Properties

Label 980.2.i.a
Level 980980
Weight 22
Character orbit 980.i
Analytic conductor 7.8257.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(361,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 980=22572 980 = 2^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 980.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.825339398097.82533939809
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ63)q3ζ6q56ζ6q9+(2ζ6+2)q11+6q13+3q15+(2ζ6+2)q17+9ζ6q23+(ζ61)q25+9q27+12q99+O(q100) q + (3 \zeta_{6} - 3) q^{3} - \zeta_{6} q^{5} - 6 \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 2) q^{11} + 6 q^{13} + 3 q^{15} + ( - 2 \zeta_{6} + 2) q^{17} + 9 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + 9 q^{27} + \cdots - 12 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q3q56q9+2q11+12q13+6q15+2q17+9q23q25+18q27+6q29+2q31+6q338q3718q3910q41+2q436q45+8q47+24q99+O(q100) 2 q - 3 q^{3} - q^{5} - 6 q^{9} + 2 q^{11} + 12 q^{13} + 6 q^{15} + 2 q^{17} + 9 q^{23} - q^{25} + 18 q^{27} + 6 q^{29} + 2 q^{31} + 6 q^{33} - 8 q^{37} - 18 q^{39} - 10 q^{41} + 2 q^{43} - 6 q^{45} + 8 q^{47}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/980Z)×\left(\mathbb{Z}/980\mathbb{Z}\right)^\times.

nn 101101 197197 491491
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 −0.500000 0.866025i 0 0 0 −3.00000 5.19615i 0
961.1 0 −1.50000 2.59808i 0 −0.500000 + 0.866025i 0 0 0 −3.00000 + 5.19615i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.i.a 2
7.b odd 2 1 140.2.i.b 2
7.c even 3 1 980.2.a.i 1
7.c even 3 1 inner 980.2.i.a 2
7.d odd 6 1 140.2.i.b 2
7.d odd 6 1 980.2.a.a 1
21.c even 2 1 1260.2.s.b 2
21.g even 6 1 1260.2.s.b 2
21.g even 6 1 8820.2.a.w 1
21.h odd 6 1 8820.2.a.k 1
28.d even 2 1 560.2.q.a 2
28.f even 6 1 560.2.q.a 2
28.f even 6 1 3920.2.a.bi 1
28.g odd 6 1 3920.2.a.d 1
35.c odd 2 1 700.2.i.a 2
35.f even 4 2 700.2.r.c 4
35.i odd 6 1 700.2.i.a 2
35.i odd 6 1 4900.2.a.v 1
35.j even 6 1 4900.2.a.a 1
35.k even 12 2 700.2.r.c 4
35.k even 12 2 4900.2.e.c 2
35.l odd 12 2 4900.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.i.b 2 7.b odd 2 1
140.2.i.b 2 7.d odd 6 1
560.2.q.a 2 28.d even 2 1
560.2.q.a 2 28.f even 6 1
700.2.i.a 2 35.c odd 2 1
700.2.i.a 2 35.i odd 6 1
700.2.r.c 4 35.f even 4 2
700.2.r.c 4 35.k even 12 2
980.2.a.a 1 7.d odd 6 1
980.2.a.i 1 7.c even 3 1
980.2.i.a 2 1.a even 1 1 trivial
980.2.i.a 2 7.c even 3 1 inner
1260.2.s.b 2 21.c even 2 1
1260.2.s.b 2 21.g even 6 1
3920.2.a.d 1 28.g odd 6 1
3920.2.a.bi 1 28.f even 6 1
4900.2.a.a 1 35.j even 6 1
4900.2.a.v 1 35.i odd 6 1
4900.2.e.b 2 35.l odd 12 2
4900.2.e.c 2 35.k even 12 2
8820.2.a.k 1 21.h odd 6 1
8820.2.a.w 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(980,[χ])S_{2}^{\mathrm{new}}(980, [\chi]):

T32+3T3+9 T_{3}^{2} + 3T_{3} + 9 Copy content Toggle raw display
T1122T11+4 T_{11}^{2} - 2T_{11} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1717 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
2929 (T3)2 (T - 3)^{2} Copy content Toggle raw display
3131 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
3737 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4141 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
4343 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4747 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
5353 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
5959 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
6161 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
6767 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
7171 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7373 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
7979 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
8383 (T1)2 (T - 1)^{2} Copy content Toggle raw display
8989 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
9797 (T10)2 (T - 10)^{2} Copy content Toggle raw display
show more
show less