Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(67,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 3, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.67");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.x (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.82533939809\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 | −1.38058 | − | 0.306614i | −0.832079 | + | 0.222955i | 1.81198 | + | 0.846608i | −2.12698 | − | 0.689905i | 1.21711 | − | 0.0526786i | 0 | −2.24199 | − | 1.72438i | −1.95543 | + | 1.12897i | 2.72492 | + | 1.60463i | ||
67.2 | −1.38058 | − | 0.306614i | 0.832079 | − | 0.222955i | 1.81198 | + | 0.846608i | 2.12698 | + | 0.689905i | −1.21711 | + | 0.0526786i | 0 | −2.24199 | − | 1.72438i | −1.95543 | + | 1.12897i | −2.72492 | − | 1.60463i | ||
67.3 | −1.29600 | − | 0.566026i | −2.75218 | + | 0.737445i | 1.35923 | + | 1.46714i | −0.951377 | + | 2.02358i | 3.98424 | + | 0.602077i | 0 | −0.931125 | − | 2.67077i | 4.43260 | − | 2.55916i | 2.37838 | − | 2.08406i | ||
67.4 | −1.29600 | − | 0.566026i | 2.75218 | − | 0.737445i | 1.35923 | + | 1.46714i | 0.951377 | − | 2.02358i | −3.98424 | − | 0.602077i | 0 | −0.931125 | − | 2.67077i | 4.43260 | − | 2.55916i | −2.37838 | + | 2.08406i | ||
67.5 | −1.27862 | + | 0.604271i | −3.15219 | + | 0.844627i | 1.26971 | − | 1.54526i | 0.260066 | + | 2.22089i | 3.52006 | − | 2.98473i | 0 | −0.689718 | + | 2.74304i | 6.62484 | − | 3.82485i | −1.67455 | − | 2.68252i | ||
67.6 | −1.27862 | + | 0.604271i | 3.15219 | − | 0.844627i | 1.26971 | − | 1.54526i | −0.260066 | − | 2.22089i | −3.52006 | + | 2.98473i | 0 | −0.689718 | + | 2.74304i | 6.62484 | − | 3.82485i | 1.67455 | + | 2.68252i | ||
67.7 | −1.16082 | + | 0.807777i | −0.625414 | + | 0.167579i | 0.694993 | − | 1.87536i | 0.117869 | − | 2.23296i | 0.590624 | − | 0.699723i | 0 | 0.708115 | + | 2.73835i | −2.23502 | + | 1.29039i | 1.66691 | + | 2.68727i | ||
67.8 | −1.16082 | + | 0.807777i | 0.625414 | − | 0.167579i | 0.694993 | − | 1.87536i | −0.117869 | + | 2.23296i | −0.590624 | + | 0.699723i | 0 | 0.708115 | + | 2.73835i | −2.23502 | + | 1.29039i | −1.66691 | − | 2.68727i | ||
67.9 | −0.970576 | + | 1.02858i | −1.93300 | + | 0.517947i | −0.115964 | − | 1.99664i | −2.17870 | − | 0.503254i | 1.34338 | − | 2.49096i | 0 | 2.16626 | + | 1.81861i | 0.870157 | − | 0.502386i | 2.63223 | − | 1.75253i | ||
67.10 | −0.970576 | + | 1.02858i | 1.93300 | − | 0.517947i | −0.115964 | − | 1.99664i | 2.17870 | + | 0.503254i | −1.34338 | + | 2.49096i | 0 | 2.16626 | + | 1.81861i | 0.870157 | − | 0.502386i | −2.63223 | + | 1.75253i | ||
67.11 | −0.682687 | − | 1.23852i | −1.62424 | + | 0.435215i | −1.06788 | + | 1.69105i | 1.15295 | − | 1.91591i | 1.64787 | + | 1.71455i | 0 | 2.82343 | + | 0.168132i | −0.149320 | + | 0.0862100i | −3.16000 | − | 0.119985i | ||
67.12 | −0.682687 | − | 1.23852i | 1.62424 | − | 0.435215i | −1.06788 | + | 1.69105i | −1.15295 | + | 1.91591i | −1.64787 | − | 1.71455i | 0 | 2.82343 | + | 0.168132i | −0.149320 | + | 0.0862100i | 3.16000 | + | 0.119985i | ||
67.13 | −0.0109473 | − | 1.41417i | −2.41256 | + | 0.646443i | −1.99976 | + | 0.0309628i | −1.90112 | − | 1.17717i | 0.940592 | + | 3.40469i | 0 | 0.0656787 | + | 2.82766i | 2.80447 | − | 1.61916i | −1.64391 | + | 2.70140i | ||
67.14 | −0.0109473 | − | 1.41417i | 2.41256 | − | 0.646443i | −1.99976 | + | 0.0309628i | 1.90112 | + | 1.17717i | −0.940592 | − | 3.40469i | 0 | 0.0656787 | + | 2.82766i | 2.80447 | − | 1.61916i | 1.64391 | − | 2.70140i | ||
67.15 | 0.326252 | + | 1.37607i | −1.93300 | + | 0.517947i | −1.78712 | + | 0.897890i | 2.17870 | + | 0.503254i | −1.34338 | − | 2.49096i | 0 | −1.81861 | − | 2.16626i | 0.870157 | − | 0.502386i | 0.0182956 | + | 3.16222i | ||
67.16 | 0.326252 | + | 1.37607i | 1.93300 | − | 0.517947i | −1.78712 | + | 0.897890i | −2.17870 | − | 0.503254i | 1.34338 | + | 2.49096i | 0 | −1.81861 | − | 2.16626i | 0.870157 | − | 0.502386i | −0.0182956 | − | 3.16222i | ||
67.17 | 0.601409 | + | 1.27996i | −0.625414 | + | 0.167579i | −1.27662 | + | 1.53956i | −0.117869 | + | 2.23296i | −0.590624 | − | 0.699723i | 0 | −2.73835 | − | 0.708115i | −2.23502 | + | 1.29039i | −2.92899 | + | 1.19205i | ||
67.18 | 0.601409 | + | 1.27996i | 0.625414 | − | 0.167579i | −1.27662 | + | 1.53956i | 0.117869 | − | 2.23296i | 0.590624 | + | 0.699723i | 0 | −2.73835 | − | 0.708115i | −2.23502 | + | 1.29039i | 2.92899 | − | 1.19205i | ||
67.19 | 0.716566 | − | 1.21923i | −2.41256 | + | 0.646443i | −0.973066 | − | 1.74732i | 1.90112 | + | 1.17717i | −0.940592 | + | 3.40469i | 0 | −2.82766 | − | 0.0656787i | 2.80447 | − | 1.61916i | 2.79753 | − | 1.47439i | ||
67.20 | 0.716566 | − | 1.21923i | 2.41256 | − | 0.646443i | −0.973066 | − | 1.74732i | −1.90112 | − | 1.17717i | 0.940592 | − | 3.40469i | 0 | −2.82766 | − | 0.0656787i | 2.80447 | − | 1.61916i | −2.79753 | + | 1.47439i | ||
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
20.e | even | 4 | 1 | inner |
28.d | even | 2 | 1 | inner |
28.f | even | 6 | 1 | inner |
28.g | odd | 6 | 1 | inner |
35.f | even | 4 | 1 | inner |
35.k | even | 12 | 1 | inner |
35.l | odd | 12 | 1 | inner |
140.j | odd | 4 | 1 | inner |
140.w | even | 12 | 1 | inner |
140.x | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.x.n | 112 | |
4.b | odd | 2 | 1 | inner | 980.2.x.n | 112 | |
5.c | odd | 4 | 1 | inner | 980.2.x.n | 112 | |
7.b | odd | 2 | 1 | inner | 980.2.x.n | 112 | |
7.c | even | 3 | 1 | 980.2.k.m | ✓ | 56 | |
7.c | even | 3 | 1 | inner | 980.2.x.n | 112 | |
7.d | odd | 6 | 1 | 980.2.k.m | ✓ | 56 | |
7.d | odd | 6 | 1 | inner | 980.2.x.n | 112 | |
20.e | even | 4 | 1 | inner | 980.2.x.n | 112 | |
28.d | even | 2 | 1 | inner | 980.2.x.n | 112 | |
28.f | even | 6 | 1 | 980.2.k.m | ✓ | 56 | |
28.f | even | 6 | 1 | inner | 980.2.x.n | 112 | |
28.g | odd | 6 | 1 | 980.2.k.m | ✓ | 56 | |
28.g | odd | 6 | 1 | inner | 980.2.x.n | 112 | |
35.f | even | 4 | 1 | inner | 980.2.x.n | 112 | |
35.k | even | 12 | 1 | 980.2.k.m | ✓ | 56 | |
35.k | even | 12 | 1 | inner | 980.2.x.n | 112 | |
35.l | odd | 12 | 1 | 980.2.k.m | ✓ | 56 | |
35.l | odd | 12 | 1 | inner | 980.2.x.n | 112 | |
140.j | odd | 4 | 1 | inner | 980.2.x.n | 112 | |
140.w | even | 12 | 1 | 980.2.k.m | ✓ | 56 | |
140.w | even | 12 | 1 | inner | 980.2.x.n | 112 | |
140.x | odd | 12 | 1 | 980.2.k.m | ✓ | 56 | |
140.x | odd | 12 | 1 | inner | 980.2.x.n | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
980.2.k.m | ✓ | 56 | 7.c | even | 3 | 1 | |
980.2.k.m | ✓ | 56 | 7.d | odd | 6 | 1 | |
980.2.k.m | ✓ | 56 | 28.f | even | 6 | 1 | |
980.2.k.m | ✓ | 56 | 28.g | odd | 6 | 1 | |
980.2.k.m | ✓ | 56 | 35.k | even | 12 | 1 | |
980.2.k.m | ✓ | 56 | 35.l | odd | 12 | 1 | |
980.2.k.m | ✓ | 56 | 140.w | even | 12 | 1 | |
980.2.k.m | ✓ | 56 | 140.x | odd | 12 | 1 | |
980.2.x.n | 112 | 1.a | even | 1 | 1 | trivial | |
980.2.x.n | 112 | 4.b | odd | 2 | 1 | inner | |
980.2.x.n | 112 | 5.c | odd | 4 | 1 | inner | |
980.2.x.n | 112 | 7.b | odd | 2 | 1 | inner | |
980.2.x.n | 112 | 7.c | even | 3 | 1 | inner | |
980.2.x.n | 112 | 7.d | odd | 6 | 1 | inner | |
980.2.x.n | 112 | 20.e | even | 4 | 1 | inner | |
980.2.x.n | 112 | 28.d | even | 2 | 1 | inner | |
980.2.x.n | 112 | 28.f | even | 6 | 1 | inner | |
980.2.x.n | 112 | 28.g | odd | 6 | 1 | inner | |
980.2.x.n | 112 | 35.f | even | 4 | 1 | inner | |
980.2.x.n | 112 | 35.k | even | 12 | 1 | inner | |
980.2.x.n | 112 | 35.l | odd | 12 | 1 | inner | |
980.2.x.n | 112 | 140.j | odd | 4 | 1 | inner | |
980.2.x.n | 112 | 140.w | even | 12 | 1 | inner | |
980.2.x.n | 112 | 140.x | odd | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\):
\( T_{3}^{56} - 243 T_{3}^{52} + 39046 T_{3}^{48} - 3499367 T_{3}^{44} + 225383934 T_{3}^{40} + \cdots + 13032100000000 \) |
\( T_{11}^{28} - 105 T_{11}^{26} + 6838 T_{11}^{24} - 281469 T_{11}^{22} + 8497430 T_{11}^{20} + \cdots + 577600000000 \) |
\( T_{13}^{28} + 2603 T_{13}^{24} + 1014243 T_{13}^{20} + 152453185 T_{13}^{16} + 9828930928 T_{13}^{12} + \cdots + 3321506250000 \) |