546\pi\)
−0.927304 + 0.374310i \(0.877880\pi\)
\(104\) −1.85063 5.92657i −0.181469 0.581148i
\(105\) 0 0
\(106\) 7.63949 + 10.6000i 0.742013 + 1.02956i
\(107\) 7.23338 12.5286i 0.699277 1.21118i −0.269441 0.963017i \(-0.586839\pi\)
0.968718 0.248166i \(-0.0798279\pi\)
\(108\) 2.24662 + 10.9826i 0.216181 + 1.05680i
\(109\) −9.14811 15.8450i −0.876230 1.51768i −0.855446 0.517892i \(-0.826717\pi\)
−0.0207841 0.999784i \(-0.506616\pi\)
\(110\) 0.830427 + 14.3978i 0.0791781 + 1.37278i
\(111\) −12.8618 −1.22079
\(112\) 0 0
\(113\) 1.13588i 0.106854i 0.998572 + 0.0534272i \(0.0170145\pi\)
−0.998572 + 0.0534272i \(0.982986\pi\)
\(114\) −8.21768 + 0.831896i −0.769656 + 0.0779142i
\(115\) 0.853227 0.444550i 0.0795638 0.0414545i
\(116\) 0.928191 0.189872i 0.0861804 0.0176292i
\(117\) −0.745681 + 1.29156i −0.0689382 + 0.119404i
\(118\) 3.59794 2.59305i 0.331217 0.238710i
\(119\) 0 0
\(120\) −2.47118 9.31223i −0.225587 0.850086i
\(121\) 4.89935 8.48593i 0.445396 0.771448i
\(122\) 3.31366 7.36652i 0.300005 0.666934i
\(123\) −1.11076 1.92390i −0.100154 0.173472i
\(124\) −10.0810 11.3701i −0.905302 1.02106i
\(125\) 1.44742 11.0863i 0.129462 0.991584i
\(126\) 0 0
\(127\) 8.33473 0.739588 0.369794 0.929114i \(-0.379428\pi\)
0.369794 + 0.929114i \(0.379428\pi\)
\(128\) −7.34218 8.60769i −0.648963 0.760820i
\(129\) −11.3223 + 6.53695i −0.996876 + 0.575547i
\(130\) 3.11890 6.20151i 0.273546 0.543909i
\(131\) −2.84101 + 4.92078i −0.248220 + 0.429930i −0.963032 0.269387i \(-0.913179\pi\)
0.714812 + 0.699317i \(0.246512\pi\)
\(132\) −4.39482 + 13.1814i −0.382520 + 1.14729i
\(133\) 0 0
\(134\) 17.1474 12.3583i 1.48131 1.06759i
\(135\) −6.73030 + 10.5728i −0.579252 + 0.909962i
\(136\) −11.9252 + 12.9421i −1.02258 + 1.10977i
\(137\) 12.8039 7.39231i 1.09391 0.631567i 0.159293 0.987231i \(-0.449079\pi\)
0.934614 + 0.355664i \(0.115745\pi\)
\(138\) 0.922218 0.0933583i 0.0785044 0.00794719i
\(139\) 1.11362 0.0944558 0.0472279 0.998884i \(-0.484961\pi\)
0.0472279 + 0.998884i \(0.484961\pi\)
\(140\) 0 0
\(141\) 6.83823 0.575883
\(142\) −6.44134 + 0.652073i −0.540545 + 0.0547207i
\(143\) −8.66983 + 5.00553i −0.725007 + 0.418583i
\(144\) −0.325445 + 2.69802i −0.0271204 + 0.224835i
\(145\) 0.893557 + 0.568809i 0.0742058 + 0.0472370i
\(146\) −14.0790 + 10.1468i −1.16519 + 0.839759i
\(147\) 0 0
\(148\) −16.0192 5.34101i −1.31677 0.439028i
\(149\) −3.43905 + 5.95661i −0.281738 + 0.487985i −0.971813 0.235753i \(-0.924244\pi\)
0.690075 + 0.723738i \(0.257578\pi\)
\(150\) 5.25157 9.40486i 0.428789 0.767904i
\(151\) 18.3926 10.6190i 1.49677 0.864161i 0.496778 0.867878i \(-0.334516\pi\)
0.999993 + 0.00371622i \(0.00118291\pi\)
\(152\) −10.5805 2.37637i −0.858191 0.192749i
\(153\) 4.22720 0.341748
\(154\) 0 0
\(155\) 0.734983 16.9733i 0.0590352 1.36333i
\(156\) 5.00425 4.43689i 0.400661 0.355236i
\(157\) −1.16371 2.01560i −0.0928741 0.160863i 0.815845 0.578270i \(-0.196272\pi\)
−0.908719 + 0.417408i \(0.862939\pi\)
\(158\) 3.59940 8.00174i 0.286353 0.636584i
\(159\) −7.03721 + 12.1888i −0.558087 + 0.966636i
\(160\) 0.789176 12.6245i 0.0623898 0.998052i
\(161\) 0 0
\(162\) −7.45773 + 5.37482i −0.585934 + 0.422286i
\(163\) −1.53342 + 2.65595i −0.120106 + 0.208030i −0.919809 0.392365i \(-0.871657\pi\)
0.799703 + 0.600396i \(0.204990\pi\)
\(164\) −0.584525 2.85746i −0.0456437 0.223130i
\(165\) −13.7769 + 7.17808i −1.07253 + 0.558812i
\(166\) 10.8336 1.09671i 0.840850 0.0851213i
\(167\) 13.0431i 1.00930i −0.863323 0.504652i \(-0.831621\pi\)
0.863323 0.504652i \(-0.168379\pi\)
\(168\) 0 0
\(169\) −8.18137 −0.629336
\(170\) −19.6431 + 1.13296i −1.50656 + 0.0868941i
\(171\) 1.30238 + 2.25579i 0.0995957 + 0.172505i
\(172\) −16.8164 + 3.43998i −1.28224 + 0.262296i
\(173\) 5.53012 9.57846i 0.420448 0.728237i −0.575536 0.817777i \(-0.695206\pi\)
0.995983 + 0.0895401i \(0.0285397\pi\)
\(174\) 0.596684 + 0.827916i 0.0452345 + 0.0627642i
\(175\) 0 0
\(176\) −10.9474 + 14.5922i −0.825192 + 1.09993i
\(177\) 4.13722 + 2.38862i 0.310972 + 0.179540i
\(178\) −5.40957 + 12.0259i −0.405465 + 0.901379i
\(179\) 19.0915 11.0225i 1.42697 0.823860i 0.430087 0.902788i \(-0.358483\pi\)
0.996880 + 0.0789277i \(0.0251496\pi\)
\(180\) −2.35851 + 1.91545i −0.175793 + 0.142769i
\(181\) 2.49964i 0.185797i −0.995676 0.0928984i \(-0.970387\pi\)
0.995676 0.0928984i \(-0.0296132\pi\)
\(182\) 0 0
\(183\) 8.70087 0.643187
\(184\) 1.18738 + 0.266684i 0.0875349 + 0.0196602i
\(185\) −8.72348 16.7430i −0.641363 1.23097i
\(186\) 6.71482 14.9276i 0.492355 1.09454i
\(187\) 24.5742 + 14.1879i 1.79705 + 1.03752i
\(188\) 8.51694 + 2.83965i 0.621162 + 0.207103i
\(189\) 0 0
\(190\) −6.65655 10.1332i −0.482917 0.735143i
\(191\) 6.72093 + 3.88033i 0.486309 + 0.280771i 0.723042 0.690804i \(-0.242743\pi\)
−0.236733 + 0.971575i \(0.576077\pi\)
\(192\) 5.21141 11.0164i 0.376101 0.795037i
\(193\) −5.22832 + 3.01857i −0.376342 + 0.217281i −0.676226 0.736695i \(-0.736386\pi\)
0.299883 + 0.953976i \(0.403052\pi\)
\(194\) 1.28945 + 12.7375i 0.0925769 + 0.914498i
\(195\) 7.47035 + 0.323483i 0.534963 + 0.0231651i
\(196\) 0 0
\(197\) 9.74467i 0.694279i −0.937813 0.347140i \(-0.887153\pi\)
0.937813 0.347140i \(-0.112847\pi\)
\(198\) 4.35954 0.441326i 0.309819 0.0313637i
\(199\) −8.62676 14.9420i −0.611535 1.05921i −0.990982 0.133996i \(-0.957219\pi\)
0.379447 0.925214i \(-0.376114\pi\)
\(200\) 10.4462 9.53289i 0.738661 0.674077i
\(201\) 19.7176 + 11.3840i 1.39077 + 0.802963i
\(202\) 6.61328 + 9.17612i 0.465309 + 0.645629i
\(203\) 0 0
\(204\) −17.9834 5.99590i −1.25909 0.419797i
\(205\) 1.75109 2.75083i 0.122301 0.192127i
\(206\) 7.25295 16.1239i 0.505337 1.12340i
\(207\) −0.146158 0.253153i −0.0101587 0.0175954i
\(208\) 8.07521 3.44804i 0.559915 0.239078i
\(209\) 17.4850i 1.20946i
\(210\) 0 0
\(211\) 26.8147i 1.84600i 0.384796 + 0.923002i \(0.374272\pi\)
−0.384796 + 0.923002i \(0.625728\pi\)
\(212\) −13.8263 + 12.2588i −0.949596 + 0.841935i
\(213\) −3.48695 6.03958i −0.238922 0.413825i
\(214\) 18.6583 + 8.39300i 1.27545 + 0.573734i
\(215\) −16.1889 10.3053i −1.10407 0.702818i
\(216\) −15.1328 + 4.72536i −1.02965 + 0.321520i
\(217\) 0 0
\(218\) 20.9912 15.1285i 1.42171 1.02463i
\(219\) −16.1893 9.34690i −1.09397 0.631605i
\(220\) −20.1398 + 3.21920i −1.35782 + 0.217039i
\(221\) −6.82909 11.8283i −0.459374 0.795660i
\(222\) −1.83199 18.0968i −0.122955 1.21458i
\(223\) 17.6054i 1.17894i 0.807789 + 0.589472i \(0.200664\pi\)
−0.807789 + 0.589472i \(0.799336\pi\)
\(224\) 0 0
\(225\) −3.38425 0.293642i −0.225617 0.0195762i
\(226\) −1.59820 + 0.161790i −0.106311 + 0.0107621i
\(227\) −7.61360 + 4.39572i −0.505333 + 0.291754i −0.730913 0.682471i \(-0.760905\pi\)
0.225580 + 0.974225i \(0.427572\pi\)
\(228\) −2.34099 11.4440i −0.155036 0.757895i
\(229\) −14.7950 8.54191i −0.977683 0.564466i −0.0761132 0.997099i \(-0.524251\pi\)
−0.901570 + 0.432634i \(0.857584\pi\)
\(230\) 0.747022 + 1.13719i 0.0492572 + 0.0749840i
\(231\) 0 0
\(232\) 0.399362 + 1.27894i 0.0262194 + 0.0839666i
\(233\) 12.2822 + 7.09116i 0.804636 + 0.464557i 0.845090 0.534624i \(-0.179547\pi\)
−0.0404533 + 0.999181i \(0.512880\pi\)
\(234\) −1.92346 0.865225i −0.125741 0.0565615i
\(235\) 4.63801 + 8.90176i 0.302550 + 0.580686i
\(236\) 4.16096 + 4.69303i 0.270855 + 0.305490i
\(237\) 9.45115 0.613918
\(238\) 0 0
\(239\) 13.6734i 0.884456i −0.896903 0.442228i \(-0.854188\pi\)
0.896903 0.442228i \(-0.145812\pi\)
\(240\) 12.7505 4.80340i 0.823043 0.310058i
\(241\) 2.90930 1.67968i 0.187404 0.108198i −0.403362 0.915040i \(-0.632159\pi\)
0.590767 + 0.806842i \(0.298825\pi\)
\(242\) 12.6377 + 5.68479i 0.812384 + 0.365432i
\(243\) 5.98673 + 3.45644i 0.384049 + 0.221731i
\(244\) 10.8368 + 3.61313i 0.693758 + 0.231307i
\(245\) 0 0
\(246\) 2.54876 1.83690i 0.162503 0.117117i
\(247\) 4.20803 7.28853i 0.267751 0.463758i
\(248\) 14.5621 15.8037i 0.924693 1.00354i
\(249\) 5.86465 + 10.1579i 0.371657 + 0.643729i
\(250\) 15.8048 + 0.457473i 0.999581 + 0.0289331i
\(251\) −26.2007 −1.65377 −0.826887 0.562368i \(-0.809890\pi\)
−0.826887 + 0.562368i \(0.809890\pi\)
\(252\) 0 0
\(253\) 1.96223i 0.123364i
\(254\) 1.18717 + 11.7272i 0.0744896 + 0.735827i
\(255\) −9.79312 18.7960i −0.613269 1.17705i
\(256\) 11.0654 11.5567i 0.691589 0.722291i
\(257\) −11.1405 + 19.2959i −0.694926 + 1.20365i 0.275279 + 0.961364i \(0.411230\pi\)
−0.970205 + 0.242284i \(0.922104\pi\)
\(258\) −10.8104 14.9997i −0.673023 0.933839i
\(259\) 0 0
\(260\) 9.16991 + 3.50504i 0.568694 + 0.217373i
\(261\) 0.160916 0.278715i 0.00996047 0.0172520i
\(262\) −7.32831 3.29647i −0.452744 0.203657i
\(263\) 6.89188 + 11.9371i 0.424972 + 0.736073i 0.996418 0.0845669i \(-0.0269507\pi\)
−0.571446 + 0.820640i \(0.693617\pi\)
\(264\) −19.1724 4.30611i −1.17998 0.265023i
\(265\) −20.6399 0.893757i −1.26790 0.0549031i
\(266\) 0 0
\(267\) −14.2042 −0.869285
\(268\) 19.8308 + 22.3666i 1.21136 + 1.36626i
\(269\) −5.07627 + 2.93078i −0.309506 + 0.178693i −0.646705 0.762740i \(-0.723854\pi\)
0.337200 + 0.941433i \(0.390520\pi\)
\(270\) −15.8348 7.96373i −0.963676 0.484657i
\(271\) 8.69911 15.0673i 0.528433 0.915273i −0.471017 0.882124i \(-0.656113\pi\)
0.999450 0.0331491i \(-0.0105536\pi\)
\(272\) −19.9083 14.9357i −1.20712 0.905607i
\(273\) 0 0
\(274\) 12.2249 + 16.9624i 0.738532 + 1.02473i
\(275\) −18.6883 13.0658i −1.12695 0.787896i
\(276\) 0.262715 + 1.28428i 0.0158136 + 0.0773048i
\(277\) 3.47314 2.00522i 0.208681 0.120482i −0.392017 0.919958i \(-0.628223\pi\)
0.600698 + 0.799476i \(0.294889\pi\)
\(278\) 0.158620 + 1.56688i 0.00951337 + 0.0939755i
\(279\) −5.16189 −0.309034
\(280\) 0 0
\(281\) −11.7101 −0.698566 −0.349283 0.937017i \(-0.613575\pi\)
−0.349283 + 0.937017i \(0.613575\pi\)
\(282\) 0.974012 + 9.62154i 0.0580016 + 0.572954i
\(283\) 15.2454 8.80194i 0.906245 0.523221i 0.0270241 0.999635i \(-0.491397\pi\)
0.879221 + 0.476414i \(0.158064\pi\)
\(284\) −1.83496 8.97023i −0.108885 0.532285i
\(285\) 7.01303 11.0170i 0.415416 0.652588i
\(286\) −8.27779 11.4857i −0.489476 0.679162i
\(287\) 0 0
\(288\) −3.84252 0.0736129i −0.226423 0.00433768i
\(289\) −10.8567 + 18.8044i −0.638632 + 1.10614i
\(290\) −0.673052 + 1.33827i −0.0395230 + 0.0785861i
\(291\) −11.9430 + 6.89531i −0.700112 + 0.404210i
\(292\) −16.2822 18.3643i −0.952844 1.07469i
\(293\) −23.5436 −1.37543 −0.687715 0.725980i \(-0.741386\pi\)
−0.687715 + 0.725980i \(0.741386\pi\)
\(294\) 0 0
\(295\) −0.303366 + 7.00576i −0.0176626 + 0.407891i
\(296\) 5.23319 23.3002i 0.304173 1.35430i
\(297\) 12.7810 + 22.1374i 0.741629 + 1.28454i
\(298\) −8.87094 3.99039i −0.513879 0.231157i
\(299\) −0.472241 + 0.817945i −0.0273104 + 0.0473030i
\(300\) 13.9809 + 6.04948i 0.807185 + 0.349267i
\(301\) 0 0
\(302\) 17.5609 + 24.3663i 1.01052 + 1.40212i
\(303\) −6.09190 + 10.5515i −0.349971 + 0.606167i
\(304\) 1.83655 15.2255i 0.105334 0.873241i
\(305\) 5.90135 + 11.3265i 0.337910 + 0.648552i
\(306\) 0.602106 + 5.94776i 0.0344201 + 0.340011i
\(307\) 11.0383i 0.629989i −0.949093 0.314995i \(-0.897997\pi\)
0.949093 0.314995i \(-0.102003\pi\)
\(308\) 0 0
\(309\) 19.0445 1.08340
\(310\) 23.9865 1.38347i 1.36234 0.0785760i
\(311\) 10.8332 + 18.7637i 0.614297 + 1.06399i 0.990507 + 0.137459i \(0.0438936\pi\)
−0.376211 + 0.926534i \(0.622773\pi\)
\(312\) 6.95560 + 6.40912i 0.393783 + 0.362845i
\(313\) 1.91184 3.31141i 0.108064 0.187172i −0.806922 0.590658i \(-0.798868\pi\)
0.914986 + 0.403486i \(0.132202\pi\)
\(314\) 2.67025 1.92446i 0.150691 0.108604i
\(315\) 0 0
\(316\) 11.7713 + 3.92469i 0.662188 + 0.220781i
\(317\) 7.56807 + 4.36943i 0.425065 + 0.245411i 0.697242 0.716836i \(-0.254410\pi\)
−0.272177 + 0.962247i \(0.587744\pi\)
\(318\) −18.1523 8.16539i −1.01793 0.457892i
\(319\) 1.87093 1.08018i 0.104752 0.0604786i
\(320\) 17.8753 0.687794i 0.999261 0.0384489i
\(321\) 22.0380i 1.23004i
\(322\) 0 0
\(323\) −23.8550 −1.32733
\(324\) −8.62475 9.72762i −0.479153 0.540423i
\(325\) 4.64565 + 9.94403i 0.257694 + 0.551595i
\(326\) −3.95540 1.77925i −0.219069 0.0985433i
\(327\) 24.1375 + 13.9358i 1.33481 + 0.770652i
\(328\) 3.93725 1.22944i 0.217398 0.0678847i
\(329\) 0 0
\(330\) −12.0620 18.3620i −0.663994 1.01080i
\(331\) 8.38437 + 4.84072i 0.460847 + 0.266070i 0.712400 0.701773i \(-0.247608\pi\)
−0.251553 + 0.967843i \(0.580941\pi\)
\(332\) 3.08619 + 15.0869i 0.169377 + 0.828001i
\(333\) −4.96767 + 2.86809i −0.272227 + 0.157170i
\(334\) 18.3519 1.85781i 1.00417 0.101655i
\(335\) −1.44581 + 33.3888i −0.0789932 + 1.82422i
\(336\) 0 0
\(337\) 9.54187i 0.519779i −0.965638 0.259889i \(-0.916314\pi\)
0.965638 0.259889i \(-0.0836861\pi\)
\(338\) −1.16532 11.5114i −0.0633853 0.626136i
\(339\) −0.865171 1.49852i −0.0469897 0.0813885i
\(340\) −4.39199 27.4769i −0.238189 1.49014i
\(341\) −30.0079 17.3251i −1.62502 0.938207i
\(342\) −2.98844 + 2.15379i −0.161597 + 0.116464i
\(343\) 0 0
\(344\) −7.23540 23.1711i −0.390106 1.24930i
\(345\) −0.787027 + 1.23636i −0.0423721 + 0.0665635i
\(346\) 14.2648 + 6.41669i 0.766880 + 0.344963i
\(347\) −12.0894 20.9394i −0.648991 1.12409i −0.983364 0.181645i \(-0.941858\pi\)
0.334373 0.942441i \(-0.391476\pi\)
\(348\) −1.07991 + 0.957472i −0.0578891 + 0.0513259i
\(349\) 8.31416i 0.445047i −0.974927 0.222523i \(-0.928571\pi\)
0.974927 0.222523i \(-0.0714294\pi\)
\(350\) 0 0
\(351\) 12.3038i 0.656727i
\(352\) −22.0909 13.3248i −1.17745 0.710213i
\(353\) −5.26427 9.11798i −0.280189 0.485301i 0.691242 0.722623i \(-0.257064\pi\)
−0.971431 + 0.237322i \(0.923730\pi\)
\(354\) −2.77156 + 6.16138i −0.147307 + 0.327474i
\(355\) 5.49709 8.63552i 0.291755 0.458326i
\(356\) −17.6912 5.89847i −0.937633 0.312618i
\(357\) 0 0
\(358\) 18.2282 + 25.2922i 0.963391 + 1.33673i
\(359\) 9.61689 + 5.55231i 0.507560 + 0.293040i 0.731830 0.681487i \(-0.238666\pi\)
−0.224270 + 0.974527i \(0.572000\pi\)
\(360\) −3.03101 3.04565i −0.159748 0.160520i
\(361\) 2.15038 + 3.72456i 0.113178 + 0.196030i
\(362\) 3.51705 0.356039i 0.184852 0.0187130i
\(363\) 14.9269i 0.783459i
\(364\) 0 0
\(365\) 1.18710 27.4142i 0.0621355 1.43492i
\(366\) 1.23932 + 12.2423i 0.0647803 + 0.639916i
\(367\) 20.2509 11.6918i 1.05709 0.610309i 0.132461 0.991188i \(-0.457712\pi\)
0.924625 + 0.380879i \(0.124379\pi\)
\(368\) −0.206105 + 1.70866i −0.0107439 + 0.0890699i
\(369\) −0.858031 0.495384i −0.0446673 0.0257887i
\(370\) 22.3153 14.6590i 1.16012 0.762083i
\(371\) 0 0
\(372\) 21.9598 + 7.32168i 1.13857 + 0.379611i
\(373\) −7.44109 4.29611i −0.385285 0.222444i 0.294830 0.955550i \(-0.404737\pi\)
−0.680115 + 0.733105i \(0.738070\pi\)
\(374\) −16.4625 + 36.5974i −0.851255 + 1.89241i
\(375\) 6.53461 + 15.7282i 0.337446 + 0.812198i
\(376\) −2.78233 + 12.3880i −0.143488 + 0.638862i
\(377\) −1.03985 −0.0535550
\(378\) 0 0
\(379\) 5.57279i 0.286255i 0.989704 + 0.143128i \(0.0457159\pi\)
−0.989704 + 0.143128i \(0.954284\pi\)
\(380\) 13.3096 10.8093i 0.682767 0.554504i
\(381\) −10.9957 + 6.34837i −0.563327 + 0.325237i
\(382\) −4.50241 + 10.0092i −0.230363 + 0.512115i
\(383\) −10.5951 6.11706i −0.541383 0.312567i 0.204257 0.978917i \(-0.434522\pi\)
−0.745639 + 0.666350i \(0.767856\pi\)
\(384\) 16.2426 + 5.76344i 0.828874 + 0.294114i
\(385\) 0 0
\(386\) −4.99190 6.92640i −0.254081 0.352545i
\(387\) −2.91538 + 5.04959i −0.148197 + 0.256685i
\(388\) −17.7383 + 3.62856i −0.900524 + 0.184212i
\(389\) 1.99215 + 3.45051i 0.101006 + 0.174948i 0.912099 0.409969i \(-0.134461\pi\)
−0.811093 + 0.584917i \(0.801127\pi\)
\(390\) 0.608900 + 10.5570i 0.0308328 + 0.534575i
\(391\) 2.67709 0.135386
\(392\) 0 0
\(393\) 8.65574i 0.436624i
\(394\) 13.7110 1.38800i 0.690749 0.0699262i
\(395\) 6.41022 + 12.3032i 0.322533 + 0.619039i
\(396\) 1.24191 + 6.07110i 0.0624084 + 0.305084i
\(397\) −19.8903 + 34.4509i −0.998263 + 1.72904i −0.448112 + 0.893977i \(0.647903\pi\)
−0.550151 + 0.835065i \(0.685430\pi\)
\(398\) 19.7950 14.2663i 0.992231 0.715107i
\(399\) 0 0
\(400\) 14.9009 + 13.3403i 0.745046 + 0.667014i
\(401\) −0.215963 + 0.374058i −0.0107847 + 0.0186796i −0.871367 0.490631i \(-0.836766\pi\)
0.860583 + 0.509311i \(0.170100\pi\)
\(402\) −13.2090 + 29.3646i −0.658804 + 1.46457i
\(403\) 8.33910 + 14.4437i 0.415400 + 0.719494i
\(404\) −11.9690 + 10.6120i −0.595481 + 0.527969i
\(405\) 0.628810 14.5214i 0.0312458 0.721573i
\(406\) 0 0
\(407\) −38.5052 −1.90863
\(408\) 5.87486 26.1571i 0.290849 1.29497i
\(409\) 15.9076 9.18424i 0.786579 0.454132i −0.0521779 0.998638i \(-0.516616\pi\)
0.838757 + 0.544506i \(0.183283\pi\)
\(410\) 4.11990 + 2.07200i 0.203468 + 0.102329i
\(411\) −11.2611 + 19.5048i −0.555469 + 0.962101i
\(412\) 23.7197 + 7.90844i 1.16859 + 0.389621i
\(413\) 0 0
\(414\) 0.335374 0.241706i 0.0164827 0.0118792i
\(415\) −9.24547 + 14.5240i −0.453842 + 0.712953i
\(416\) 6.00167 + 10.8709i 0.294256 + 0.532989i
\(417\) −1.46915 + 0.848217i −0.0719448 + 0.0415373i
\(418\) −24.6018 + 2.49050i −1.20331 + 0.121814i
\(419\) 23.3512 1.14078 0.570389 0.821375i \(-0.306792\pi\)
0.570389 + 0.821375i \(0.306792\pi\)
\(420\) 0 0
\(421\) 35.7600 1.74283 0.871417 0.490543i \(-0.163201\pi\)
0.871417 + 0.490543i \(0.163201\pi\)
\(422\) −37.7289 + 3.81939i −1.83662 + 0.185925i
\(423\) 2.64116 1.52487i 0.128418 0.0741419i
\(424\) −19.2177 17.7078i −0.933295 0.859969i
\(425\) 17.8258 25.4967i 0.864677 1.23677i
\(426\) 8.00116 5.76648i 0.387657 0.279387i
\(427\) 0 0
\(428\) −9.15152 + 27.4481i −0.442355 + 1.32675i
\(429\) 7.62519 13.2072i 0.368148 0.637650i
\(430\) 12.1939 24.2460i 0.588044 1.16925i
\(431\) −12.6651 + 7.31218i −0.610054 + 0.352215i −0.772987 0.634422i \(-0.781238\pi\)
0.162932 + 0.986637i \(0.447905\pi\)
\(432\) −8.80414 20.6191i −0.423589 0.992036i
\(433\) −2.12837 −0.102283 −0.0511414 0.998691i \(-0.516286\pi\)
−0.0511414 + 0.998691i \(0.516286\pi\)
\(434\) 0 0
\(435\) −1.61208 0.0698070i −0.0772936 0.00334699i
\(436\) 24.2761 + 27.3803i 1.16261 + 1.31128i
\(437\) 0.824801 + 1.42860i 0.0394556 + 0.0683391i
\(438\) 10.8453 24.1100i 0.518211 1.15202i
\(439\) 12.3385 21.3709i 0.588884 1.01998i −0.405494 0.914098i \(-0.632901\pi\)
0.994379 0.105880i \(-0.0337660\pi\)
\(440\) −7.39813 27.8786i −0.352692 1.32906i
\(441\) 0 0
\(442\) 15.6700 11.2935i 0.745347 0.537175i
\(443\) 8.07022 13.9780i 0.383427 0.664116i −0.608122 0.793843i \(-0.708077\pi\)
0.991550 + 0.129728i \(0.0414103\pi\)
\(444\) 25.2017 5.15529i 1.19602 0.244659i
\(445\) −9.63399 18.4906i −0.456695 0.876536i
\(446\) −24.7712 + 2.50765i −1.17295 + 0.118741i
\(447\) 10.4778i 0.495582i
\(448\) 0 0
\(449\) −28.5162 −1.34576 −0.672882 0.739750i \(-0.734944\pi\)
−0.672882 + 0.739750i \(0.734944\pi\)
\(450\) −0.0688785 4.80354i −0.00324697 0.226441i
\(451\) −3.32536 5.75970i −0.156585 0.271214i
\(452\) −0.455285 2.22566i −0.0214148 0.104686i
\(453\) −16.1765 + 28.0185i −0.760037 + 1.31642i
\(454\) −7.26932 10.0864i −0.341166 0.473378i
\(455\) 0 0
\(456\) 15.7685 4.92386i 0.738427 0.230581i
\(457\) −20.2500 11.6914i −0.947256 0.546899i −0.0550288 0.998485i \(-0.517525\pi\)
−0.892228 + 0.451586i \(0.850858\pi\)
\(458\) 9.91132 22.0336i 0.463125 1.02956i
\(459\) −30.2022 + 17.4373i −1.40972 + 0.813901i
\(460\) −1.49365 + 1.21305i −0.0696417 + 0.0565589i
\(461\) 9.92550i 0.462277i −0.972921 0.231138i \(-0.925755\pi\)
0.972921 0.231138i \(-0.0742450\pi\)
\(462\) 0 0
\(463\) −16.8887 −0.784887 −0.392443 0.919776i \(-0.628370\pi\)
−0.392443 + 0.919776i \(0.628370\pi\)
\(464\) −1.74261 + 0.744079i −0.0808988 + 0.0345430i
\(465\) 11.9585 + 22.9520i 0.554563 + 1.06438i
\(466\) −8.22798 + 18.2914i −0.381154 + 0.847334i
\(467\) 26.6366 + 15.3786i 1.23259 + 0.711638i 0.967570 0.252604i \(-0.0812869\pi\)
0.265024 + 0.964242i \(0.414620\pi\)
\(468\) 0.943420 2.82959i 0.0436096 0.130798i
\(469\) 0 0
\(470\) −11.8643 + 7.79372i −0.547262 + 0.359497i
\(471\) 3.07048 + 1.77274i 0.141480 + 0.0816836i
\(472\) −6.01053 + 6.52302i −0.276657 + 0.300246i
\(473\) −33.8964 + 19.5701i −1.55856 + 0.899833i
\(474\) 1.34619 + 13.2980i 0.0618324 + 0.610796i
\(475\) 19.0980 + 1.65709i 0.876278 + 0.0760324i
\(476\) 0 0
\(477\) 6.27698i 0.287403i
\(478\) 19.2387 1.94758i 0.879958 0.0890803i
\(479\) 7.87671 + 13.6429i 0.359896 + 0.623358i 0.987943 0.154817i \(-0.0494788\pi\)
−0.628047 + 0.778175i \(0.716145\pi\)
\(480\) 8.57464 + 17.2561i 0.391377 + 0.787629i
\(481\) 16.0507 + 9.26686i 0.731848 + 0.422532i
\(482\) 2.77774 + 3.85420i 0.126523 + 0.175554i
\(483\) 0 0
\(484\) −6.19856 + 18.5913i −0.281753 + 0.845059i
\(485\) −17.0764 10.8703i −0.775399 0.493593i
\(486\) −4.01056 + 8.91578i −0.181923 + 0.404428i
\(487\) 6.75242 + 11.6955i 0.305981 + 0.529975i 0.977479 0.211031i \(-0.0676821\pi\)
−0.671498 + 0.741006i \(0.734349\pi\)
\(488\) −3.54020 + 15.7623i −0.160257 + 0.713527i
\(489\) 4.67187i 0.211269i
\(490\) 0 0
\(491\) 3.87067i 0.174681i 0.996179 + 0.0873404i \(0.0278368\pi\)
−0.996179 + 0.0873404i \(0.972163\pi\)
\(492\) 2.94760 + 3.32452i 0.132888 + 0.149881i
\(493\) 1.47370 + 2.55253i 0.0663723 + 0.114960i
\(494\) 10.8545 + 4.88265i 0.488367 + 0.219681i
\(495\) −3.72046 + 5.84457i −0.167222 + 0.262694i
\(496\) 24.3104 + 18.2381i 1.09157 + 0.818917i
\(497\) 0 0
\(498\) −13.4570 + 9.69855i −0.603024 + 0.434602i
\(499\) 21.1045 + 12.1847i 0.944767 + 0.545462i 0.891452 0.453116i \(-0.149688\pi\)
0.0533157 + 0.998578i \(0.483021\pi\)
\(500\) 1.60750 + 22.3028i 0.0718895 + 0.997413i
\(501\) 9.93461 + 17.2072i 0.443846 + 0.768763i
\(502\) −3.73193 36.8650i −0.166564 1.64536i
\(503\) 11.2245i 0.500475i 0.968184 + 0.250238i \(0.0805087\pi\)
−0.968184 + 0.250238i \(0.919491\pi\)
\(504\) 0 0
\(505\) −17.8674 0.773699i −0.795087 0.0344291i
\(506\) 2.76090 0.279493i 0.122737 0.0124250i
\(507\) 10.7934 6.23156i 0.479351 0.276753i
\(508\) −16.3313 + 3.34075i −0.724583 + 0.148222i
\(509\) 12.4520 + 7.18916i 0.551925 + 0.318654i 0.749898 0.661554i \(-0.230103\pi\)
−0.197973 + 0.980207i \(0.563436\pi\)
\(510\) 25.0515 16.4564i 1.10930 0.728700i
\(511\) 0 0
\(512\) 17.8366 + 13.9232i 0.788274 + 0.615325i
\(513\) −18.6104 10.7447i −0.821668 0.474390i
\(514\) −28.7366 12.9265i −1.26752 0.570164i
\(515\) 12.9169 + 24.7914i 0.569186 + 1.09244i
\(516\) 19.5651 17.3469i 0.861305 0.763655i
\(517\) 20.4720 0.900359
\(518\) 0 0
\(519\) 16.8487i 0.739575i
\(520\) −3.62554 + 13.4015i −0.158991 + 0.587695i
\(521\) 22.3540 12.9061i 0.979347 0.565426i 0.0772742 0.997010i \(-0.475378\pi\)
0.902073 + 0.431584i \(0.142045\pi\)
\(522\) 0.415079 + 0.186714i 0.0181675 + 0.00817224i
\(523\) −3.83258 2.21274i −0.167587 0.0967563i 0.413861 0.910340i \(-0.364180\pi\)
−0.581447 + 0.813584i \(0.697513\pi\)
\(524\) 3.59439 10.7806i 0.157022 0.470954i
\(525\) 0 0
\(526\) −15.8141 + 11.3973i −0.689528 + 0.496946i
\(527\) 23.6368 40.9401i 1.02964 1.78338i
\(528\) 3.32794 27.5894i 0.144830 1.20067i
\(529\) 11.4074 + 19.7583i 0.495976 + 0.859055i
\(530\) −1.68234 29.1681i −0.0730761 1.26698i
\(531\) 2.13058 0.0924593
\(532\) 0 0
\(533\) 3.20120i 0.138659i
\(534\) −2.02320 19.9857i −0.0875524 0.864865i
\(535\) −28.6882 + 14.9472i −1.24030 + 0.646224i
\(536\) −28.6456 + 31.0881i −1.23730 + 1.34280i
\(537\) −16.7912 + 29.0831i −0.724592 + 1.25503i
\(538\) −4.84672 6.72497i −0.208957 0.289934i
\(539\) 0 0
\(540\) 8.94970 23.4143i 0.385134 1.00759i
\(541\) −2.05080 + 3.55209i −0.0881708 + 0.152716i −0.906738 0.421695i \(-0.861435\pi\)
0.818567 + 0.574411i \(0.194769\pi\)
\(542\) 22.4391 + 10.0937i 0.963842 + 0.433562i
\(543\) 1.90392 + 3.29768i 0.0817049 + 0.141517i
\(544\) 18.1791 30.1389i 0.779424 1.29219i
\(545\) −1.76991 + 40.8733i −0.0758146 + 1.75082i
\(546\) 0 0
\(547\) −4.16833 −0.178225 −0.0891125 0.996022i \(-0.528403\pi\)
−0.0891125 + 0.996022i \(0.528403\pi\)
\(548\) −22.1252 + 19.6167i −0.945140 + 0.837985i
\(549\) 3.36058 1.94023i 0.143426 0.0828070i
\(550\) 15.7219 28.1559i 0.670386 1.20057i
\(551\) −0.908085 + 1.57285i −0.0386857 + 0.0670056i
\(552\) −1.76959 + 0.552574i −0.0753190 + 0.0235191i
\(553\) 0 0
\(554\) 3.31609 + 4.60117i 0.140887 + 0.195485i
\(555\) 24.2613 + 15.4440i 1.02984 + 0.655560i
\(556\) −2.18205 + 0.446362i −0.0925395 + 0.0189300i
\(557\) 10.5286 6.07868i 0.446110 0.257562i −0.260076 0.965588i \(-0.583748\pi\)
0.706186 + 0.708026i \(0.250414\pi\)
\(558\) −0.735240 7.26289i −0.0311252 0.307463i
\(559\) 18.8394 0.796820
\(560\) 0 0
\(561\) −43.2265 −1.82502
\(562\) −1.66794 16.4764i −0.0703579 0.695014i
\(563\) −21.5664 + 12.4514i −0.908915 + 0.524762i −0.880082 0.474822i \(-0.842513\pi\)
−0.0288333 + 0.999584i \(0.509179\pi\)
\(564\) −13.3990 + 2.74091i −0.564199 + 0.115413i
\(565\) 1.36392 2.14262i 0.0573805 0.0901406i
\(566\) 14.5560 + 20.1969i 0.611835 + 0.848939i
\(567\) 0 0
\(568\) 12.3600 3.85952i 0.518612 0.161942i
\(569\) 14.7938 25.6235i 0.620187 1.07419i −0.369264 0.929325i \(-0.620390\pi\)
0.989451 0.144870i \(-0.0462765\pi\)
\(570\) 16.5000 + 8.29828i 0.691109 + 0.347577i
\(571\) 21.2328 12.2588i 0.888565 0.513013i 0.0150919 0.999886i \(-0.495196\pi\)
0.873473 + 0.486873i \(0.161863\pi\)
\(572\) 14.9815 13.2830i 0.626410 0.555390i
\(573\) −11.8222 −0.493881
\(574\) 0 0
\(575\) −2.14325 0.185964i −0.0893797 0.00775524i
\(576\) −0.443740 5.41700i −0.0184892 0.225708i
\(577\) −6.77379 11.7325i −0.281997 0.488432i 0.689880 0.723924i \(-0.257663\pi\)
−0.971876 + 0.235492i \(0.924330\pi\)
\(578\) −28.0047 12.5973i −1.16484 0.523977i
\(579\) 4.59835 7.96458i 0.191101 0.330996i
\(580\) −1.97885 0.756380i −0.0821672 0.0314070i
\(581\) 0 0
\(582\) −11.4030 15.8220i −0.472668 0.655841i
\(583\) −21.0677 + 36.4904i −0.872537 + 1.51128i
\(584\) 23.5197 25.5252i 0.973254 1.05624i
\(585\) 2.95744 1.54089i 0.122275 0.0637080i
\(586\) −3.35346 33.1263i −0.138530 1.36844i
\(587\) 26.8772i 1.10934i 0.832070 + 0.554671i \(0.187156\pi\)
−0.832070 + 0.554671i \(0.812844\pi\)
\(588\) 0 0
\(589\) 29.1296 1.20027
\(590\) −9.90047 + 0.571032i −0.407596 + 0.0235090i
\(591\) 7.42229 + 12.8558i 0.305312 + 0.528817i
\(592\) 33.5293 + 4.04443i 1.37804 + 0.166225i
\(593\) −0.473574 + 0.820254i −0.0194473 + 0.0336838i −0.875585 0.483064i \(-0.839524\pi\)
0.856138 + 0.516747i \(0.172857\pi\)
\(594\) −29.3273 + 21.1363i −1.20331 + 0.867234i
\(595\) 0 0
\(596\) 4.35102 13.0500i 0.178225 0.534548i
\(597\) 22.7619 + 13.1416i 0.931584 + 0.537850i
\(598\) −1.21813 0.547948i −0.0498131 0.0224073i
\(599\) −19.1138 + 11.0354i −0.780970 + 0.450893i −0.836774 0.547549i \(-0.815561\pi\)
0.0558040 + 0.998442i \(0.482228\pi\)
\(600\) −6.52037 + 20.5331i −0.266193 + 0.838258i
\(601\) 20.5283i 0.837367i −0.908132 0.418684i \(-0.862492\pi\)
0.908132 0.418684i \(-0.137508\pi\)
\(602\) 0 0
\(603\) 10.1542 0.413509
\(604\) −31.7826 + 28.1793i −1.29322 + 1.14660i
\(605\) −19.4313 + 10.1241i −0.789994 + 0.411604i
\(606\) −15.7139 7.06853i −0.638333 0.287139i
\(607\) 21.6917 + 12.5237i 0.880438 + 0.508321i 0.870803 0.491632i \(-0.163600\pi\)
0.00963521 + 0.999954i \(0.496933\pi\)
\(608\) 21.6842 + 0.415413i 0.879409 + 0.0168472i
\(609\) 0 0
\(610\) −15.0960 + 9.91663i −0.611221 + 0.401512i
\(611\) −8.53365 4.92691i −0.345235 0.199321i
\(612\) −8.28287 + 1.69435i −0.334815 + 0.0684902i
\(613\) −20.2822 + 11.7100i −0.819192 + 0.472961i −0.850138 0.526560i \(-0.823481\pi\)
0.0309457 + 0.999521i \(0.490148\pi\)
\(614\) 15.5311 1.57225i 0.626786 0.0634510i
\(615\) −0.214903 + 4.96284i −0.00866571 + 0.200121i
\(616\) 0 0
\(617\) 16.7405i 0.673948i −0.941514 0.336974i \(-0.890597\pi\)
0.941514 0.336974i \(-0.109403\pi\)
\(618\) 2.71263 + 26.7960i 0.109118 + 1.07789i
\(619\) 13.6919 + 23.7151i 0.550326 + 0.953192i 0.998251 + 0.0591208i \(0.0188297\pi\)
−0.447925 + 0.894071i \(0.647837\pi\)
\(620\) 5.36312 + 33.5524i 0.215388 + 1.34750i
\(621\) 2.08852 + 1.20581i 0.0838095 + 0.0483875i
\(622\) −24.8579 + 17.9153i −0.996712 + 0.718336i
\(623\) 0 0
\(624\) −8.02704 + 10.6996i −0.321339 + 0.428326i
\(625\) −16.0423 + 19.1741i −0.641690 + 0.766964i
\(626\) 4.93155 + 2.21834i 0.197104 + 0.0886628i
\(627\) −13.3179 23.0673i −0.531867 0.921220i
\(628\) 3.08810 + 3.48298i 0.123229 + 0.138986i
\(629\) 52.5330i 2.09463i
\(630\) 0 0
\(631\) 3.77099i 0.150121i −0.997179 0.0750604i \(-0.976085\pi\)
0.997179 0.0750604i \(-0.0239150\pi\)
\(632\) −3.84547 + 17.1215i −0.152965 + 0.681057i
\(633\) −20.4242 35.3757i −0.811788 1.40606i
\(634\) −5.06991 + 11.2708i −0.201352 + 0.447621i
\(635\) −15.7219 10.0080i −0.623904 0.397157i
\(636\) 8.90334 26.7037i 0.353040 1.05887i
\(637\) 0 0
\(638\) 1.78633 + 2.47858i 0.0707214 + 0.0981281i
\(639\) −2.69356 1.55513i −0.106556 0.0615200i
\(640\) 3.51384 + 25.0530i 0.138897 + 0.990307i
\(641\) −12.5584 21.7517i −0.496026 0.859142i 0.503964 0.863725i \(-0.331874\pi\)
−0.999989 + 0.00458317i \(0.998541\pi\)
\(642\) −31.0079 + 3.13901i −1.22379 + 0.123887i
\(643\) 12.8390i 0.506319i −0.967424 0.253160i \(-0.918530\pi\)
0.967424 0.253160i \(-0.0814698\pi\)
\(644\) 0 0
\(645\) 29.2068 + 1.26472i 1.15002 + 0.0497984i
\(646\) −3.39781 33.5645i −0.133685 1.32058i
\(647\) −3.84568 + 2.22030i −0.151189 + 0.0872892i −0.573686 0.819075i \(-0.694487\pi\)
0.422497 + 0.906364i \(0.361154\pi\)
\(648\) 12.4585 13.5208i 0.489416 0.531146i
\(649\) 12.3858 + 7.15097i 0.486187 + 0.280700i
\(650\) −13.3298 + 7.95292i −0.522836 + 0.311939i
\(651\) 0 0
\(652\) 1.94005 5.81877i 0.0759781 0.227880i
\(653\) 32.8985 + 18.9940i 1.28742 + 0.743291i 0.978193 0.207698i \(-0.0665971\pi\)
0.309225 + 0.950989i \(0.399930\pi\)
\(654\) −16.1699 + 35.9470i −0.632295 + 1.40564i
\(655\) 11.2677 5.87073i 0.440266 0.229389i
\(656\) 2.29066 + 5.36468i 0.0894354 + 0.209455i
\(657\) −8.33715 −0.325263
\(658\) 0 0
\(659\) 19.5420i 0.761248i −0.924730 0.380624i \(-0.875709\pi\)
0.924730 0.380624i \(-0.124291\pi\)
\(660\) 24.1177 19.5870i 0.938779 0.762422i
\(661\) −19.8065 + 11.4353i −0.770382 + 0.444780i −0.833011 0.553257i \(-0.813385\pi\)
0.0626290 + 0.998037i \(0.480052\pi\)
\(662\) −5.61676 + 12.4865i −0.218302 + 0.485301i
\(663\) 18.0187 + 10.4031i 0.699790 + 0.404024i
\(664\) −20.7880 + 6.49127i −0.806731 + 0.251910i
\(665\) 0 0
\(666\) −4.74304 6.58110i −0.183789 0.255013i
\(667\) 0.101909 0.176511i 0.00394591 0.00683452i
\(668\) 5.22795 + 25.5569i 0.202276 + 0.988827i
\(669\) −13.4096 23.2262i −0.518446 0.897975i
\(670\) −47.1847 + 2.72149i −1.82290 + 0.105140i
\(671\) 26.0483 1.00559
\(672\) 0 0
\(673\) 23.0022i 0.886670i 0.896356 + 0.443335i \(0.146205\pi\)
−0.896356 + 0.443335i \(0.853795\pi\)
\(674\) 13.4256 1.35911i 0.517135 0.0523509i
\(675\) 25.3909 11.8621i 0.977295 0.456572i
\(676\) 16.0308 3.27927i 0.616568 0.126126i
\(677\) 20.3832 35.3047i 0.783388 1.35687i −0.146569 0.989200i \(-0.546823\pi\)
0.929957 0.367668i \(-0.119844\pi\)
\(678\) 1.98522 1.43076i 0.0762419 0.0549480i
\(679\) 0 0
\(680\) 38.0350 10.0933i 1.45858 0.387062i
\(681\) 6.69623 11.5982i 0.256600 0.444444i
\(682\) 20.1026 44.6896i 0.769767 1.71125i
\(683\) 5.45020 + 9.44002i 0.208546 + 0.361212i 0.951257 0.308400i \(-0.0997935\pi\)
−0.742711 + 0.669612i \(0.766460\pi\)
\(684\) −3.45609 3.89803i −0.132147 0.149045i
\(685\) −33.0284 1.43021i −1.26195 0.0546455i
\(686\) 0 0
\(687\) 26.0247 0.992905
\(688\) 31.5716 13.4808i 1.20366 0.513949i
\(689\) 17.5640 10.1406i 0.669133 0.386324i
\(690\) −1.85169 0.931262i −0.0704926 0.0354525i
\(691\) 8.00675 13.8681i 0.304591 0.527568i −0.672579 0.740025i \(-0.734813\pi\)
0.977170 + 0.212458i \(0.0681468\pi\)
\(692\) −6.99660 + 20.9849i −0.265971 + 0.797724i
\(693\) 0 0
\(694\) 27.7402 19.9925i 1.05301 0.758907i
\(695\) −2.10063 1.33719i −0.0796814 0.0507225i
\(696\) −1.50100 1.38307i −0.0568954 0.0524253i
\(697\) 7.85802 4.53683i 0.297644 0.171845i
\(698\) 11.6982 1.18424i 0.442784 0.0448241i
\(699\) −21.6047 −0.817164
\(700\) 0 0
\(701\) 22.0640 0.833346 0.416673 0.909057i \(-0.363196\pi\)
0.416673 + 0.909057i \(0.363196\pi\)
\(702\) 17.3117 1.75251i 0.653388 0.0661441i
\(703\) 28.0336 16.1852i 1.05731 0.610437i
\(704\) 15.6017 32.9804i 0.588012 1.24299i
\(705\) −12.8990 8.21109i −0.485805 0.309248i
\(706\) 12.0794 8.70567i 0.454613 0.327642i
\(707\) 0 0
\(708\) −9.06398 3.02204i −0.340645 0.113575i
\(709\) 18.5954 32.2081i 0.698364 1.20960i −0.270669 0.962672i \(-0.587245\pi\)
0.969033 0.246930i \(-0.0794217\pi\)
\(710\) 12.9334 + 6.50451i 0.485380 + 0.244110i
\(711\) 3.65036 2.10753i 0.136899 0.0790387i
\(712\) 5.77940 25.7321i 0.216592 0.964352i
\(713\) −3.26903 −0.122426
\(714\) 0 0
\(715\) 22.3644 + 0.968433i 0.836383 + 0.0362173i
\(716\) −32.9903 + 29.2500i −1.23291 + 1.09313i
\(717\) 10.4147 + 18.0388i 0.388943 + 0.673670i
\(718\) −6.44244 + 14.3220i −0.240430 + 0.534493i
\(719\) −18.1858 + 31.4988i −0.678218 + 1.17471i 0.297300 + 0.954784i \(0.403914\pi\)
−0.975517 + 0.219923i \(0.929419\pi\)
\(720\) 3.85357 4.69851i 0.143614 0.175103i
\(721\) 0 0
\(722\) −4.93425 + 3.55614i −0.183634 + 0.132346i
\(723\) −2.55875 + 4.43189i −0.0951611 + 0.164824i
\(724\) 1.00191 + 4.89785i 0.0372357 + 0.182027i
\(725\) −1.00252 2.14590i −0.0372327 0.0796967i
\(726\) −21.0025 + 2.12613i −0.779475 + 0.0789082i
\(727\) 34.1872i 1.26793i −0.773360 0.633967i \(-0.781425\pi\)
0.773360 0.633967i \(-0.218575\pi\)
\(728\) 0 0
\(729\) −30.0315 −1.11228
\(730\) 38.7414 2.23450i 1.43388 0.0827025i
\(731\) −26.6997 46.2452i −0.987523 1.71044i
\(732\) −17.0487 + 3.48750i −0.630138 + 0.128902i
\(733\) 11.2674 19.5158i 0.416172 0.720832i −0.579378 0.815059i \(-0.696705\pi\)
0.995551 + 0.0942270i \(0.0300379\pi\)
\(734\) 19.3351 + 26.8281i 0.713673 + 0.990242i
\(735\) 0 0
\(736\) −2.43348 0.0466191i −0.0896991 0.00171840i
\(737\) 59.0298 + 34.0809i 2.17439 + 1.25539i
\(738\) 0.574802 1.27783i 0.0211588 0.0470375i
\(739\) −6.08695 + 3.51430i −0.223912 + 0.129276i −0.607760 0.794120i \(-0.707932\pi\)
0.383848 + 0.923396i \(0.374599\pi\)
\(740\) 23.8040 + 29.3101i 0.875052 + 1.07746i
\(741\) 12.8206i 0.470978i
\(742\) 0 0
\(743\) −0.0257779 −0.000945701 −0.000472850 1.00000i \(-0.500151\pi\)
−0.000472850 1.00000i \(0.500151\pi\)
\(744\) −7.17388 + 31.9409i −0.263007 + 1.17101i
\(745\) 13.6396 7.10654i 0.499716 0.260363i
\(746\) 4.98485 11.0817i 0.182508 0.405730i
\(747\) 4.53026 + 2.61555i 0.165754 + 0.0956979i
\(748\) −53.8382 17.9503i −1.96852 0.656328i
\(749\) 0 0
\(750\) −21.1991 + 11.4346i −0.774082 + 0.417533i
\(751\) −8.96782 5.17757i −0.327240 0.188932i 0.327375 0.944895i \(-0.393836\pi\)
−0.654615 + 0.755962i \(0.727169\pi\)
\(752\) −17.8265 2.15030i −0.650065 0.0784134i
\(753\) 34.5656 19.9565i 1.25964 0.727254i
\(754\) −0.148112 1.46309i −0.00539393 0.0532827i
\(755\) −47.4451 2.05448i −1.72670 0.0747703i
\(756\) 0 0
\(757\) 36.2159i 1.31629i −0.752892 0.658145i \(-0.771342\pi\)
0.752892 0.658145i \(-0.228658\pi\)
\(758\) −7.84105 + 0.793768i −0.284800 + 0.0288310i
\(759\) 1.49458 + 2.58870i 0.0542500 + 0.0939637i
\(760\) 17.1046 + 17.1872i 0.620451 + 0.623446i
\(761\) 22.3558 + 12.9071i 0.810396 + 0.467883i 0.847094 0.531444i \(-0.178350\pi\)
−0.0366971 + 0.999326i \(0.511684\pi\)
\(762\) −10.4985 14.5670i −0.380320 0.527706i
\(763\) 0 0
\(764\) −14.7245 4.90931i −0.532713 0.177613i
\(765\) −7.97380 5.07586i −0.288293 0.183518i
\(766\) 7.09772 15.7788i 0.256451 0.570111i
\(767\) −3.44198 5.96169i −0.124283 0.215264i
\(768\) −5.79576 + 23.6746i −0.209136 + 0.854282i
\(769\) 17.9643i 0.647810i 0.946090 + 0.323905i \(0.104996\pi\)
−0.946090 + 0.323905i \(0.895004\pi\)
\(770\) 0 0
\(771\) 33.9419i 1.22239i
\(772\) 9.03458 8.01028i 0.325162 0.288296i
\(773\) −2.13236 3.69336i −0.0766958 0.132841i 0.825127 0.564948i \(-0.191104\pi\)
−0.901822 + 0.432107i \(0.857770\pi\)
\(774\) −7.52015 3.38276i −0.270306 0.121591i
\(775\) −21.7673 + 31.1343i −0.781904 + 1.11838i
\(776\) −7.63204 24.4413i −0.273974 0.877392i
\(777\) 0 0
\(778\) −4.57118 + 3.29448i −0.163885 + 0.118113i
\(779\) 4.84205 + 2.79556i 0.173484 + 0.100161i
\(780\) −14.7672 + 2.36044i −0.528752 + 0.0845173i
\(781\) −10.4391 18.0811i −0.373541 0.646991i
\(782\) 0.381315 + 3.76672i 0.0136358 + 0.134698i
\(783\) 2.65513i 0.0948866i
\(784\) 0 0
\(785\) −0.225146 + 5.19939i −0.00803580 + 0.185574i
\(786\) 12.1788 1.23289i 0.434404 0.0439758i
\(787\) −32.6392 + 18.8442i −1.16346 + 0.671725i −0.952131 0.305690i \(-0.901113\pi\)
−0.211331 + 0.977415i \(0.567780\pi\)
\(788\) 3.90588 + 19.0939i 0.139141 + 0.680194i
\(789\) −18.1844 10.4988i −0.647382 0.373766i
\(790\) −16.3978 + 10.7717i −0.583407 + 0.383241i
\(791\) 0 0
\(792\) −8.36529 + 2.61214i −0.297247 + 0.0928185i
\(793\) −10.8581 6.26893i −0.385583 0.222616i
\(794\) −51.3063 23.0790i −1.82079 0.819042i
\(795\) 27.9102 14.5419i 0.989875 0.515746i
\(796\) 22.8926 + 25.8199i 0.811406 + 0.915162i
\(797\) −12.2918 −0.435398 −0.217699 0.976016i \(-0.569855\pi\)
−0.217699 + 0.976016i \(0.569855\pi\)
\(798\) 0 0
\(799\) 27.9302i 0.988099i
\(800\) −16.6476 + 22.8661i −0.588583 + 0.808437i
\(801\) −5.48616 + 3.16744i −0.193844 + 0.111916i
\(802\) −0.557069 0.250585i −0.0196708 0.00884845i
\(803\) −48.4669 27.9824i −1.71036 0.987477i
\(804\) −43.1981 14.4028i −1.52348 0.507946i
\(805\) 0 0
\(806\) −19.1349 + 13.7906i −0.673997 + 0.485754i
\(807\) 4.46462 7.73295i 0.157162 0.272213i
\(808\) −16.6362 15.3292i −0.585260 0.539278i
\(809\) 13.5524 + 23.4734i 0.476476 + 0.825281i 0.999637 0.0269532i \(-0.00858050\pi\)
−0.523160 + 0.852234i \(0.675247\pi\)
\(810\) 20.5215 1.18362i 0.721051 0.0415883i
\(811\) 41.9273 1.47227 0.736133 0.676837i \(-0.236650\pi\)
0.736133 + 0.676837i \(0.236650\pi\)
\(812\) 0 0
\(813\) 26.5036i 0.929523i
\(814\) −5.48453 54.1776i −0.192233 1.89893i
\(815\) 6.08167 3.16868i 0.213032 0.110994i
\(816\) 37.6405 + 4.54034i 1.31768 + 0.158944i
\(817\) 16.4521 28.4959i 0.575587 0.996946i
\(818\) 15.1882 + 21.0741i 0.531045 + 0.736840i
\(819\) 0 0
\(820\) −2.32853 + 6.09192i −0.0813159 + 0.212739i
\(821\) −18.2126 + 31.5451i −0.635623 + 1.10093i 0.350760 + 0.936466i \(0.385923\pi\)
−0.986383 + 0.164466i \(0.947410\pi\)
\(822\) −29.0477 13.0664i −1.01315 0.455744i
\(823\) −19.8907 34.4517i −0.693346 1.20091i −0.970735 0.240153i \(-0.922802\pi\)
0.277388 0.960758i \(-0.410531\pi\)
\(824\) −7.74880 + 34.5006i −0.269942 + 1.20189i
\(825\) 34.6067 + 3.00273i 1.20485 + 0.104542i
\(826\) 0 0
\(827\) 1.33392 0.0463851 0.0231925 0.999731i \(-0.492617\pi\)
0.0231925 + 0.999731i \(0.492617\pi\)
\(828\) 0.387855 + 0.437451i 0.0134789 + 0.0152025i
\(829\) −11.6133 + 6.70492i −0.403345 + 0.232872i −0.687926 0.725780i \(-0.741479\pi\)
0.284581 + 0.958652i \(0.408146\pi\)
\(830\) −21.7524 10.9398i −0.755037 0.379728i
\(831\) −3.05466 + 5.29082i −0.105965 + 0.183537i
\(832\) −14.4407 + 9.99289i −0.500642 + 0.346441i
\(833\) 0 0
\(834\) −1.40272 1.94632i −0.0485722 0.0673954i
\(835\) −15.6616 + 24.6033i −0.541994 + 0.851432i
\(836\) −7.00837 34.2605i −0.242390 1.18493i
\(837\) 36.8804 21.2929i 1.27477 0.735990i
\(838\) 3.32605 + 32.8556i 0.114897 + 1.13498i
\(839\) −14.3910 −0.496834 −0.248417 0.968653i \(-0.579910\pi\)
−0.248417 + 0.968653i \(0.579910\pi\)
\(840\) 0 0
\(841\) −28.7756 −0.992262
\(842\) 5.09352 + 50.3151i 0.175534 + 1.73397i
\(843\) 15.4487 8.91931i 0.532082 0.307197i
\(844\) −10.7479 52.5415i −0.369959 1.80855i
\(845\) 15.4326 + 9.82389i 0.530898 + 0.337952i
\(846\) 2.52173 + 3.49897i 0.0866988 + 0.120297i
\(847\) 0 0
\(848\) 22.1780 29.5620i 0.761597 1.01516i
\(849\) −13.4085 + 23.2241i −0.460177 + 0.797051i
\(850\) 38.4134 + 21.4496i 1.31757 + 0.735715i
\(851\) −3.14603 + 1.81636i −0.107845 + 0.0622641i
\(852\) 9.25322 + 10.4364i 0.317010 + 0.357547i
\(853\) 33.2591 1.13877 0.569385 0.822071i \(-0.307181\pi\)
0.569385 + 0.822071i \(0.307181\pi\)
\(854\) 0 0
\(855\) 0.251975 5.81898i 0.00861738 0.199005i
\(856\) −39.9236 8.96679i −1.36456 0.306479i
\(857\) −0.864161 1.49677i −0.0295192 0.0511287i 0.850888 0.525346i \(-0.176064\pi\)
−0.880408 + 0.474218i \(0.842731\pi\)
\(858\) 19.6690 + 8.84763i 0.671487 + 0.302053i
\(859\) 8.78624 15.2182i 0.299783 0.519239i −0.676304 0.736623i \(-0.736419\pi\)
0.976086 + 0.217385i \(0.0697526\pi\)
\(860\) 35.8516 + 13.7036i 1.22253 + 0.467290i
\(861\) 0 0
\(862\) −12.0924 16.7785i −0.411867 0.571478i
\(863\) 20.8154 36.0532i 0.708563 1.22727i −0.256827 0.966457i \(-0.582677\pi\)
0.965390 0.260810i \(-0.0839895\pi\)
\(864\) 27.7575 15.3245i 0.944329 0.521351i
\(865\) −21.9330 + 11.4276i −0.745744 + 0.388549i
\(866\) −0.303157 2.99466i −0.0103017 0.101763i
\(867\) 33.0773i 1.12337i
\(868\) 0 0
\(869\) 28.2945 0.959825
\(870\) −0.131399 2.27818i −0.00445485 0.0772376i
\(871\) −16.4042 28.4129i −0.555834 0.962733i
\(872\) −35.0669 + 38.0569i −1.18752 + 1.28877i
\(873\) −3.07520 + 5.32641i −0.104080 + 0.180272i
\(874\) −1.89259 + 1.36400i −0.0640177 + 0.0461379i
\(875\) 0 0
\(876\) 35.4681 + 11.8255i 1.19836 + 0.399547i
\(877\) −38.4695 22.2104i −1.29902 0.749991i −0.318787 0.947826i \(-0.603276\pi\)
−0.980235 + 0.197835i \(0.936609\pi\)
\(878\) 31.8268 + 14.3166i 1.07410 + 0.483160i
\(879\) 31.0602 17.9326i 1.04763 0.604852i
\(880\) 38.1720 14.3803i 1.28678 0.484758i
\(881\) 25.0886i 0.845257i 0.906303 + 0.422628i \(0.138892\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(882\) 0 0
\(883\) 7.23066 0.243331 0.121666 0.992571i \(-0.461176\pi\)
0.121666 + 0.992571i \(0.461176\pi\)
\(884\) 18.1221 + 20.4395i 0.609514 + 0.687454i
\(885\) −4.93590 9.47350i −0.165919 0.318448i
\(886\) 20.8169 + 9.36400i 0.699357 + 0.314590i
\(887\) −33.0990 19.1097i −1.11136 0.641642i −0.172176 0.985066i \(-0.555080\pi\)
−0.939180 + 0.343424i \(0.888413\pi\)
\(888\) 10.8433 + 34.7251i 0.363876 + 1.16530i
\(889\) 0 0
\(890\) 24.6444 16.1890i 0.826082 0.542655i
\(891\) −25.6731 14.8224i −0.860082 0.496568i
\(892\) −7.05663 34.4964i −0.236274 1.15503i
\(893\) −14.9046 + 8.60518i −0.498764 + 0.287962i
\(894\) 14.7425 1.49242i 0.493062 0.0499139i
\(895\) −49.2479 2.13255i −1.64618 0.0712833i
\(896\) 0 0
\(897\) 1.43878i 0.0480394i
\(898\) −4.06175 40.1230i −0.135542 1.33892i
\(899\) −1.79956 3.11693i −0.0600187 0.103955i
\(900\) 6.74888 0.781112i 0.224963 0.0260371i
\(901\) −49.7842 28.7429i −1.65855 0.957566i
\(902\) 7.63038 5.49925i 0.254064 0.183105i
\(903\) 0 0
\(904\) 3.06671 0.957611i 0.101997 0.0318497i
\(905\) −3.00148 + 4.71510i −0.0997724 + 0.156735i
\(906\) −41.7268 18.7698i −1.38628 0.623586i
\(907\) −9.24702 16.0163i −0.307042 0.531813i 0.670672 0.741754i \(-0.266006\pi\)
−0.977714 + 0.209942i \(0.932673\pi\)
\(908\) 13.1564 11.6648i 0.436610 0.387109i
\(909\) 5.43380i 0.180228i
\(910\) 0 0
\(911\) 14.7738i 0.489477i 0.969589 + 0.244739i \(0.0787022\pi\)
−0.969589 + 0.244739i \(0.921298\pi\)
\(912\) 9.17399 + 21.4853i 0.303781 + 0.711448i
\(913\) 17.5574 + 30.4103i 0.581064 + 1.00643i
\(914\) 13.5657 30.1575i 0.448712 0.997522i
\(915\) −16.4125 10.4477i −0.542582 0.345390i
\(916\) 32.4135 + 10.8071i 1.07097 + 0.357075i
\(917\) 0 0
\(918\) −28.8365 40.0115i −0.951746 1.32058i
\(919\) −24.3953 14.0846i −0.804726 0.464609i 0.0403951 0.999184i \(-0.487138\pi\)
−0.845121 + 0.534575i \(0.820472\pi\)
\(920\) −1.91954 1.92881i −0.0632855 0.0635911i
\(921\) 8.40762 + 14.5624i 0.277040 + 0.479848i
\(922\) 13.9654 1.41375i 0.459926 0.0465594i
\(923\) 10.0493i 0.330778i
\(924\) 0 0
\(925\) −3.64921 + 42.0574i −0.119985 + 1.38284i
\(926\) −2.40557 23.7628i −0.0790519 0.780895i
\(927\) 7.35564 4.24678i 0.241591 0.139483i
\(928\) −1.29515 2.34591i −0.0425153 0.0770084i
\(929\) −9.20660 5.31543i −0.302059 0.174394i 0.341309 0.939951i \(-0.389130\pi\)
−0.643367 + 0.765558i \(0.722463\pi\)
\(930\) −30.5907 + 20.0951i −1.00311 + 0.658945i
\(931\) 0 0
\(932\) −26.9084 8.97159i −0.881414 0.293874i
\(933\) −28.5838 16.5029i −0.935791 0.540279i
\(934\) −17.8441 + 39.6687i −0.583876 + 1.29800i
\(935\) −29.3183 56.2707i −0.958810 1.84025i
\(936\) 4.11568 + 0.924376i 0.134525 + 0.0302142i
\(937\) 58.4711 1.91017 0.955084 0.296334i \(-0.0957641\pi\)
0.955084 + 0.296334i \(0.0957641\pi\)
\(938\) 0 0
\(939\) 5.82483i 0.190086i
\(940\) −12.6558 15.5833i −0.412788 0.508271i
\(941\) −38.8240 + 22.4151i −1.26563 + 0.730710i −0.974157 0.225870i \(-0.927478\pi\)
−0.291470 + 0.956580i \(0.594144\pi\)
\(942\) −2.05694 + 4.57273i −0.0670187 + 0.148988i
\(943\) −0.543392 0.313728i −0.0176953 0.0102164i
\(944\) −10.0342 7.52783i −0.326584 0.245010i
\(945\) 0 0
\(946\) −32.3636 44.9055i −1.05223 1.46000i
\(947\) −7.20958 + 12.4874i −0.234280 + 0.405784i −0.959063 0.283192i \(-0.908607\pi\)
0.724783 + 0.688977i \(0.241940\pi\)
\(948\) −18.5188 + 3.78823i −0.601463 + 0.123036i
\(949\) 13.4688 + 23.3286i 0.437215 + 0.757279i
\(950\) 0.388696 + 27.1074i 0.0126110 + 0.879480i
\(951\) −13.3124 −0.431683
\(952\) 0 0
\(953\) 3.56629i 0.115523i 0.998330 + 0.0577617i \(0.0183964\pi\)
−0.998330 + 0.0577617i \(0.981604\pi\)
\(954\) −8.83186 + 0.894070i −0.285942 + 0.0289466i
\(955\) −8.01840 15.3897i −0.259469 0.498001i
\(956\) 5.48058 + 26.7919i 0.177255 + 0.866512i
\(957\) −1.64550 + 2.85009i −0.0531915 + 0.0921303i
\(958\) −18.0739 + 13.0259i −0.583941 + 0.420849i
\(959\) 0 0
\(960\) −23.0584 + 14.5226i −0.744206 + 0.468715i
\(961\) −13.3632 + 23.1458i −0.431072 + 0.746639i
\(962\) −10.7525 + 23.9036i −0.346674 + 0.770683i
\(963\) 4.91431 + 8.51183i 0.158361 + 0.274290i
\(964\) −5.02729 + 4.45733i −0.161918 + 0.143561i
\(965\) 13.4868 + 0.584011i 0.434156 + 0.0188000i
\(966\) 0 0
\(967\) 17.8167 0.572946 0.286473 0.958088i \(-0.407517\pi\)
0.286473 + 0.958088i \(0.407517\pi\)
\(968\) −27.0413 6.07344i −0.869139 0.195208i
\(969\) 31.4710 18.1698i 1.01099 0.583697i
\(970\) 12.8624 25.5752i 0.412987 0.821170i
\(971\) 13.2409 22.9339i 0.424921 0.735984i −0.571492 0.820607i \(-0.693635\pi\)
0.996413 + 0.0846230i \(0.0269686\pi\)
\(972\) −13.1160 4.37302i −0.420694 0.140265i
\(973\) 0 0
\(974\) −15.4941 + 11.1667i −0.496463 + 0.357803i
\(975\) −13.7030 9.58031i −0.438846 0.306815i
\(976\) −22.6822 2.73601i −0.726040 0.0875776i
\(977\) 7.99273 4.61461i 0.255710 0.147634i −0.366666 0.930353i \(-0.619501\pi\)
0.622376 + 0.782718i \(0.286167\pi\)
\(978\) 6.57343 0.665444i 0.210195 0.0212785i
\(979\) −42.5241 −1.35908
\(980\) 0 0
\(981\) 12.4303 0.396870
\(982\) −5.44612 + 0.551324i −0.173793 + 0.0175934i
\(983\) −39.9458 + 23.0627i −1.27407 + 0.735587i −0.975752 0.218878i \(-0.929760\pi\)
−0.298322 + 0.954465i \(0.596427\pi\)
\(984\) −4.25782 + 4.62087i −0.135734 + 0.147308i
\(985\) −11.7010 + 18.3815i −0.372826 + 0.585683i
\(986\) −3.38156 + 2.43711i −0.107691 + 0.0776133i
\(987\) 0 0
\(988\) −5.32392 + 15.9680i −0.169376 + 0.508009i
\(989\) −1.84632 + 3.19791i −0.0587094 + 0.101688i
\(990\) −8.75337 4.40229i −0.278200 0.139914i
\(991\) −7.63170 + 4.40617i −0.242429 + 0.139966i −0.616293 0.787517i \(-0.711366\pi\)
0.373864 + 0.927484i \(0.378033\pi\)
\(992\) −22.1988 + 36.8030i −0.704813 + 1.16850i
\(993\) −14.7483 −0.468022
\(994\) 0 0
\(995\) −1.66904 + 38.5439i −0.0529122 + 1.22193i
\(996\) −15.5628 17.5529i −0.493128 0.556185i
\(997\) −16.9620 29.3791i −0.537192 0.930444i −0.999054 0.0434919i \(-0.986152\pi\)
0.461862 0.886952i \(-0.347182\pi\)
\(998\) −14.1381 + 31.4300i −0.447533 + 0.994901i
\(999\) 23.6618 40.9834i 0.748626 1.29666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.s.g.19.27 96
4.3 odd 2 inner 980.2.s.g.19.44 96
5.4 even 2 inner 980.2.s.g.19.22 96
7.2 even 3 980.2.c.e.979.33 yes 48
7.3 odd 6 inner 980.2.s.g.619.5 96
7.4 even 3 inner 980.2.s.g.619.6 96
7.5 odd 6 980.2.c.e.979.34 yes 48
7.6 odd 2 inner 980.2.s.g.19.28 96
20.19 odd 2 inner 980.2.s.g.19.5 96
28.3 even 6 inner 980.2.s.g.619.22 96
28.11 odd 6 inner 980.2.s.g.619.21 96
28.19 even 6 980.2.c.e.979.13 48
28.23 odd 6 980.2.c.e.979.14 yes 48
28.27 even 2 inner 980.2.s.g.19.43 96
35.4 even 6 inner 980.2.s.g.619.43 96
35.9 even 6 980.2.c.e.979.16 yes 48
35.19 odd 6 980.2.c.e.979.15 yes 48
35.24 odd 6 inner 980.2.s.g.619.44 96
35.34 odd 2 inner 980.2.s.g.19.21 96
140.19 even 6 980.2.c.e.979.36 yes 48
140.39 odd 6 inner 980.2.s.g.619.28 96
140.59 even 6 inner 980.2.s.g.619.27 96
140.79 odd 6 980.2.c.e.979.35 yes 48
140.139 even 2 inner 980.2.s.g.19.6 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.c.e.979.13 48 28.19 even 6
980.2.c.e.979.14 yes 48 28.23 odd 6
980.2.c.e.979.15 yes 48 35.19 odd 6
980.2.c.e.979.16 yes 48 35.9 even 6
980.2.c.e.979.33 yes 48 7.2 even 3
980.2.c.e.979.34 yes 48 7.5 odd 6
980.2.c.e.979.35 yes 48 140.79 odd 6
980.2.c.e.979.36 yes 48 140.19 even 6
980.2.s.g.19.5 96 20.19 odd 2 inner
980.2.s.g.19.6 96 140.139 even 2 inner
980.2.s.g.19.21 96 35.34 odd 2 inner
980.2.s.g.19.22 96 5.4 even 2 inner
980.2.s.g.19.27 96 1.1 even 1 trivial
980.2.s.g.19.28 96 7.6 odd 2 inner
980.2.s.g.19.43 96 28.27 even 2 inner
980.2.s.g.19.44 96 4.3 odd 2 inner
980.2.s.g.619.5 96 7.3 odd 6 inner
980.2.s.g.619.6 96 7.4 even 3 inner
980.2.s.g.619.21 96 28.11 odd 6 inner
980.2.s.g.619.22 96 28.3 even 6 inner
980.2.s.g.619.27 96 140.59 even 6 inner
980.2.s.g.619.28 96 140.39 odd 6 inner
980.2.s.g.619.43 96 35.4 even 6 inner
980.2.s.g.619.44 96 35.24 odd 6 inner