Properties

Label 9801.2.a.bd.1.3
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.53209\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.53209 q^{2} +0.347296 q^{4} +0.532089 q^{5} +2.87939 q^{7} -2.53209 q^{8} +0.815207 q^{10} -0.0641778 q^{13} +4.41147 q^{14} -4.57398 q^{16} +1.22668 q^{17} -0.411474 q^{19} +0.184793 q^{20} +4.22668 q^{23} -4.71688 q^{25} -0.0983261 q^{26} +1.00000 q^{28} -8.33275 q^{29} -7.94356 q^{31} -1.94356 q^{32} +1.87939 q^{34} +1.53209 q^{35} -8.94356 q^{37} -0.630415 q^{38} -1.34730 q^{40} +8.92902 q^{41} -11.4388 q^{43} +6.47565 q^{46} -3.85710 q^{47} +1.29086 q^{49} -7.22668 q^{50} -0.0222887 q^{52} -0.448311 q^{53} -7.29086 q^{56} -12.7665 q^{58} -13.6800 q^{59} +5.12061 q^{61} -12.1702 q^{62} +6.17024 q^{64} -0.0341483 q^{65} +9.84524 q^{67} +0.426022 q^{68} +2.34730 q^{70} -4.49020 q^{71} +8.96585 q^{73} -13.7023 q^{74} -0.142903 q^{76} +2.65270 q^{79} -2.43376 q^{80} +13.6800 q^{82} +5.63816 q^{83} +0.652704 q^{85} -17.5253 q^{86} -7.97090 q^{89} -0.184793 q^{91} +1.46791 q^{92} -5.90941 q^{94} -0.218941 q^{95} -9.90673 q^{97} +1.97771 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 3 q^{7} - 3 q^{8} + 6 q^{10} + 9 q^{13} + 3 q^{14} - 6 q^{16} - 3 q^{17} + 9 q^{19} - 3 q^{20} + 6 q^{23} - 6 q^{25} - 12 q^{26} + 3 q^{28} - 6 q^{29} - 9 q^{31} + 9 q^{32} - 12 q^{37} - 9 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53209 1.08335 0.541675 0.840588i \(-0.317790\pi\)
0.541675 + 0.840588i \(0.317790\pi\)
\(3\) 0 0
\(4\) 0.347296 0.173648
\(5\) 0.532089 0.237957 0.118979 0.992897i \(-0.462038\pi\)
0.118979 + 0.992897i \(0.462038\pi\)
\(6\) 0 0
\(7\) 2.87939 1.08831 0.544153 0.838986i \(-0.316851\pi\)
0.544153 + 0.838986i \(0.316851\pi\)
\(8\) −2.53209 −0.895229
\(9\) 0 0
\(10\) 0.815207 0.257791
\(11\) 0 0
\(12\) 0 0
\(13\) −0.0641778 −0.0177997 −0.00889986 0.999960i \(-0.502833\pi\)
−0.00889986 + 0.999960i \(0.502833\pi\)
\(14\) 4.41147 1.17902
\(15\) 0 0
\(16\) −4.57398 −1.14349
\(17\) 1.22668 0.297514 0.148757 0.988874i \(-0.452473\pi\)
0.148757 + 0.988874i \(0.452473\pi\)
\(18\) 0 0
\(19\) −0.411474 −0.0943986 −0.0471993 0.998885i \(-0.515030\pi\)
−0.0471993 + 0.998885i \(0.515030\pi\)
\(20\) 0.184793 0.0413209
\(21\) 0 0
\(22\) 0 0
\(23\) 4.22668 0.881324 0.440662 0.897673i \(-0.354744\pi\)
0.440662 + 0.897673i \(0.354744\pi\)
\(24\) 0 0
\(25\) −4.71688 −0.943376
\(26\) −0.0983261 −0.0192833
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −8.33275 −1.54735 −0.773676 0.633581i \(-0.781584\pi\)
−0.773676 + 0.633581i \(0.781584\pi\)
\(30\) 0 0
\(31\) −7.94356 −1.42671 −0.713353 0.700805i \(-0.752824\pi\)
−0.713353 + 0.700805i \(0.752824\pi\)
\(32\) −1.94356 −0.343577
\(33\) 0 0
\(34\) 1.87939 0.322312
\(35\) 1.53209 0.258970
\(36\) 0 0
\(37\) −8.94356 −1.47031 −0.735156 0.677898i \(-0.762891\pi\)
−0.735156 + 0.677898i \(0.762891\pi\)
\(38\) −0.630415 −0.102267
\(39\) 0 0
\(40\) −1.34730 −0.213026
\(41\) 8.92902 1.39448 0.697239 0.716839i \(-0.254412\pi\)
0.697239 + 0.716839i \(0.254412\pi\)
\(42\) 0 0
\(43\) −11.4388 −1.74440 −0.872201 0.489147i \(-0.837308\pi\)
−0.872201 + 0.489147i \(0.837308\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 6.47565 0.954783
\(47\) −3.85710 −0.562615 −0.281308 0.959618i \(-0.590768\pi\)
−0.281308 + 0.959618i \(0.590768\pi\)
\(48\) 0 0
\(49\) 1.29086 0.184408
\(50\) −7.22668 −1.02201
\(51\) 0 0
\(52\) −0.0222887 −0.00309089
\(53\) −0.448311 −0.0615802 −0.0307901 0.999526i \(-0.509802\pi\)
−0.0307901 + 0.999526i \(0.509802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.29086 −0.974282
\(57\) 0 0
\(58\) −12.7665 −1.67633
\(59\) −13.6800 −1.78099 −0.890495 0.454993i \(-0.849642\pi\)
−0.890495 + 0.454993i \(0.849642\pi\)
\(60\) 0 0
\(61\) 5.12061 0.655628 0.327814 0.944742i \(-0.393688\pi\)
0.327814 + 0.944742i \(0.393688\pi\)
\(62\) −12.1702 −1.54562
\(63\) 0 0
\(64\) 6.17024 0.771281
\(65\) −0.0341483 −0.00423557
\(66\) 0 0
\(67\) 9.84524 1.20279 0.601394 0.798953i \(-0.294612\pi\)
0.601394 + 0.798953i \(0.294612\pi\)
\(68\) 0.426022 0.0516628
\(69\) 0 0
\(70\) 2.34730 0.280556
\(71\) −4.49020 −0.532889 −0.266444 0.963850i \(-0.585849\pi\)
−0.266444 + 0.963850i \(0.585849\pi\)
\(72\) 0 0
\(73\) 8.96585 1.04937 0.524687 0.851295i \(-0.324182\pi\)
0.524687 + 0.851295i \(0.324182\pi\)
\(74\) −13.7023 −1.59286
\(75\) 0 0
\(76\) −0.142903 −0.0163922
\(77\) 0 0
\(78\) 0 0
\(79\) 2.65270 0.298452 0.149226 0.988803i \(-0.452322\pi\)
0.149226 + 0.988803i \(0.452322\pi\)
\(80\) −2.43376 −0.272103
\(81\) 0 0
\(82\) 13.6800 1.51071
\(83\) 5.63816 0.618868 0.309434 0.950921i \(-0.399860\pi\)
0.309434 + 0.950921i \(0.399860\pi\)
\(84\) 0 0
\(85\) 0.652704 0.0707957
\(86\) −17.5253 −1.88980
\(87\) 0 0
\(88\) 0 0
\(89\) −7.97090 −0.844914 −0.422457 0.906383i \(-0.638832\pi\)
−0.422457 + 0.906383i \(0.638832\pi\)
\(90\) 0 0
\(91\) −0.184793 −0.0193715
\(92\) 1.46791 0.153040
\(93\) 0 0
\(94\) −5.90941 −0.609510
\(95\) −0.218941 −0.0224629
\(96\) 0 0
\(97\) −9.90673 −1.00588 −0.502938 0.864323i \(-0.667748\pi\)
−0.502938 + 0.864323i \(0.667748\pi\)
\(98\) 1.97771 0.199779
\(99\) 0 0
\(100\) −1.63816 −0.163816
\(101\) 8.32770 0.828637 0.414318 0.910132i \(-0.364020\pi\)
0.414318 + 0.910132i \(0.364020\pi\)
\(102\) 0 0
\(103\) −13.2986 −1.31035 −0.655175 0.755477i \(-0.727405\pi\)
−0.655175 + 0.755477i \(0.727405\pi\)
\(104\) 0.162504 0.0159348
\(105\) 0 0
\(106\) −0.686852 −0.0667130
\(107\) −4.61587 −0.446233 −0.223116 0.974792i \(-0.571623\pi\)
−0.223116 + 0.974792i \(0.571623\pi\)
\(108\) 0 0
\(109\) 18.8280 1.80340 0.901698 0.432367i \(-0.142322\pi\)
0.901698 + 0.432367i \(0.142322\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −13.1702 −1.24447
\(113\) 2.69459 0.253486 0.126743 0.991936i \(-0.459548\pi\)
0.126743 + 0.991936i \(0.459548\pi\)
\(114\) 0 0
\(115\) 2.24897 0.209718
\(116\) −2.89393 −0.268695
\(117\) 0 0
\(118\) −20.9590 −1.92944
\(119\) 3.53209 0.323786
\(120\) 0 0
\(121\) 0 0
\(122\) 7.84524 0.710274
\(123\) 0 0
\(124\) −2.75877 −0.247745
\(125\) −5.17024 −0.462441
\(126\) 0 0
\(127\) 5.70233 0.506000 0.253000 0.967466i \(-0.418583\pi\)
0.253000 + 0.967466i \(0.418583\pi\)
\(128\) 13.3405 1.17914
\(129\) 0 0
\(130\) −0.0523182 −0.00458861
\(131\) −9.84255 −0.859947 −0.429974 0.902841i \(-0.641477\pi\)
−0.429974 + 0.902841i \(0.641477\pi\)
\(132\) 0 0
\(133\) −1.18479 −0.102735
\(134\) 15.0838 1.30304
\(135\) 0 0
\(136\) −3.10607 −0.266343
\(137\) −9.58853 −0.819203 −0.409602 0.912265i \(-0.634332\pi\)
−0.409602 + 0.912265i \(0.634332\pi\)
\(138\) 0 0
\(139\) 11.6040 0.984239 0.492120 0.870528i \(-0.336222\pi\)
0.492120 + 0.870528i \(0.336222\pi\)
\(140\) 0.532089 0.0449697
\(141\) 0 0
\(142\) −6.87939 −0.577305
\(143\) 0 0
\(144\) 0 0
\(145\) −4.43376 −0.368204
\(146\) 13.7365 1.13684
\(147\) 0 0
\(148\) −3.10607 −0.255317
\(149\) −20.5476 −1.68332 −0.841661 0.540006i \(-0.818422\pi\)
−0.841661 + 0.540006i \(0.818422\pi\)
\(150\) 0 0
\(151\) −16.7050 −1.35944 −0.679718 0.733474i \(-0.737898\pi\)
−0.679718 + 0.733474i \(0.737898\pi\)
\(152\) 1.04189 0.0845084
\(153\) 0 0
\(154\) 0 0
\(155\) −4.22668 −0.339495
\(156\) 0 0
\(157\) 11.1557 0.890322 0.445161 0.895451i \(-0.353147\pi\)
0.445161 + 0.895451i \(0.353147\pi\)
\(158\) 4.06418 0.323329
\(159\) 0 0
\(160\) −1.03415 −0.0817566
\(161\) 12.1702 0.959150
\(162\) 0 0
\(163\) 17.9145 1.40317 0.701585 0.712586i \(-0.252476\pi\)
0.701585 + 0.712586i \(0.252476\pi\)
\(164\) 3.10101 0.242149
\(165\) 0 0
\(166\) 8.63816 0.670451
\(167\) −3.15570 −0.244195 −0.122098 0.992518i \(-0.538962\pi\)
−0.122098 + 0.992518i \(0.538962\pi\)
\(168\) 0 0
\(169\) −12.9959 −0.999683
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) −3.97266 −0.302912
\(173\) −8.10101 −0.615909 −0.307954 0.951401i \(-0.599644\pi\)
−0.307954 + 0.951401i \(0.599644\pi\)
\(174\) 0 0
\(175\) −13.5817 −1.02668
\(176\) 0 0
\(177\) 0 0
\(178\) −12.2121 −0.915338
\(179\) 11.1506 0.833438 0.416719 0.909035i \(-0.363180\pi\)
0.416719 + 0.909035i \(0.363180\pi\)
\(180\) 0 0
\(181\) −1.50206 −0.111647 −0.0558236 0.998441i \(-0.517778\pi\)
−0.0558236 + 0.998441i \(0.517778\pi\)
\(182\) −0.283119 −0.0209861
\(183\) 0 0
\(184\) −10.7023 −0.788986
\(185\) −4.75877 −0.349872
\(186\) 0 0
\(187\) 0 0
\(188\) −1.33956 −0.0976971
\(189\) 0 0
\(190\) −0.335437 −0.0243351
\(191\) −12.6382 −0.914465 −0.457232 0.889347i \(-0.651159\pi\)
−0.457232 + 0.889347i \(0.651159\pi\)
\(192\) 0 0
\(193\) −1.63041 −0.117360 −0.0586799 0.998277i \(-0.518689\pi\)
−0.0586799 + 0.998277i \(0.518689\pi\)
\(194\) −15.1780 −1.08972
\(195\) 0 0
\(196\) 0.448311 0.0320222
\(197\) −7.44831 −0.530670 −0.265335 0.964156i \(-0.585483\pi\)
−0.265335 + 0.964156i \(0.585483\pi\)
\(198\) 0 0
\(199\) 12.8229 0.908995 0.454497 0.890748i \(-0.349819\pi\)
0.454497 + 0.890748i \(0.349819\pi\)
\(200\) 11.9436 0.844537
\(201\) 0 0
\(202\) 12.7588 0.897704
\(203\) −23.9932 −1.68399
\(204\) 0 0
\(205\) 4.75103 0.331826
\(206\) −20.3746 −1.41957
\(207\) 0 0
\(208\) 0.293548 0.0203539
\(209\) 0 0
\(210\) 0 0
\(211\) 2.82026 0.194155 0.0970773 0.995277i \(-0.469051\pi\)
0.0970773 + 0.995277i \(0.469051\pi\)
\(212\) −0.155697 −0.0106933
\(213\) 0 0
\(214\) −7.07192 −0.483426
\(215\) −6.08647 −0.415094
\(216\) 0 0
\(217\) −22.8726 −1.55269
\(218\) 28.8462 1.95371
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0787257 −0.00529566
\(222\) 0 0
\(223\) −10.3824 −0.695255 −0.347628 0.937633i \(-0.613013\pi\)
−0.347628 + 0.937633i \(0.613013\pi\)
\(224\) −5.59627 −0.373916
\(225\) 0 0
\(226\) 4.12836 0.274614
\(227\) −29.6682 −1.96915 −0.984573 0.174973i \(-0.944016\pi\)
−0.984573 + 0.174973i \(0.944016\pi\)
\(228\) 0 0
\(229\) −9.77332 −0.645839 −0.322920 0.946426i \(-0.604664\pi\)
−0.322920 + 0.946426i \(0.604664\pi\)
\(230\) 3.44562 0.227198
\(231\) 0 0
\(232\) 21.0993 1.38523
\(233\) −3.57398 −0.234139 −0.117070 0.993124i \(-0.537350\pi\)
−0.117070 + 0.993124i \(0.537350\pi\)
\(234\) 0 0
\(235\) −2.05232 −0.133878
\(236\) −4.75103 −0.309266
\(237\) 0 0
\(238\) 5.41147 0.350774
\(239\) −14.9240 −0.965351 −0.482675 0.875799i \(-0.660335\pi\)
−0.482675 + 0.875799i \(0.660335\pi\)
\(240\) 0 0
\(241\) 21.2344 1.36783 0.683915 0.729562i \(-0.260276\pi\)
0.683915 + 0.729562i \(0.260276\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 1.77837 0.113849
\(245\) 0.686852 0.0438814
\(246\) 0 0
\(247\) 0.0264075 0.00168027
\(248\) 20.1138 1.27723
\(249\) 0 0
\(250\) −7.92127 −0.500985
\(251\) 20.6955 1.30629 0.653145 0.757233i \(-0.273449\pi\)
0.653145 + 0.757233i \(0.273449\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.73648 0.548176
\(255\) 0 0
\(256\) 8.09833 0.506145
\(257\) 21.8503 1.36298 0.681492 0.731826i \(-0.261332\pi\)
0.681492 + 0.731826i \(0.261332\pi\)
\(258\) 0 0
\(259\) −25.7520 −1.60015
\(260\) −0.0118596 −0.000735499 0
\(261\) 0 0
\(262\) −15.0797 −0.931624
\(263\) 14.7023 0.906585 0.453292 0.891362i \(-0.350249\pi\)
0.453292 + 0.891362i \(0.350249\pi\)
\(264\) 0 0
\(265\) −0.238541 −0.0146535
\(266\) −1.81521 −0.111298
\(267\) 0 0
\(268\) 3.41921 0.208862
\(269\) −17.8298 −1.08710 −0.543550 0.839377i \(-0.682920\pi\)
−0.543550 + 0.839377i \(0.682920\pi\)
\(270\) 0 0
\(271\) −2.15570 −0.130949 −0.0654746 0.997854i \(-0.520856\pi\)
−0.0654746 + 0.997854i \(0.520856\pi\)
\(272\) −5.61081 −0.340206
\(273\) 0 0
\(274\) −14.6905 −0.887484
\(275\) 0 0
\(276\) 0 0
\(277\) −21.9368 −1.31805 −0.659026 0.752120i \(-0.729031\pi\)
−0.659026 + 0.752120i \(0.729031\pi\)
\(278\) 17.7784 1.06628
\(279\) 0 0
\(280\) −3.87939 −0.231838
\(281\) −21.9659 −1.31037 −0.655186 0.755467i \(-0.727410\pi\)
−0.655186 + 0.755467i \(0.727410\pi\)
\(282\) 0 0
\(283\) 11.2121 0.666492 0.333246 0.942840i \(-0.391856\pi\)
0.333246 + 0.942840i \(0.391856\pi\)
\(284\) −1.55943 −0.0925351
\(285\) 0 0
\(286\) 0 0
\(287\) 25.7101 1.51762
\(288\) 0 0
\(289\) −15.4953 −0.911485
\(290\) −6.79292 −0.398894
\(291\) 0 0
\(292\) 3.11381 0.182222
\(293\) 2.96316 0.173110 0.0865549 0.996247i \(-0.472414\pi\)
0.0865549 + 0.996247i \(0.472414\pi\)
\(294\) 0 0
\(295\) −7.27900 −0.423800
\(296\) 22.6459 1.31627
\(297\) 0 0
\(298\) −31.4807 −1.82363
\(299\) −0.271259 −0.0156873
\(300\) 0 0
\(301\) −32.9368 −1.89844
\(302\) −25.5936 −1.47274
\(303\) 0 0
\(304\) 1.88207 0.107944
\(305\) 2.72462 0.156011
\(306\) 0 0
\(307\) −1.19665 −0.0682965 −0.0341483 0.999417i \(-0.510872\pi\)
−0.0341483 + 0.999417i \(0.510872\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.47565 −0.367792
\(311\) −17.2003 −0.975338 −0.487669 0.873029i \(-0.662153\pi\)
−0.487669 + 0.873029i \(0.662153\pi\)
\(312\) 0 0
\(313\) 15.9513 0.901621 0.450810 0.892620i \(-0.351135\pi\)
0.450810 + 0.892620i \(0.351135\pi\)
\(314\) 17.0915 0.964530
\(315\) 0 0
\(316\) 0.921274 0.0518257
\(317\) −29.8726 −1.67781 −0.838906 0.544277i \(-0.816804\pi\)
−0.838906 + 0.544277i \(0.816804\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.28312 0.183532
\(321\) 0 0
\(322\) 18.6459 1.03910
\(323\) −0.504748 −0.0280849
\(324\) 0 0
\(325\) 0.302719 0.0167918
\(326\) 27.4466 1.52012
\(327\) 0 0
\(328\) −22.6091 −1.24838
\(329\) −11.1061 −0.612297
\(330\) 0 0
\(331\) 12.1506 0.667860 0.333930 0.942598i \(-0.391625\pi\)
0.333930 + 0.942598i \(0.391625\pi\)
\(332\) 1.95811 0.107465
\(333\) 0 0
\(334\) −4.83481 −0.264549
\(335\) 5.23854 0.286212
\(336\) 0 0
\(337\) −2.36184 −0.128658 −0.0643289 0.997929i \(-0.520491\pi\)
−0.0643289 + 0.997929i \(0.520491\pi\)
\(338\) −19.9108 −1.08301
\(339\) 0 0
\(340\) 0.226682 0.0122935
\(341\) 0 0
\(342\) 0 0
\(343\) −16.4388 −0.887613
\(344\) 28.9641 1.56164
\(345\) 0 0
\(346\) −12.4115 −0.667245
\(347\) −2.19160 −0.117651 −0.0588256 0.998268i \(-0.518736\pi\)
−0.0588256 + 0.998268i \(0.518736\pi\)
\(348\) 0 0
\(349\) 17.3892 0.930822 0.465411 0.885095i \(-0.345907\pi\)
0.465411 + 0.885095i \(0.345907\pi\)
\(350\) −20.8084 −1.11226
\(351\) 0 0
\(352\) 0 0
\(353\) 16.0051 0.851863 0.425931 0.904755i \(-0.359946\pi\)
0.425931 + 0.904755i \(0.359946\pi\)
\(354\) 0 0
\(355\) −2.38919 −0.126805
\(356\) −2.76827 −0.146718
\(357\) 0 0
\(358\) 17.0838 0.902906
\(359\) −8.38413 −0.442498 −0.221249 0.975217i \(-0.571013\pi\)
−0.221249 + 0.975217i \(0.571013\pi\)
\(360\) 0 0
\(361\) −18.8307 −0.991089
\(362\) −2.30129 −0.120953
\(363\) 0 0
\(364\) −0.0641778 −0.00336383
\(365\) 4.77063 0.249706
\(366\) 0 0
\(367\) −24.3037 −1.26864 −0.634320 0.773070i \(-0.718720\pi\)
−0.634320 + 0.773070i \(0.718720\pi\)
\(368\) −19.3327 −1.00779
\(369\) 0 0
\(370\) −7.29086 −0.379034
\(371\) −1.29086 −0.0670181
\(372\) 0 0
\(373\) −5.11112 −0.264644 −0.132322 0.991207i \(-0.542243\pi\)
−0.132322 + 0.991207i \(0.542243\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 9.76651 0.503669
\(377\) 0.534777 0.0275424
\(378\) 0 0
\(379\) −10.5253 −0.540647 −0.270324 0.962769i \(-0.587131\pi\)
−0.270324 + 0.962769i \(0.587131\pi\)
\(380\) −0.0760373 −0.00390063
\(381\) 0 0
\(382\) −19.3628 −0.990686
\(383\) −2.80241 −0.143197 −0.0715983 0.997434i \(-0.522810\pi\)
−0.0715983 + 0.997434i \(0.522810\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.49794 −0.127142
\(387\) 0 0
\(388\) −3.44057 −0.174668
\(389\) −0.829755 −0.0420703 −0.0210351 0.999779i \(-0.506696\pi\)
−0.0210351 + 0.999779i \(0.506696\pi\)
\(390\) 0 0
\(391\) 5.18479 0.262206
\(392\) −3.26857 −0.165088
\(393\) 0 0
\(394\) −11.4115 −0.574902
\(395\) 1.41147 0.0710190
\(396\) 0 0
\(397\) 13.0232 0.653617 0.326808 0.945091i \(-0.394027\pi\)
0.326808 + 0.945091i \(0.394027\pi\)
\(398\) 19.6459 0.984760
\(399\) 0 0
\(400\) 21.5749 1.07875
\(401\) −24.0642 −1.20171 −0.600854 0.799359i \(-0.705173\pi\)
−0.600854 + 0.799359i \(0.705173\pi\)
\(402\) 0 0
\(403\) 0.509800 0.0253950
\(404\) 2.89218 0.143891
\(405\) 0 0
\(406\) −36.7597 −1.82435
\(407\) 0 0
\(408\) 0 0
\(409\) −3.01279 −0.148973 −0.0744865 0.997222i \(-0.523732\pi\)
−0.0744865 + 0.997222i \(0.523732\pi\)
\(410\) 7.27900 0.359484
\(411\) 0 0
\(412\) −4.61856 −0.227540
\(413\) −39.3901 −1.93826
\(414\) 0 0
\(415\) 3.00000 0.147264
\(416\) 0.124734 0.00611557
\(417\) 0 0
\(418\) 0 0
\(419\) 3.87164 0.189142 0.0945711 0.995518i \(-0.469852\pi\)
0.0945711 + 0.995518i \(0.469852\pi\)
\(420\) 0 0
\(421\) −5.48515 −0.267330 −0.133665 0.991027i \(-0.542675\pi\)
−0.133665 + 0.991027i \(0.542675\pi\)
\(422\) 4.32089 0.210338
\(423\) 0 0
\(424\) 1.13516 0.0551284
\(425\) −5.78611 −0.280668
\(426\) 0 0
\(427\) 14.7442 0.713523
\(428\) −1.60307 −0.0774875
\(429\) 0 0
\(430\) −9.32501 −0.449692
\(431\) 27.1361 1.30710 0.653550 0.756883i \(-0.273279\pi\)
0.653550 + 0.756883i \(0.273279\pi\)
\(432\) 0 0
\(433\) 14.4361 0.693756 0.346878 0.937910i \(-0.387242\pi\)
0.346878 + 0.937910i \(0.387242\pi\)
\(434\) −35.0428 −1.68211
\(435\) 0 0
\(436\) 6.53890 0.313156
\(437\) −1.73917 −0.0831958
\(438\) 0 0
\(439\) 30.2276 1.44269 0.721343 0.692578i \(-0.243525\pi\)
0.721343 + 0.692578i \(0.243525\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.120615 −0.00573706
\(443\) −13.8999 −0.660405 −0.330203 0.943910i \(-0.607117\pi\)
−0.330203 + 0.943910i \(0.607117\pi\)
\(444\) 0 0
\(445\) −4.24123 −0.201054
\(446\) −15.9067 −0.753205
\(447\) 0 0
\(448\) 17.7665 0.839389
\(449\) 6.46017 0.304874 0.152437 0.988313i \(-0.451288\pi\)
0.152437 + 0.988313i \(0.451288\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.935822 0.0440174
\(453\) 0 0
\(454\) −45.4543 −2.13328
\(455\) −0.0983261 −0.00460960
\(456\) 0 0
\(457\) 5.91716 0.276793 0.138396 0.990377i \(-0.455805\pi\)
0.138396 + 0.990377i \(0.455805\pi\)
\(458\) −14.9736 −0.699670
\(459\) 0 0
\(460\) 0.781059 0.0364171
\(461\) 17.3455 0.807862 0.403931 0.914789i \(-0.367644\pi\)
0.403931 + 0.914789i \(0.367644\pi\)
\(462\) 0 0
\(463\) 16.5868 0.770853 0.385426 0.922739i \(-0.374054\pi\)
0.385426 + 0.922739i \(0.374054\pi\)
\(464\) 38.1138 1.76939
\(465\) 0 0
\(466\) −5.47565 −0.253655
\(467\) −14.6946 −0.679985 −0.339992 0.940428i \(-0.610424\pi\)
−0.339992 + 0.940428i \(0.610424\pi\)
\(468\) 0 0
\(469\) 28.3482 1.30900
\(470\) −3.14433 −0.145037
\(471\) 0 0
\(472\) 34.6391 1.59439
\(473\) 0 0
\(474\) 0 0
\(475\) 1.94087 0.0890534
\(476\) 1.22668 0.0562249
\(477\) 0 0
\(478\) −22.8648 −1.04581
\(479\) 2.08915 0.0954559 0.0477280 0.998860i \(-0.484802\pi\)
0.0477280 + 0.998860i \(0.484802\pi\)
\(480\) 0 0
\(481\) 0.573978 0.0261711
\(482\) 32.5330 1.48184
\(483\) 0 0
\(484\) 0 0
\(485\) −5.27126 −0.239356
\(486\) 0 0
\(487\) 7.74186 0.350817 0.175409 0.984496i \(-0.443875\pi\)
0.175409 + 0.984496i \(0.443875\pi\)
\(488\) −12.9659 −0.586937
\(489\) 0 0
\(490\) 1.05232 0.0475389
\(491\) 6.08471 0.274599 0.137300 0.990530i \(-0.456158\pi\)
0.137300 + 0.990530i \(0.456158\pi\)
\(492\) 0 0
\(493\) −10.2216 −0.460359
\(494\) 0.0404586 0.00182032
\(495\) 0 0
\(496\) 36.3337 1.63143
\(497\) −12.9290 −0.579946
\(498\) 0 0
\(499\) 1.77063 0.0792643 0.0396321 0.999214i \(-0.487381\pi\)
0.0396321 + 0.999214i \(0.487381\pi\)
\(500\) −1.79561 −0.0803020
\(501\) 0 0
\(502\) 31.7074 1.41517
\(503\) 2.96822 0.132346 0.0661731 0.997808i \(-0.478921\pi\)
0.0661731 + 0.997808i \(0.478921\pi\)
\(504\) 0 0
\(505\) 4.43107 0.197180
\(506\) 0 0
\(507\) 0 0
\(508\) 1.98040 0.0878660
\(509\) 37.4201 1.65862 0.829309 0.558790i \(-0.188734\pi\)
0.829309 + 0.558790i \(0.188734\pi\)
\(510\) 0 0
\(511\) 25.8161 1.14204
\(512\) −14.2736 −0.630811
\(513\) 0 0
\(514\) 33.4766 1.47659
\(515\) −7.07604 −0.311807
\(516\) 0 0
\(517\) 0 0
\(518\) −39.4543 −1.73352
\(519\) 0 0
\(520\) 0.0864665 0.00379181
\(521\) −32.1739 −1.40956 −0.704781 0.709425i \(-0.748955\pi\)
−0.704781 + 0.709425i \(0.748955\pi\)
\(522\) 0 0
\(523\) 20.3773 0.891038 0.445519 0.895272i \(-0.353019\pi\)
0.445519 + 0.895272i \(0.353019\pi\)
\(524\) −3.41828 −0.149328
\(525\) 0 0
\(526\) 22.5253 0.982149
\(527\) −9.74422 −0.424465
\(528\) 0 0
\(529\) −5.13516 −0.223268
\(530\) −0.365466 −0.0158748
\(531\) 0 0
\(532\) −0.411474 −0.0178397
\(533\) −0.573044 −0.0248213
\(534\) 0 0
\(535\) −2.45605 −0.106184
\(536\) −24.9290 −1.07677
\(537\) 0 0
\(538\) −27.3168 −1.17771
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0591 0.647442 0.323721 0.946153i \(-0.395066\pi\)
0.323721 + 0.946153i \(0.395066\pi\)
\(542\) −3.30272 −0.141864
\(543\) 0 0
\(544\) −2.38413 −0.102219
\(545\) 10.0182 0.429131
\(546\) 0 0
\(547\) −24.8476 −1.06241 −0.531203 0.847244i \(-0.678260\pi\)
−0.531203 + 0.847244i \(0.678260\pi\)
\(548\) −3.33006 −0.142253
\(549\) 0 0
\(550\) 0 0
\(551\) 3.42871 0.146068
\(552\) 0 0
\(553\) 7.63816 0.324807
\(554\) −33.6091 −1.42791
\(555\) 0 0
\(556\) 4.03003 0.170911
\(557\) 17.3746 0.736187 0.368094 0.929789i \(-0.380011\pi\)
0.368094 + 0.929789i \(0.380011\pi\)
\(558\) 0 0
\(559\) 0.734118 0.0310499
\(560\) −7.00774 −0.296131
\(561\) 0 0
\(562\) −33.6536 −1.41959
\(563\) 20.6168 0.868895 0.434447 0.900697i \(-0.356944\pi\)
0.434447 + 0.900697i \(0.356944\pi\)
\(564\) 0 0
\(565\) 1.43376 0.0603189
\(566\) 17.1780 0.722045
\(567\) 0 0
\(568\) 11.3696 0.477057
\(569\) −8.79385 −0.368657 −0.184329 0.982865i \(-0.559011\pi\)
−0.184329 + 0.982865i \(0.559011\pi\)
\(570\) 0 0
\(571\) 22.1685 0.927722 0.463861 0.885908i \(-0.346464\pi\)
0.463861 + 0.885908i \(0.346464\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 39.3901 1.64411
\(575\) −19.9368 −0.831420
\(576\) 0 0
\(577\) 3.41147 0.142022 0.0710108 0.997476i \(-0.477378\pi\)
0.0710108 + 0.997476i \(0.477378\pi\)
\(578\) −23.7401 −0.987458
\(579\) 0 0
\(580\) −1.53983 −0.0639379
\(581\) 16.2344 0.673517
\(582\) 0 0
\(583\) 0 0
\(584\) −22.7023 −0.939429
\(585\) 0 0
\(586\) 4.53983 0.187539
\(587\) 30.6441 1.26482 0.632410 0.774634i \(-0.282066\pi\)
0.632410 + 0.774634i \(0.282066\pi\)
\(588\) 0 0
\(589\) 3.26857 0.134679
\(590\) −11.1521 −0.459124
\(591\) 0 0
\(592\) 40.9077 1.68129
\(593\) −26.5904 −1.09194 −0.545968 0.837806i \(-0.683838\pi\)
−0.545968 + 0.837806i \(0.683838\pi\)
\(594\) 0 0
\(595\) 1.87939 0.0770473
\(596\) −7.13610 −0.292306
\(597\) 0 0
\(598\) −0.415593 −0.0169949
\(599\) 27.8999 1.13996 0.569980 0.821659i \(-0.306951\pi\)
0.569980 + 0.821659i \(0.306951\pi\)
\(600\) 0 0
\(601\) −39.7820 −1.62274 −0.811371 0.584532i \(-0.801278\pi\)
−0.811371 + 0.584532i \(0.801278\pi\)
\(602\) −50.4620 −2.05668
\(603\) 0 0
\(604\) −5.80159 −0.236063
\(605\) 0 0
\(606\) 0 0
\(607\) 20.6955 0.840006 0.420003 0.907523i \(-0.362029\pi\)
0.420003 + 0.907523i \(0.362029\pi\)
\(608\) 0.799726 0.0324332
\(609\) 0 0
\(610\) 4.17436 0.169015
\(611\) 0.247540 0.0100144
\(612\) 0 0
\(613\) 8.05232 0.325230 0.162615 0.986690i \(-0.448007\pi\)
0.162615 + 0.986690i \(0.448007\pi\)
\(614\) −1.83338 −0.0739891
\(615\) 0 0
\(616\) 0 0
\(617\) 0.591214 0.0238014 0.0119007 0.999929i \(-0.496212\pi\)
0.0119007 + 0.999929i \(0.496212\pi\)
\(618\) 0 0
\(619\) 11.3378 0.455705 0.227852 0.973696i \(-0.426830\pi\)
0.227852 + 0.973696i \(0.426830\pi\)
\(620\) −1.46791 −0.0589527
\(621\) 0 0
\(622\) −26.3523 −1.05663
\(623\) −22.9513 −0.919525
\(624\) 0 0
\(625\) 20.8334 0.833335
\(626\) 24.4388 0.976772
\(627\) 0 0
\(628\) 3.87433 0.154603
\(629\) −10.9709 −0.437439
\(630\) 0 0
\(631\) −16.3259 −0.649925 −0.324963 0.945727i \(-0.605352\pi\)
−0.324963 + 0.945727i \(0.605352\pi\)
\(632\) −6.71688 −0.267183
\(633\) 0 0
\(634\) −45.7674 −1.81766
\(635\) 3.03415 0.120407
\(636\) 0 0
\(637\) −0.0828445 −0.00328242
\(638\) 0 0
\(639\) 0 0
\(640\) 7.09833 0.280586
\(641\) 1.58347 0.0625434 0.0312717 0.999511i \(-0.490044\pi\)
0.0312717 + 0.999511i \(0.490044\pi\)
\(642\) 0 0
\(643\) 39.2253 1.54689 0.773446 0.633862i \(-0.218531\pi\)
0.773446 + 0.633862i \(0.218531\pi\)
\(644\) 4.22668 0.166555
\(645\) 0 0
\(646\) −0.773318 −0.0304258
\(647\) −44.3729 −1.74448 −0.872239 0.489080i \(-0.837333\pi\)
−0.872239 + 0.489080i \(0.837333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0.463792 0.0181914
\(651\) 0 0
\(652\) 6.22163 0.243658
\(653\) −18.3969 −0.719927 −0.359964 0.932966i \(-0.617211\pi\)
−0.359964 + 0.932966i \(0.617211\pi\)
\(654\) 0 0
\(655\) −5.23711 −0.204631
\(656\) −40.8411 −1.59458
\(657\) 0 0
\(658\) −17.0155 −0.663333
\(659\) −42.6418 −1.66109 −0.830544 0.556953i \(-0.811970\pi\)
−0.830544 + 0.556953i \(0.811970\pi\)
\(660\) 0 0
\(661\) −14.3678 −0.558844 −0.279422 0.960168i \(-0.590143\pi\)
−0.279422 + 0.960168i \(0.590143\pi\)
\(662\) 18.6159 0.723526
\(663\) 0 0
\(664\) −14.2763 −0.554028
\(665\) −0.630415 −0.0244464
\(666\) 0 0
\(667\) −35.2199 −1.36372
\(668\) −1.09596 −0.0424040
\(669\) 0 0
\(670\) 8.02591 0.310068
\(671\) 0 0
\(672\) 0 0
\(673\) 2.13753 0.0823956 0.0411978 0.999151i \(-0.486883\pi\)
0.0411978 + 0.999151i \(0.486883\pi\)
\(674\) −3.61856 −0.139382
\(675\) 0 0
\(676\) −4.51342 −0.173593
\(677\) −34.2449 −1.31614 −0.658068 0.752958i \(-0.728626\pi\)
−0.658068 + 0.752958i \(0.728626\pi\)
\(678\) 0 0
\(679\) −28.5253 −1.09470
\(680\) −1.65270 −0.0633783
\(681\) 0 0
\(682\) 0 0
\(683\) 34.0898 1.30441 0.652204 0.758043i \(-0.273844\pi\)
0.652204 + 0.758043i \(0.273844\pi\)
\(684\) 0 0
\(685\) −5.10195 −0.194935
\(686\) −25.1857 −0.961595
\(687\) 0 0
\(688\) 52.3209 1.99472
\(689\) 0.0287716 0.00109611
\(690\) 0 0
\(691\) 31.4516 1.19648 0.598238 0.801319i \(-0.295868\pi\)
0.598238 + 0.801319i \(0.295868\pi\)
\(692\) −2.81345 −0.106951
\(693\) 0 0
\(694\) −3.35773 −0.127458
\(695\) 6.17436 0.234207
\(696\) 0 0
\(697\) 10.9531 0.414877
\(698\) 26.6418 1.00841
\(699\) 0 0
\(700\) −4.71688 −0.178281
\(701\) 2.15476 0.0813843 0.0406921 0.999172i \(-0.487044\pi\)
0.0406921 + 0.999172i \(0.487044\pi\)
\(702\) 0 0
\(703\) 3.68004 0.138796
\(704\) 0 0
\(705\) 0 0
\(706\) 24.5212 0.922866
\(707\) 23.9786 0.901810
\(708\) 0 0
\(709\) −37.5371 −1.40974 −0.704868 0.709338i \(-0.748994\pi\)
−0.704868 + 0.709338i \(0.748994\pi\)
\(710\) −3.66044 −0.137374
\(711\) 0 0
\(712\) 20.1830 0.756391
\(713\) −33.5749 −1.25739
\(714\) 0 0
\(715\) 0 0
\(716\) 3.87258 0.144725
\(717\) 0 0
\(718\) −12.8452 −0.479380
\(719\) 50.2063 1.87238 0.936189 0.351498i \(-0.114327\pi\)
0.936189 + 0.351498i \(0.114327\pi\)
\(720\) 0 0
\(721\) −38.2918 −1.42606
\(722\) −28.8503 −1.07370
\(723\) 0 0
\(724\) −0.521660 −0.0193873
\(725\) 39.3046 1.45974
\(726\) 0 0
\(727\) −9.80933 −0.363808 −0.181904 0.983316i \(-0.558226\pi\)
−0.181904 + 0.983316i \(0.558226\pi\)
\(728\) 0.467911 0.0173419
\(729\) 0 0
\(730\) 7.30903 0.270519
\(731\) −14.0318 −0.518984
\(732\) 0 0
\(733\) 14.2371 0.525860 0.262930 0.964815i \(-0.415311\pi\)
0.262930 + 0.964815i \(0.415311\pi\)
\(734\) −37.2354 −1.37438
\(735\) 0 0
\(736\) −8.21482 −0.302802
\(737\) 0 0
\(738\) 0 0
\(739\) −26.1557 −0.962153 −0.481076 0.876679i \(-0.659754\pi\)
−0.481076 + 0.876679i \(0.659754\pi\)
\(740\) −1.65270 −0.0607546
\(741\) 0 0
\(742\) −1.97771 −0.0726041
\(743\) −20.5871 −0.755267 −0.377634 0.925955i \(-0.623262\pi\)
−0.377634 + 0.925955i \(0.623262\pi\)
\(744\) 0 0
\(745\) −10.9331 −0.400559
\(746\) −7.83069 −0.286702
\(747\) 0 0
\(748\) 0 0
\(749\) −13.2909 −0.485637
\(750\) 0 0
\(751\) 42.4448 1.54883 0.774416 0.632676i \(-0.218044\pi\)
0.774416 + 0.632676i \(0.218044\pi\)
\(752\) 17.6423 0.643348
\(753\) 0 0
\(754\) 0.819326 0.0298381
\(755\) −8.88856 −0.323488
\(756\) 0 0
\(757\) −18.1762 −0.660626 −0.330313 0.943871i \(-0.607154\pi\)
−0.330313 + 0.943871i \(0.607154\pi\)
\(758\) −16.1257 −0.585711
\(759\) 0 0
\(760\) 0.554378 0.0201094
\(761\) 16.8316 0.610146 0.305073 0.952329i \(-0.401319\pi\)
0.305073 + 0.952329i \(0.401319\pi\)
\(762\) 0 0
\(763\) 54.2131 1.96264
\(764\) −4.38919 −0.158795
\(765\) 0 0
\(766\) −4.29355 −0.155132
\(767\) 0.877955 0.0317011
\(768\) 0 0
\(769\) 9.31078 0.335755 0.167878 0.985808i \(-0.446309\pi\)
0.167878 + 0.985808i \(0.446309\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.566237 −0.0203793
\(773\) 52.1976 1.87742 0.938708 0.344712i \(-0.112024\pi\)
0.938708 + 0.344712i \(0.112024\pi\)
\(774\) 0 0
\(775\) 37.4688 1.34592
\(776\) 25.0847 0.900489
\(777\) 0 0
\(778\) −1.27126 −0.0455768
\(779\) −3.67406 −0.131637
\(780\) 0 0
\(781\) 0 0
\(782\) 7.94356 0.284061
\(783\) 0 0
\(784\) −5.90436 −0.210870
\(785\) 5.93582 0.211859
\(786\) 0 0
\(787\) −36.6982 −1.30815 −0.654075 0.756430i \(-0.726942\pi\)
−0.654075 + 0.756430i \(0.726942\pi\)
\(788\) −2.58677 −0.0921499
\(789\) 0 0
\(790\) 2.16250 0.0769384
\(791\) 7.75877 0.275870
\(792\) 0 0
\(793\) −0.328630 −0.0116700
\(794\) 19.9527 0.708096
\(795\) 0 0
\(796\) 4.45336 0.157845
\(797\) −15.2175 −0.539032 −0.269516 0.962996i \(-0.586864\pi\)
−0.269516 + 0.962996i \(0.586864\pi\)
\(798\) 0 0
\(799\) −4.73143 −0.167386
\(800\) 9.16756 0.324122
\(801\) 0 0
\(802\) −36.8685 −1.30187
\(803\) 0 0
\(804\) 0 0
\(805\) 6.47565 0.228237
\(806\) 0.781059 0.0275116
\(807\) 0 0
\(808\) −21.0865 −0.741819
\(809\) 23.1334 0.813327 0.406664 0.913578i \(-0.366692\pi\)
0.406664 + 0.913578i \(0.366692\pi\)
\(810\) 0 0
\(811\) 31.5681 1.10851 0.554253 0.832348i \(-0.313004\pi\)
0.554253 + 0.832348i \(0.313004\pi\)
\(812\) −8.33275 −0.292422
\(813\) 0 0
\(814\) 0 0
\(815\) 9.53209 0.333895
\(816\) 0 0
\(817\) 4.70678 0.164669
\(818\) −4.61587 −0.161390
\(819\) 0 0
\(820\) 1.65002 0.0576210
\(821\) −3.85710 −0.134614 −0.0673068 0.997732i \(-0.521441\pi\)
−0.0673068 + 0.997732i \(0.521441\pi\)
\(822\) 0 0
\(823\) 9.12330 0.318018 0.159009 0.987277i \(-0.449170\pi\)
0.159009 + 0.987277i \(0.449170\pi\)
\(824\) 33.6732 1.17306
\(825\) 0 0
\(826\) −60.3492 −2.09982
\(827\) 18.6117 0.647194 0.323597 0.946195i \(-0.395108\pi\)
0.323597 + 0.946195i \(0.395108\pi\)
\(828\) 0 0
\(829\) 16.8958 0.586815 0.293408 0.955987i \(-0.405211\pi\)
0.293408 + 0.955987i \(0.405211\pi\)
\(830\) 4.59627 0.159539
\(831\) 0 0
\(832\) −0.395993 −0.0137286
\(833\) 1.58347 0.0548641
\(834\) 0 0
\(835\) −1.67911 −0.0581080
\(836\) 0 0
\(837\) 0 0
\(838\) 5.93170 0.204907
\(839\) −34.8907 −1.20456 −0.602281 0.798284i \(-0.705741\pi\)
−0.602281 + 0.798284i \(0.705741\pi\)
\(840\) 0 0
\(841\) 40.4347 1.39430
\(842\) −8.40373 −0.289612
\(843\) 0 0
\(844\) 0.979466 0.0337146
\(845\) −6.91496 −0.237882
\(846\) 0 0
\(847\) 0 0
\(848\) 2.05056 0.0704166
\(849\) 0 0
\(850\) −8.86484 −0.304061
\(851\) −37.8016 −1.29582
\(852\) 0 0
\(853\) 44.6647 1.52929 0.764645 0.644452i \(-0.222914\pi\)
0.764645 + 0.644452i \(0.222914\pi\)
\(854\) 22.5895 0.772995
\(855\) 0 0
\(856\) 11.6878 0.399480
\(857\) −25.6382 −0.875783 −0.437891 0.899028i \(-0.644275\pi\)
−0.437891 + 0.899028i \(0.644275\pi\)
\(858\) 0 0
\(859\) 7.45573 0.254386 0.127193 0.991878i \(-0.459403\pi\)
0.127193 + 0.991878i \(0.459403\pi\)
\(860\) −2.11381 −0.0720802
\(861\) 0 0
\(862\) 41.5749 1.41605
\(863\) −46.3201 −1.57675 −0.788377 0.615193i \(-0.789078\pi\)
−0.788377 + 0.615193i \(0.789078\pi\)
\(864\) 0 0
\(865\) −4.31046 −0.146560
\(866\) 22.1174 0.751581
\(867\) 0 0
\(868\) −7.94356 −0.269622
\(869\) 0 0
\(870\) 0 0
\(871\) −0.631845 −0.0214093
\(872\) −47.6742 −1.61445
\(873\) 0 0
\(874\) −2.66456 −0.0901302
\(875\) −14.8871 −0.503277
\(876\) 0 0
\(877\) 48.6272 1.64202 0.821012 0.570910i \(-0.193410\pi\)
0.821012 + 0.570910i \(0.193410\pi\)
\(878\) 46.3114 1.56293
\(879\) 0 0
\(880\) 0 0
\(881\) −21.4320 −0.722063 −0.361031 0.932554i \(-0.617575\pi\)
−0.361031 + 0.932554i \(0.617575\pi\)
\(882\) 0 0
\(883\) 38.6932 1.30213 0.651064 0.759023i \(-0.274323\pi\)
0.651064 + 0.759023i \(0.274323\pi\)
\(884\) −0.0273411 −0.000919582 0
\(885\) 0 0
\(886\) −21.2959 −0.715450
\(887\) −11.4243 −0.383589 −0.191795 0.981435i \(-0.561431\pi\)
−0.191795 + 0.981435i \(0.561431\pi\)
\(888\) 0 0
\(889\) 16.4192 0.550683
\(890\) −6.49794 −0.217811
\(891\) 0 0
\(892\) −3.60576 −0.120730
\(893\) 1.58710 0.0531101
\(894\) 0 0
\(895\) 5.93313 0.198323
\(896\) 38.4124 1.28327
\(897\) 0 0
\(898\) 9.89756 0.330286
\(899\) 66.1917 2.20762
\(900\) 0 0
\(901\) −0.549935 −0.0183210
\(902\) 0 0
\(903\) 0 0
\(904\) −6.82295 −0.226928
\(905\) −0.799229 −0.0265673
\(906\) 0 0
\(907\) 7.65951 0.254330 0.127165 0.991882i \(-0.459412\pi\)
0.127165 + 0.991882i \(0.459412\pi\)
\(908\) −10.3037 −0.341939
\(909\) 0 0
\(910\) −0.150644 −0.00499381
\(911\) −47.1611 −1.56252 −0.781258 0.624208i \(-0.785422\pi\)
−0.781258 + 0.624208i \(0.785422\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 9.06561 0.299864
\(915\) 0 0
\(916\) −3.39424 −0.112149
\(917\) −28.3405 −0.935885
\(918\) 0 0
\(919\) −43.3378 −1.42958 −0.714791 0.699338i \(-0.753478\pi\)
−0.714791 + 0.699338i \(0.753478\pi\)
\(920\) −5.69459 −0.187745
\(921\) 0 0
\(922\) 26.5749 0.875198
\(923\) 0.288171 0.00948526
\(924\) 0 0
\(925\) 42.1857 1.38706
\(926\) 25.4124 0.835104
\(927\) 0 0
\(928\) 16.1952 0.531634
\(929\) −36.9614 −1.21266 −0.606332 0.795211i \(-0.707360\pi\)
−0.606332 + 0.795211i \(0.707360\pi\)
\(930\) 0 0
\(931\) −0.531155 −0.0174079
\(932\) −1.24123 −0.0406578
\(933\) 0 0
\(934\) −22.5134 −0.736662
\(935\) 0 0
\(936\) 0 0
\(937\) −19.1506 −0.625624 −0.312812 0.949815i \(-0.601271\pi\)
−0.312812 + 0.949815i \(0.601271\pi\)
\(938\) 43.4320 1.41811
\(939\) 0 0
\(940\) −0.712763 −0.0232478
\(941\) 23.7155 0.773102 0.386551 0.922268i \(-0.373666\pi\)
0.386551 + 0.922268i \(0.373666\pi\)
\(942\) 0 0
\(943\) 37.7401 1.22899
\(944\) 62.5722 2.03655
\(945\) 0 0
\(946\) 0 0
\(947\) −5.12660 −0.166592 −0.0832961 0.996525i \(-0.526545\pi\)
−0.0832961 + 0.996525i \(0.526545\pi\)
\(948\) 0 0
\(949\) −0.575408 −0.0186785
\(950\) 2.97359 0.0964761
\(951\) 0 0
\(952\) −8.94356 −0.289863
\(953\) −5.37969 −0.174265 −0.0871326 0.996197i \(-0.527770\pi\)
−0.0871326 + 0.996197i \(0.527770\pi\)
\(954\) 0 0
\(955\) −6.72462 −0.217604
\(956\) −5.18304 −0.167631
\(957\) 0 0
\(958\) 3.20077 0.103412
\(959\) −27.6091 −0.891543
\(960\) 0 0
\(961\) 32.1002 1.03549
\(962\) 0.879385 0.0283525
\(963\) 0 0
\(964\) 7.37464 0.237521
\(965\) −0.867526 −0.0279266
\(966\) 0 0
\(967\) −12.2267 −0.393184 −0.196592 0.980485i \(-0.562987\pi\)
−0.196592 + 0.980485i \(0.562987\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −8.07604 −0.259306
\(971\) 33.5262 1.07591 0.537954 0.842974i \(-0.319198\pi\)
0.537954 + 0.842974i \(0.319198\pi\)
\(972\) 0 0
\(973\) 33.4124 1.07115
\(974\) 11.8612 0.380058
\(975\) 0 0
\(976\) −23.4216 −0.749706
\(977\) −42.3783 −1.35580 −0.677900 0.735154i \(-0.737110\pi\)
−0.677900 + 0.735154i \(0.737110\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.238541 0.00761992
\(981\) 0 0
\(982\) 9.32232 0.297487
\(983\) −4.87527 −0.155497 −0.0777484 0.996973i \(-0.524773\pi\)
−0.0777484 + 0.996973i \(0.524773\pi\)
\(984\) 0 0
\(985\) −3.96316 −0.126277
\(986\) −15.6604 −0.498730
\(987\) 0 0
\(988\) 0.00917123 0.000291776 0
\(989\) −48.3482 −1.53738
\(990\) 0 0
\(991\) 8.03952 0.255384 0.127692 0.991814i \(-0.459243\pi\)
0.127692 + 0.991814i \(0.459243\pi\)
\(992\) 15.4388 0.490183
\(993\) 0 0
\(994\) −19.8084 −0.628284
\(995\) 6.82295 0.216302
\(996\) 0 0
\(997\) −37.4056 −1.18465 −0.592324 0.805700i \(-0.701789\pi\)
−0.592324 + 0.805700i \(0.701789\pi\)
\(998\) 2.71276 0.0858710
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.bd.1.3 3
3.2 odd 2 9801.2.a.be.1.1 3
9.2 odd 6 1089.2.e.h.364.3 6
9.5 odd 6 1089.2.e.h.727.3 6
11.10 odd 2 891.2.a.k.1.1 3
33.32 even 2 891.2.a.l.1.3 3
99.32 even 6 99.2.e.d.34.1 6
99.43 odd 6 297.2.e.d.199.3 6
99.65 even 6 99.2.e.d.67.1 yes 6
99.76 odd 6 297.2.e.d.100.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.d.34.1 6 99.32 even 6
99.2.e.d.67.1 yes 6 99.65 even 6
297.2.e.d.100.3 6 99.76 odd 6
297.2.e.d.199.3 6 99.43 odd 6
891.2.a.k.1.1 3 11.10 odd 2
891.2.a.l.1.3 3 33.32 even 2
1089.2.e.h.364.3 6 9.2 odd 6
1089.2.e.h.727.3 6 9.5 odd 6
9801.2.a.bd.1.3 3 1.1 even 1 trivial
9801.2.a.be.1.1 3 3.2 odd 2