Properties

Label 99.4.a.d.1.1
Level $99$
Weight $4$
Character 99.1
Self dual yes
Analytic conductor $5.841$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(1,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.84118909057\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.46410 q^{2} +11.9282 q^{4} -6.53590 q^{5} +9.32051 q^{7} -17.5359 q^{8} +O(q^{10})\) \(q-4.46410 q^{2} +11.9282 q^{4} -6.53590 q^{5} +9.32051 q^{7} -17.5359 q^{8} +29.1769 q^{10} +11.0000 q^{11} +1.89488 q^{13} -41.6077 q^{14} -17.1436 q^{16} -61.2154 q^{17} -121.923 q^{19} -77.9615 q^{20} -49.1051 q^{22} -117.177 q^{23} -82.2820 q^{25} -8.45895 q^{26} +111.177 q^{28} +139.990 q^{29} -314.067 q^{31} +216.818 q^{32} +273.272 q^{34} -60.9179 q^{35} +88.6410 q^{37} +544.277 q^{38} +114.613 q^{40} -92.1436 q^{41} +396.697 q^{43} +131.210 q^{44} +523.090 q^{46} +82.7461 q^{47} -256.128 q^{49} +367.315 q^{50} +22.6025 q^{52} -581.787 q^{53} -71.8949 q^{55} -163.443 q^{56} -624.928 q^{58} -697.338 q^{59} +184.095 q^{61} +1402.03 q^{62} -830.749 q^{64} -12.3848 q^{65} -219.405 q^{67} -730.190 q^{68} +271.944 q^{70} +886.628 q^{71} +338.708 q^{73} -395.703 q^{74} -1454.32 q^{76} +102.526 q^{77} +208.536 q^{79} +112.049 q^{80} +411.338 q^{82} -463.923 q^{83} +400.098 q^{85} -1770.90 q^{86} -192.895 q^{88} -1137.68 q^{89} +17.6613 q^{91} -1397.71 q^{92} -369.387 q^{94} +796.877 q^{95} +1522.49 q^{97} +1143.38 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 10 q^{4} - 20 q^{5} - 16 q^{7} - 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 10 q^{4} - 20 q^{5} - 16 q^{7} - 42 q^{8} - 4 q^{10} + 22 q^{11} + 80 q^{13} - 104 q^{14} - 62 q^{16} - 164 q^{17} - 36 q^{19} - 52 q^{20} - 22 q^{22} - 172 q^{23} - 26 q^{25} + 184 q^{26} + 160 q^{28} - 108 q^{29} - 448 q^{31} + 302 q^{32} + 20 q^{34} + 280 q^{35} + 108 q^{37} + 756 q^{38} + 444 q^{40} - 212 q^{41} + 156 q^{43} + 110 q^{44} + 388 q^{46} + 20 q^{47} + 42 q^{49} + 506 q^{50} - 128 q^{52} + 132 q^{53} - 220 q^{55} + 456 q^{56} - 1236 q^{58} - 688 q^{59} - 96 q^{61} + 1072 q^{62} - 262 q^{64} - 1064 q^{65} + 448 q^{67} - 532 q^{68} + 1112 q^{70} - 132 q^{71} + 428 q^{73} - 348 q^{74} - 1620 q^{76} - 176 q^{77} + 424 q^{79} + 716 q^{80} + 116 q^{82} - 720 q^{83} + 1784 q^{85} - 2364 q^{86} - 462 q^{88} - 1056 q^{89} - 1960 q^{91} - 1292 q^{92} - 524 q^{94} - 360 q^{95} + 52 q^{97} + 1878 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.46410 −1.57830 −0.789149 0.614202i \(-0.789478\pi\)
−0.789149 + 0.614202i \(0.789478\pi\)
\(3\) 0 0
\(4\) 11.9282 1.49103
\(5\) −6.53590 −0.584589 −0.292294 0.956328i \(-0.594419\pi\)
−0.292294 + 0.956328i \(0.594419\pi\)
\(6\) 0 0
\(7\) 9.32051 0.503260 0.251630 0.967823i \(-0.419033\pi\)
0.251630 + 0.967823i \(0.419033\pi\)
\(8\) −17.5359 −0.774985
\(9\) 0 0
\(10\) 29.1769 0.922655
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 1.89488 0.0404266 0.0202133 0.999796i \(-0.493565\pi\)
0.0202133 + 0.999796i \(0.493565\pi\)
\(14\) −41.6077 −0.794295
\(15\) 0 0
\(16\) −17.1436 −0.267869
\(17\) −61.2154 −0.873348 −0.436674 0.899620i \(-0.643844\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(18\) 0 0
\(19\) −121.923 −1.47216 −0.736081 0.676894i \(-0.763326\pi\)
−0.736081 + 0.676894i \(0.763326\pi\)
\(20\) −77.9615 −0.871636
\(21\) 0 0
\(22\) −49.1051 −0.475875
\(23\) −117.177 −1.06231 −0.531154 0.847275i \(-0.678241\pi\)
−0.531154 + 0.847275i \(0.678241\pi\)
\(24\) 0 0
\(25\) −82.2820 −0.658256
\(26\) −8.45895 −0.0638052
\(27\) 0 0
\(28\) 111.177 0.750374
\(29\) 139.990 0.896394 0.448197 0.893935i \(-0.352066\pi\)
0.448197 + 0.893935i \(0.352066\pi\)
\(30\) 0 0
\(31\) −314.067 −1.81961 −0.909807 0.415032i \(-0.863771\pi\)
−0.909807 + 0.415032i \(0.863771\pi\)
\(32\) 216.818 1.19776
\(33\) 0 0
\(34\) 273.272 1.37840
\(35\) −60.9179 −0.294200
\(36\) 0 0
\(37\) 88.6410 0.393851 0.196926 0.980418i \(-0.436904\pi\)
0.196926 + 0.980418i \(0.436904\pi\)
\(38\) 544.277 2.32351
\(39\) 0 0
\(40\) 114.613 0.453047
\(41\) −92.1436 −0.350986 −0.175493 0.984481i \(-0.556152\pi\)
−0.175493 + 0.984481i \(0.556152\pi\)
\(42\) 0 0
\(43\) 396.697 1.40688 0.703439 0.710755i \(-0.251647\pi\)
0.703439 + 0.710755i \(0.251647\pi\)
\(44\) 131.210 0.449561
\(45\) 0 0
\(46\) 523.090 1.67664
\(47\) 82.7461 0.256803 0.128402 0.991722i \(-0.459015\pi\)
0.128402 + 0.991722i \(0.459015\pi\)
\(48\) 0 0
\(49\) −256.128 −0.746729
\(50\) 367.315 1.03892
\(51\) 0 0
\(52\) 22.6025 0.0602771
\(53\) −581.787 −1.50782 −0.753911 0.656976i \(-0.771835\pi\)
−0.753911 + 0.656976i \(0.771835\pi\)
\(54\) 0 0
\(55\) −71.8949 −0.176260
\(56\) −163.443 −0.390019
\(57\) 0 0
\(58\) −624.928 −1.41478
\(59\) −697.338 −1.53874 −0.769371 0.638803i \(-0.779430\pi\)
−0.769371 + 0.638803i \(0.779430\pi\)
\(60\) 0 0
\(61\) 184.095 0.386409 0.193204 0.981159i \(-0.438112\pi\)
0.193204 + 0.981159i \(0.438112\pi\)
\(62\) 1402.03 2.87189
\(63\) 0 0
\(64\) −830.749 −1.62256
\(65\) −12.3848 −0.0236329
\(66\) 0 0
\(67\) −219.405 −0.400068 −0.200034 0.979789i \(-0.564105\pi\)
−0.200034 + 0.979789i \(0.564105\pi\)
\(68\) −730.190 −1.30218
\(69\) 0 0
\(70\) 271.944 0.464336
\(71\) 886.628 1.48202 0.741010 0.671494i \(-0.234347\pi\)
0.741010 + 0.671494i \(0.234347\pi\)
\(72\) 0 0
\(73\) 338.708 0.543051 0.271526 0.962431i \(-0.412472\pi\)
0.271526 + 0.962431i \(0.412472\pi\)
\(74\) −395.703 −0.621615
\(75\) 0 0
\(76\) −1454.32 −2.19503
\(77\) 102.526 0.151739
\(78\) 0 0
\(79\) 208.536 0.296989 0.148494 0.988913i \(-0.452557\pi\)
0.148494 + 0.988913i \(0.452557\pi\)
\(80\) 112.049 0.156593
\(81\) 0 0
\(82\) 411.338 0.553960
\(83\) −463.923 −0.613520 −0.306760 0.951787i \(-0.599245\pi\)
−0.306760 + 0.951787i \(0.599245\pi\)
\(84\) 0 0
\(85\) 400.098 0.510549
\(86\) −1770.90 −2.22047
\(87\) 0 0
\(88\) −192.895 −0.233667
\(89\) −1137.68 −1.35499 −0.677495 0.735528i \(-0.736934\pi\)
−0.677495 + 0.735528i \(0.736934\pi\)
\(90\) 0 0
\(91\) 17.6613 0.0203451
\(92\) −1397.71 −1.58393
\(93\) 0 0
\(94\) −369.387 −0.405313
\(95\) 796.877 0.860609
\(96\) 0 0
\(97\) 1522.49 1.59367 0.796833 0.604199i \(-0.206507\pi\)
0.796833 + 0.604199i \(0.206507\pi\)
\(98\) 1143.38 1.17856
\(99\) 0 0
\(100\) −981.477 −0.981477
\(101\) −1819.34 −1.79239 −0.896193 0.443665i \(-0.853678\pi\)
−0.896193 + 0.443665i \(0.853678\pi\)
\(102\) 0 0
\(103\) 1142.24 1.09270 0.546349 0.837558i \(-0.316017\pi\)
0.546349 + 0.837558i \(0.316017\pi\)
\(104\) −33.2285 −0.0313300
\(105\) 0 0
\(106\) 2597.16 2.37979
\(107\) 1056.59 0.954625 0.477313 0.878734i \(-0.341611\pi\)
0.477313 + 0.878734i \(0.341611\pi\)
\(108\) 0 0
\(109\) −1382.68 −1.21502 −0.607508 0.794314i \(-0.707831\pi\)
−0.607508 + 0.794314i \(0.707831\pi\)
\(110\) 320.946 0.278191
\(111\) 0 0
\(112\) −159.787 −0.134808
\(113\) 263.405 0.219284 0.109642 0.993971i \(-0.465030\pi\)
0.109642 + 0.993971i \(0.465030\pi\)
\(114\) 0 0
\(115\) 765.856 0.621013
\(116\) 1669.83 1.33655
\(117\) 0 0
\(118\) 3112.99 2.42859
\(119\) −570.559 −0.439521
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −821.818 −0.609868
\(123\) 0 0
\(124\) −3746.25 −2.71309
\(125\) 1354.77 0.969398
\(126\) 0 0
\(127\) −1217.68 −0.850800 −0.425400 0.905006i \(-0.639867\pi\)
−0.425400 + 0.905006i \(0.639867\pi\)
\(128\) 1974.00 1.36312
\(129\) 0 0
\(130\) 55.2868 0.0372998
\(131\) 925.626 0.617346 0.308673 0.951168i \(-0.400115\pi\)
0.308673 + 0.951168i \(0.400115\pi\)
\(132\) 0 0
\(133\) −1136.38 −0.740880
\(134\) 979.446 0.631427
\(135\) 0 0
\(136\) 1073.47 0.676831
\(137\) 1116.32 0.696160 0.348080 0.937465i \(-0.386834\pi\)
0.348080 + 0.937465i \(0.386834\pi\)
\(138\) 0 0
\(139\) −576.846 −0.351996 −0.175998 0.984391i \(-0.556315\pi\)
−0.175998 + 0.984391i \(0.556315\pi\)
\(140\) −726.641 −0.438660
\(141\) 0 0
\(142\) −3958.00 −2.33907
\(143\) 20.8437 0.0121891
\(144\) 0 0
\(145\) −914.958 −0.524022
\(146\) −1512.03 −0.857097
\(147\) 0 0
\(148\) 1057.33 0.587242
\(149\) −1630.36 −0.896404 −0.448202 0.893932i \(-0.647935\pi\)
−0.448202 + 0.893932i \(0.647935\pi\)
\(150\) 0 0
\(151\) 1348.67 0.726842 0.363421 0.931625i \(-0.381609\pi\)
0.363421 + 0.931625i \(0.381609\pi\)
\(152\) 2138.03 1.14090
\(153\) 0 0
\(154\) −457.685 −0.239489
\(155\) 2052.71 1.06373
\(156\) 0 0
\(157\) −1357.54 −0.690088 −0.345044 0.938587i \(-0.612136\pi\)
−0.345044 + 0.938587i \(0.612136\pi\)
\(158\) −930.925 −0.468737
\(159\) 0 0
\(160\) −1417.10 −0.700197
\(161\) −1092.15 −0.534617
\(162\) 0 0
\(163\) −817.507 −0.392835 −0.196418 0.980520i \(-0.562931\pi\)
−0.196418 + 0.980520i \(0.562931\pi\)
\(164\) −1099.11 −0.523329
\(165\) 0 0
\(166\) 2071.00 0.968318
\(167\) 1665.68 0.771822 0.385911 0.922536i \(-0.373887\pi\)
0.385911 + 0.922536i \(0.373887\pi\)
\(168\) 0 0
\(169\) −2193.41 −0.998366
\(170\) −1786.08 −0.805799
\(171\) 0 0
\(172\) 4731.89 2.09769
\(173\) 731.907 0.321652 0.160826 0.986983i \(-0.448584\pi\)
0.160826 + 0.986983i \(0.448584\pi\)
\(174\) 0 0
\(175\) −766.910 −0.331274
\(176\) −188.580 −0.0807654
\(177\) 0 0
\(178\) 5078.73 2.13858
\(179\) 4272.97 1.78423 0.892114 0.451811i \(-0.149222\pi\)
0.892114 + 0.451811i \(0.149222\pi\)
\(180\) 0 0
\(181\) 1049.04 0.430797 0.215398 0.976526i \(-0.430895\pi\)
0.215398 + 0.976526i \(0.430895\pi\)
\(182\) −78.8417 −0.0321106
\(183\) 0 0
\(184\) 2054.80 0.823272
\(185\) −579.349 −0.230241
\(186\) 0 0
\(187\) −673.369 −0.263324
\(188\) 987.013 0.382901
\(189\) 0 0
\(190\) −3557.34 −1.35830
\(191\) 2369.05 0.897480 0.448740 0.893662i \(-0.351873\pi\)
0.448740 + 0.893662i \(0.351873\pi\)
\(192\) 0 0
\(193\) 4519.52 1.68561 0.842804 0.538221i \(-0.180903\pi\)
0.842804 + 0.538221i \(0.180903\pi\)
\(194\) −6796.56 −2.51528
\(195\) 0 0
\(196\) −3055.15 −1.11339
\(197\) −3624.62 −1.31088 −0.655440 0.755247i \(-0.727517\pi\)
−0.655440 + 0.755247i \(0.727517\pi\)
\(198\) 0 0
\(199\) −1015.00 −0.361565 −0.180782 0.983523i \(-0.557863\pi\)
−0.180782 + 0.983523i \(0.557863\pi\)
\(200\) 1442.89 0.510138
\(201\) 0 0
\(202\) 8121.71 2.82892
\(203\) 1304.78 0.451119
\(204\) 0 0
\(205\) 602.241 0.205182
\(206\) −5099.06 −1.72460
\(207\) 0 0
\(208\) −32.4851 −0.0108290
\(209\) −1341.15 −0.443873
\(210\) 0 0
\(211\) 610.912 0.199322 0.0996610 0.995021i \(-0.468224\pi\)
0.0996610 + 0.995021i \(0.468224\pi\)
\(212\) −6939.67 −2.24820
\(213\) 0 0
\(214\) −4716.75 −1.50668
\(215\) −2592.77 −0.822445
\(216\) 0 0
\(217\) −2927.26 −0.915739
\(218\) 6172.42 1.91766
\(219\) 0 0
\(220\) −857.577 −0.262808
\(221\) −115.996 −0.0353065
\(222\) 0 0
\(223\) −444.565 −0.133499 −0.0667495 0.997770i \(-0.521263\pi\)
−0.0667495 + 0.997770i \(0.521263\pi\)
\(224\) 2020.85 0.602785
\(225\) 0 0
\(226\) −1175.87 −0.346095
\(227\) −5816.84 −1.70078 −0.850390 0.526152i \(-0.823634\pi\)
−0.850390 + 0.526152i \(0.823634\pi\)
\(228\) 0 0
\(229\) −5815.83 −1.67826 −0.839129 0.543933i \(-0.816935\pi\)
−0.839129 + 0.543933i \(0.816935\pi\)
\(230\) −3418.86 −0.980144
\(231\) 0 0
\(232\) −2454.84 −0.694692
\(233\) 2408.26 0.677125 0.338562 0.940944i \(-0.390059\pi\)
0.338562 + 0.940944i \(0.390059\pi\)
\(234\) 0 0
\(235\) −540.820 −0.150124
\(236\) −8317.99 −2.29430
\(237\) 0 0
\(238\) 2547.03 0.693695
\(239\) 6298.09 1.70456 0.852280 0.523086i \(-0.175220\pi\)
0.852280 + 0.523086i \(0.175220\pi\)
\(240\) 0 0
\(241\) 4040.05 1.07984 0.539922 0.841715i \(-0.318454\pi\)
0.539922 + 0.841715i \(0.318454\pi\)
\(242\) −540.156 −0.143482
\(243\) 0 0
\(244\) 2195.92 0.576145
\(245\) 1674.03 0.436529
\(246\) 0 0
\(247\) −231.030 −0.0595145
\(248\) 5507.44 1.41017
\(249\) 0 0
\(250\) −6047.85 −1.53000
\(251\) 2394.38 0.602120 0.301060 0.953605i \(-0.402660\pi\)
0.301060 + 0.953605i \(0.402660\pi\)
\(252\) 0 0
\(253\) −1288.95 −0.320298
\(254\) 5435.84 1.34282
\(255\) 0 0
\(256\) −2166.16 −0.528847
\(257\) 2181.73 0.529544 0.264772 0.964311i \(-0.414703\pi\)
0.264772 + 0.964311i \(0.414703\pi\)
\(258\) 0 0
\(259\) 826.179 0.198210
\(260\) −147.728 −0.0352373
\(261\) 0 0
\(262\) −4132.09 −0.974356
\(263\) 3883.01 0.910406 0.455203 0.890388i \(-0.349567\pi\)
0.455203 + 0.890388i \(0.349567\pi\)
\(264\) 0 0
\(265\) 3802.50 0.881456
\(266\) 5072.94 1.16933
\(267\) 0 0
\(268\) −2617.11 −0.596512
\(269\) −3612.57 −0.818818 −0.409409 0.912351i \(-0.634265\pi\)
−0.409409 + 0.912351i \(0.634265\pi\)
\(270\) 0 0
\(271\) −716.290 −0.160559 −0.0802795 0.996772i \(-0.525581\pi\)
−0.0802795 + 0.996772i \(0.525581\pi\)
\(272\) 1049.45 0.233943
\(273\) 0 0
\(274\) −4983.38 −1.09875
\(275\) −905.102 −0.198472
\(276\) 0 0
\(277\) 6995.36 1.51737 0.758683 0.651460i \(-0.225843\pi\)
0.758683 + 0.651460i \(0.225843\pi\)
\(278\) 2575.10 0.555554
\(279\) 0 0
\(280\) 1068.25 0.228001
\(281\) −8787.00 −1.86544 −0.932720 0.360603i \(-0.882571\pi\)
−0.932720 + 0.360603i \(0.882571\pi\)
\(282\) 0 0
\(283\) 3572.22 0.750342 0.375171 0.926956i \(-0.377584\pi\)
0.375171 + 0.926956i \(0.377584\pi\)
\(284\) 10575.9 2.20973
\(285\) 0 0
\(286\) −93.0484 −0.0192380
\(287\) −858.825 −0.176637
\(288\) 0 0
\(289\) −1165.68 −0.237264
\(290\) 4084.47 0.827063
\(291\) 0 0
\(292\) 4040.17 0.809703
\(293\) −4840.00 −0.965038 −0.482519 0.875886i \(-0.660278\pi\)
−0.482519 + 0.875886i \(0.660278\pi\)
\(294\) 0 0
\(295\) 4557.73 0.899530
\(296\) −1554.40 −0.305229
\(297\) 0 0
\(298\) 7278.09 1.41479
\(299\) −222.036 −0.0429455
\(300\) 0 0
\(301\) 3697.42 0.708026
\(302\) −6020.60 −1.14717
\(303\) 0 0
\(304\) 2090.20 0.394346
\(305\) −1203.22 −0.225890
\(306\) 0 0
\(307\) 4917.94 0.914273 0.457136 0.889397i \(-0.348875\pi\)
0.457136 + 0.889397i \(0.348875\pi\)
\(308\) 1222.95 0.226246
\(309\) 0 0
\(310\) −9163.50 −1.67888
\(311\) 4875.93 0.889031 0.444516 0.895771i \(-0.353376\pi\)
0.444516 + 0.895771i \(0.353376\pi\)
\(312\) 0 0
\(313\) 4283.96 0.773622 0.386811 0.922159i \(-0.373577\pi\)
0.386811 + 0.922159i \(0.373577\pi\)
\(314\) 6060.21 1.08916
\(315\) 0 0
\(316\) 2487.46 0.442818
\(317\) −8879.08 −1.57318 −0.786592 0.617474i \(-0.788156\pi\)
−0.786592 + 0.617474i \(0.788156\pi\)
\(318\) 0 0
\(319\) 1539.89 0.270273
\(320\) 5429.69 0.948527
\(321\) 0 0
\(322\) 4875.46 0.843785
\(323\) 7463.57 1.28571
\(324\) 0 0
\(325\) −155.915 −0.0266111
\(326\) 3649.44 0.620011
\(327\) 0 0
\(328\) 1615.82 0.272008
\(329\) 771.236 0.129239
\(330\) 0 0
\(331\) −7084.95 −1.17651 −0.588254 0.808676i \(-0.700185\pi\)
−0.588254 + 0.808676i \(0.700185\pi\)
\(332\) −5533.77 −0.914774
\(333\) 0 0
\(334\) −7435.77 −1.21817
\(335\) 1434.01 0.233875
\(336\) 0 0
\(337\) −11557.2 −1.86813 −0.934066 0.357099i \(-0.883766\pi\)
−0.934066 + 0.357099i \(0.883766\pi\)
\(338\) 9791.60 1.57572
\(339\) 0 0
\(340\) 4772.45 0.761242
\(341\) −3454.73 −0.548634
\(342\) 0 0
\(343\) −5584.18 −0.879059
\(344\) −6956.44 −1.09031
\(345\) 0 0
\(346\) −3267.31 −0.507664
\(347\) −3384.55 −0.523608 −0.261804 0.965121i \(-0.584317\pi\)
−0.261804 + 0.965121i \(0.584317\pi\)
\(348\) 0 0
\(349\) 8069.34 1.23766 0.618828 0.785527i \(-0.287608\pi\)
0.618828 + 0.785527i \(0.287608\pi\)
\(350\) 3423.57 0.522849
\(351\) 0 0
\(352\) 2385.00 0.361139
\(353\) 498.421 0.0751509 0.0375755 0.999294i \(-0.488037\pi\)
0.0375755 + 0.999294i \(0.488037\pi\)
\(354\) 0 0
\(355\) −5794.91 −0.866372
\(356\) −13570.5 −2.02032
\(357\) 0 0
\(358\) −19075.0 −2.81604
\(359\) −488.919 −0.0718779 −0.0359390 0.999354i \(-0.511442\pi\)
−0.0359390 + 0.999354i \(0.511442\pi\)
\(360\) 0 0
\(361\) 8006.23 1.16726
\(362\) −4683.00 −0.679926
\(363\) 0 0
\(364\) 210.667 0.0303351
\(365\) −2213.76 −0.317461
\(366\) 0 0
\(367\) −4204.61 −0.598034 −0.299017 0.954248i \(-0.596659\pi\)
−0.299017 + 0.954248i \(0.596659\pi\)
\(368\) 2008.83 0.284559
\(369\) 0 0
\(370\) 2586.27 0.363389
\(371\) −5422.55 −0.758827
\(372\) 0 0
\(373\) −8499.45 −1.17985 −0.589926 0.807457i \(-0.700843\pi\)
−0.589926 + 0.807457i \(0.700843\pi\)
\(374\) 3005.99 0.415604
\(375\) 0 0
\(376\) −1451.03 −0.199019
\(377\) 265.264 0.0362382
\(378\) 0 0
\(379\) −3902.19 −0.528871 −0.264436 0.964403i \(-0.585186\pi\)
−0.264436 + 0.964403i \(0.585186\pi\)
\(380\) 9505.31 1.28319
\(381\) 0 0
\(382\) −10575.7 −1.41649
\(383\) −11681.3 −1.55845 −0.779226 0.626743i \(-0.784387\pi\)
−0.779226 + 0.626743i \(0.784387\pi\)
\(384\) 0 0
\(385\) −670.097 −0.0887047
\(386\) −20175.6 −2.66039
\(387\) 0 0
\(388\) 18160.6 2.37620
\(389\) −8914.04 −1.16185 −0.580925 0.813957i \(-0.697309\pi\)
−0.580925 + 0.813957i \(0.697309\pi\)
\(390\) 0 0
\(391\) 7173.03 0.927764
\(392\) 4491.44 0.578704
\(393\) 0 0
\(394\) 16180.7 2.06896
\(395\) −1362.97 −0.173616
\(396\) 0 0
\(397\) −13445.5 −1.69977 −0.849885 0.526967i \(-0.823329\pi\)
−0.849885 + 0.526967i \(0.823329\pi\)
\(398\) 4531.06 0.570657
\(399\) 0 0
\(400\) 1410.61 0.176326
\(401\) 11815.1 1.47137 0.735683 0.677326i \(-0.236861\pi\)
0.735683 + 0.677326i \(0.236861\pi\)
\(402\) 0 0
\(403\) −595.119 −0.0735608
\(404\) −21701.4 −2.67249
\(405\) 0 0
\(406\) −5824.65 −0.712001
\(407\) 975.051 0.118751
\(408\) 0 0
\(409\) −14699.5 −1.77713 −0.888564 0.458752i \(-0.848297\pi\)
−0.888564 + 0.458752i \(0.848297\pi\)
\(410\) −2688.47 −0.323839
\(411\) 0 0
\(412\) 13624.8 1.62924
\(413\) −6499.55 −0.774387
\(414\) 0 0
\(415\) 3032.15 0.358657
\(416\) 410.844 0.0484214
\(417\) 0 0
\(418\) 5987.05 0.700565
\(419\) 6376.77 0.743498 0.371749 0.928333i \(-0.378758\pi\)
0.371749 + 0.928333i \(0.378758\pi\)
\(420\) 0 0
\(421\) 6745.79 0.780925 0.390463 0.920619i \(-0.372315\pi\)
0.390463 + 0.920619i \(0.372315\pi\)
\(422\) −2727.17 −0.314590
\(423\) 0 0
\(424\) 10202.2 1.16854
\(425\) 5036.93 0.574887
\(426\) 0 0
\(427\) 1715.86 0.194464
\(428\) 12603.3 1.42337
\(429\) 0 0
\(430\) 11574.4 1.29806
\(431\) −13592.8 −1.51913 −0.759563 0.650434i \(-0.774587\pi\)
−0.759563 + 0.650434i \(0.774587\pi\)
\(432\) 0 0
\(433\) −2511.11 −0.278698 −0.139349 0.990243i \(-0.544501\pi\)
−0.139349 + 0.990243i \(0.544501\pi\)
\(434\) 13067.6 1.44531
\(435\) 0 0
\(436\) −16492.9 −1.81162
\(437\) 14286.6 1.56389
\(438\) 0 0
\(439\) 9721.66 1.05692 0.528462 0.848957i \(-0.322769\pi\)
0.528462 + 0.848957i \(0.322769\pi\)
\(440\) 1260.74 0.136599
\(441\) 0 0
\(442\) 517.818 0.0557242
\(443\) 11323.6 1.21445 0.607226 0.794529i \(-0.292282\pi\)
0.607226 + 0.794529i \(0.292282\pi\)
\(444\) 0 0
\(445\) 7435.77 0.792111
\(446\) 1984.58 0.210701
\(447\) 0 0
\(448\) −7743.00 −0.816568
\(449\) −10422.4 −1.09546 −0.547732 0.836654i \(-0.684509\pi\)
−0.547732 + 0.836654i \(0.684509\pi\)
\(450\) 0 0
\(451\) −1013.58 −0.105826
\(452\) 3141.95 0.326958
\(453\) 0 0
\(454\) 25967.0 2.68434
\(455\) −115.432 −0.0118935
\(456\) 0 0
\(457\) −6168.96 −0.631448 −0.315724 0.948851i \(-0.602247\pi\)
−0.315724 + 0.948851i \(0.602247\pi\)
\(458\) 25962.5 2.64879
\(459\) 0 0
\(460\) 9135.29 0.925946
\(461\) 2860.00 0.288945 0.144472 0.989509i \(-0.453851\pi\)
0.144472 + 0.989509i \(0.453851\pi\)
\(462\) 0 0
\(463\) −10508.4 −1.05478 −0.527392 0.849622i \(-0.676830\pi\)
−0.527392 + 0.849622i \(0.676830\pi\)
\(464\) −2399.93 −0.240116
\(465\) 0 0
\(466\) −10750.7 −1.06871
\(467\) 9373.42 0.928802 0.464401 0.885625i \(-0.346270\pi\)
0.464401 + 0.885625i \(0.346270\pi\)
\(468\) 0 0
\(469\) −2044.97 −0.201339
\(470\) 2414.28 0.236941
\(471\) 0 0
\(472\) 12228.5 1.19250
\(473\) 4363.67 0.424190
\(474\) 0 0
\(475\) 10032.1 0.969059
\(476\) −6805.74 −0.655337
\(477\) 0 0
\(478\) −28115.3 −2.69030
\(479\) −556.775 −0.0531100 −0.0265550 0.999647i \(-0.508454\pi\)
−0.0265550 + 0.999647i \(0.508454\pi\)
\(480\) 0 0
\(481\) 167.964 0.0159221
\(482\) −18035.2 −1.70431
\(483\) 0 0
\(484\) 1443.31 0.135548
\(485\) −9950.85 −0.931639
\(486\) 0 0
\(487\) −6462.85 −0.601355 −0.300677 0.953726i \(-0.597213\pi\)
−0.300677 + 0.953726i \(0.597213\pi\)
\(488\) −3228.27 −0.299461
\(489\) 0 0
\(490\) −7473.03 −0.688974
\(491\) 3106.60 0.285538 0.142769 0.989756i \(-0.454399\pi\)
0.142769 + 0.989756i \(0.454399\pi\)
\(492\) 0 0
\(493\) −8569.52 −0.782864
\(494\) 1031.34 0.0939316
\(495\) 0 0
\(496\) 5384.23 0.487418
\(497\) 8263.82 0.745841
\(498\) 0 0
\(499\) 223.024 0.0200079 0.0100039 0.999950i \(-0.496816\pi\)
0.0100039 + 0.999950i \(0.496816\pi\)
\(500\) 16160.0 1.44540
\(501\) 0 0
\(502\) −10688.8 −0.950325
\(503\) −12042.2 −1.06747 −0.533734 0.845653i \(-0.679212\pi\)
−0.533734 + 0.845653i \(0.679212\pi\)
\(504\) 0 0
\(505\) 11891.0 1.04781
\(506\) 5753.99 0.505525
\(507\) 0 0
\(508\) −14524.7 −1.26856
\(509\) −5229.03 −0.455349 −0.227674 0.973737i \(-0.573112\pi\)
−0.227674 + 0.973737i \(0.573112\pi\)
\(510\) 0 0
\(511\) 3156.93 0.273296
\(512\) −6122.06 −0.528437
\(513\) 0 0
\(514\) −9739.48 −0.835778
\(515\) −7465.54 −0.638778
\(516\) 0 0
\(517\) 910.207 0.0774292
\(518\) −3688.15 −0.312834
\(519\) 0 0
\(520\) 217.178 0.0183152
\(521\) 21307.2 1.79171 0.895857 0.444342i \(-0.146562\pi\)
0.895857 + 0.444342i \(0.146562\pi\)
\(522\) 0 0
\(523\) 12533.6 1.04791 0.523956 0.851746i \(-0.324456\pi\)
0.523956 + 0.851746i \(0.324456\pi\)
\(524\) 11041.0 0.920478
\(525\) 0 0
\(526\) −17334.2 −1.43689
\(527\) 19225.7 1.58916
\(528\) 0 0
\(529\) 1563.43 0.128498
\(530\) −16974.7 −1.39120
\(531\) 0 0
\(532\) −13555.0 −1.10467
\(533\) −174.601 −0.0141892
\(534\) 0 0
\(535\) −6905.80 −0.558063
\(536\) 3847.46 0.310047
\(537\) 0 0
\(538\) 16126.9 1.29234
\(539\) −2817.41 −0.225147
\(540\) 0 0
\(541\) 1194.10 0.0948952 0.0474476 0.998874i \(-0.484891\pi\)
0.0474476 + 0.998874i \(0.484891\pi\)
\(542\) 3197.59 0.253410
\(543\) 0 0
\(544\) −13272.6 −1.04606
\(545\) 9037.05 0.710284
\(546\) 0 0
\(547\) −17077.5 −1.33488 −0.667441 0.744662i \(-0.732611\pi\)
−0.667441 + 0.744662i \(0.732611\pi\)
\(548\) 13315.7 1.03799
\(549\) 0 0
\(550\) 4040.47 0.313248
\(551\) −17068.0 −1.31964
\(552\) 0 0
\(553\) 1943.66 0.149463
\(554\) −31228.0 −2.39485
\(555\) 0 0
\(556\) −6880.73 −0.524835
\(557\) 14523.5 1.10481 0.552407 0.833574i \(-0.313709\pi\)
0.552407 + 0.833574i \(0.313709\pi\)
\(558\) 0 0
\(559\) 751.695 0.0568753
\(560\) 1044.35 0.0788070
\(561\) 0 0
\(562\) 39226.1 2.94422
\(563\) 5179.82 0.387751 0.193875 0.981026i \(-0.437894\pi\)
0.193875 + 0.981026i \(0.437894\pi\)
\(564\) 0 0
\(565\) −1721.59 −0.128191
\(566\) −15946.8 −1.18426
\(567\) 0 0
\(568\) −15547.8 −1.14854
\(569\) 10532.1 0.775971 0.387985 0.921666i \(-0.373171\pi\)
0.387985 + 0.921666i \(0.373171\pi\)
\(570\) 0 0
\(571\) 16946.5 1.24201 0.621007 0.783805i \(-0.286724\pi\)
0.621007 + 0.783805i \(0.286724\pi\)
\(572\) 248.628 0.0181742
\(573\) 0 0
\(574\) 3833.88 0.278786
\(575\) 9641.55 0.699271
\(576\) 0 0
\(577\) 13375.8 0.965060 0.482530 0.875879i \(-0.339718\pi\)
0.482530 + 0.875879i \(0.339718\pi\)
\(578\) 5203.70 0.374473
\(579\) 0 0
\(580\) −10913.8 −0.781330
\(581\) −4324.00 −0.308760
\(582\) 0 0
\(583\) −6399.66 −0.454626
\(584\) −5939.54 −0.420856
\(585\) 0 0
\(586\) 21606.3 1.52312
\(587\) −22817.6 −1.60440 −0.802201 0.597054i \(-0.796338\pi\)
−0.802201 + 0.597054i \(0.796338\pi\)
\(588\) 0 0
\(589\) 38292.0 2.67877
\(590\) −20346.2 −1.41973
\(591\) 0 0
\(592\) −1519.63 −0.105500
\(593\) 1325.54 0.0917934 0.0458967 0.998946i \(-0.485385\pi\)
0.0458967 + 0.998946i \(0.485385\pi\)
\(594\) 0 0
\(595\) 3729.11 0.256939
\(596\) −19447.2 −1.33656
\(597\) 0 0
\(598\) 991.193 0.0677808
\(599\) −1757.35 −0.119872 −0.0599361 0.998202i \(-0.519090\pi\)
−0.0599361 + 0.998202i \(0.519090\pi\)
\(600\) 0 0
\(601\) −12632.4 −0.857382 −0.428691 0.903451i \(-0.641025\pi\)
−0.428691 + 0.903451i \(0.641025\pi\)
\(602\) −16505.7 −1.11748
\(603\) 0 0
\(604\) 16087.2 1.08374
\(605\) −790.844 −0.0531444
\(606\) 0 0
\(607\) 13468.3 0.900598 0.450299 0.892878i \(-0.351317\pi\)
0.450299 + 0.892878i \(0.351317\pi\)
\(608\) −26435.1 −1.76330
\(609\) 0 0
\(610\) 5371.32 0.356522
\(611\) 156.794 0.0103817
\(612\) 0 0
\(613\) 2901.94 0.191205 0.0956023 0.995420i \(-0.469522\pi\)
0.0956023 + 0.995420i \(0.469522\pi\)
\(614\) −21954.2 −1.44300
\(615\) 0 0
\(616\) −1797.88 −0.117595
\(617\) 22969.7 1.49874 0.749372 0.662149i \(-0.230355\pi\)
0.749372 + 0.662149i \(0.230355\pi\)
\(618\) 0 0
\(619\) 2859.62 0.185683 0.0928416 0.995681i \(-0.470405\pi\)
0.0928416 + 0.995681i \(0.470405\pi\)
\(620\) 24485.1 1.58604
\(621\) 0 0
\(622\) −21766.6 −1.40316
\(623\) −10603.8 −0.681912
\(624\) 0 0
\(625\) 1430.59 0.0915576
\(626\) −19124.0 −1.22101
\(627\) 0 0
\(628\) −16193.1 −1.02894
\(629\) −5426.19 −0.343969
\(630\) 0 0
\(631\) −990.450 −0.0624869 −0.0312434 0.999512i \(-0.509947\pi\)
−0.0312434 + 0.999512i \(0.509947\pi\)
\(632\) −3656.86 −0.230162
\(633\) 0 0
\(634\) 39637.1 2.48295
\(635\) 7958.63 0.497368
\(636\) 0 0
\(637\) −485.333 −0.0301877
\(638\) −6874.21 −0.426571
\(639\) 0 0
\(640\) −12901.9 −0.796862
\(641\) 2721.01 0.167665 0.0838327 0.996480i \(-0.473284\pi\)
0.0838327 + 0.996480i \(0.473284\pi\)
\(642\) 0 0
\(643\) 1014.22 0.0622033 0.0311017 0.999516i \(-0.490098\pi\)
0.0311017 + 0.999516i \(0.490098\pi\)
\(644\) −13027.4 −0.797128
\(645\) 0 0
\(646\) −33318.1 −2.02923
\(647\) 25988.5 1.57916 0.789578 0.613650i \(-0.210299\pi\)
0.789578 + 0.613650i \(0.210299\pi\)
\(648\) 0 0
\(649\) −7670.72 −0.463948
\(650\) 696.019 0.0420002
\(651\) 0 0
\(652\) −9751.39 −0.585727
\(653\) −1127.80 −0.0675870 −0.0337935 0.999429i \(-0.510759\pi\)
−0.0337935 + 0.999429i \(0.510759\pi\)
\(654\) 0 0
\(655\) −6049.79 −0.360893
\(656\) 1579.67 0.0940181
\(657\) 0 0
\(658\) −3442.88 −0.203978
\(659\) −28673.0 −1.69490 −0.847452 0.530873i \(-0.821864\pi\)
−0.847452 + 0.530873i \(0.821864\pi\)
\(660\) 0 0
\(661\) −14066.2 −0.827705 −0.413852 0.910344i \(-0.635817\pi\)
−0.413852 + 0.910344i \(0.635817\pi\)
\(662\) 31628.0 1.85688
\(663\) 0 0
\(664\) 8135.31 0.475469
\(665\) 7427.30 0.433110
\(666\) 0 0
\(667\) −16403.6 −0.952246
\(668\) 19868.6 1.15081
\(669\) 0 0
\(670\) −6401.56 −0.369125
\(671\) 2025.04 0.116507
\(672\) 0 0
\(673\) −11713.0 −0.670879 −0.335439 0.942062i \(-0.608885\pi\)
−0.335439 + 0.942062i \(0.608885\pi\)
\(674\) 51592.5 2.94847
\(675\) 0 0
\(676\) −26163.4 −1.48859
\(677\) 3194.15 0.181331 0.0906655 0.995881i \(-0.471101\pi\)
0.0906655 + 0.995881i \(0.471101\pi\)
\(678\) 0 0
\(679\) 14190.4 0.802029
\(680\) −7016.07 −0.395668
\(681\) 0 0
\(682\) 15422.3 0.865909
\(683\) −1138.53 −0.0637845 −0.0318923 0.999491i \(-0.510153\pi\)
−0.0318923 + 0.999491i \(0.510153\pi\)
\(684\) 0 0
\(685\) −7296.17 −0.406967
\(686\) 24928.3 1.38742
\(687\) 0 0
\(688\) −6800.82 −0.376859
\(689\) −1102.42 −0.0609561
\(690\) 0 0
\(691\) 4538.68 0.249869 0.124934 0.992165i \(-0.460128\pi\)
0.124934 + 0.992165i \(0.460128\pi\)
\(692\) 8730.34 0.479592
\(693\) 0 0
\(694\) 15109.0 0.826410
\(695\) 3770.21 0.205773
\(696\) 0 0
\(697\) 5640.61 0.306533
\(698\) −36022.4 −1.95339
\(699\) 0 0
\(700\) −9147.86 −0.493938
\(701\) −18226.5 −0.982036 −0.491018 0.871150i \(-0.663375\pi\)
−0.491018 + 0.871150i \(0.663375\pi\)
\(702\) 0 0
\(703\) −10807.4 −0.579812
\(704\) −9138.23 −0.489219
\(705\) 0 0
\(706\) −2225.00 −0.118611
\(707\) −16957.2 −0.902036
\(708\) 0 0
\(709\) −9626.62 −0.509923 −0.254962 0.966951i \(-0.582063\pi\)
−0.254962 + 0.966951i \(0.582063\pi\)
\(710\) 25869.1 1.36739
\(711\) 0 0
\(712\) 19950.3 1.05010
\(713\) 36801.4 1.93299
\(714\) 0 0
\(715\) −136.232 −0.00712560
\(716\) 50968.8 2.66033
\(717\) 0 0
\(718\) 2182.59 0.113445
\(719\) 217.065 0.0112589 0.00562947 0.999984i \(-0.498208\pi\)
0.00562947 + 0.999984i \(0.498208\pi\)
\(720\) 0 0
\(721\) 10646.2 0.549911
\(722\) −35740.6 −1.84228
\(723\) 0 0
\(724\) 12513.1 0.642329
\(725\) −11518.6 −0.590057
\(726\) 0 0
\(727\) −28648.2 −1.46149 −0.730746 0.682650i \(-0.760828\pi\)
−0.730746 + 0.682650i \(0.760828\pi\)
\(728\) −309.706 −0.0157671
\(729\) 0 0
\(730\) 9882.44 0.501049
\(731\) −24284.0 −1.22869
\(732\) 0 0
\(733\) −5760.02 −0.290247 −0.145123 0.989414i \(-0.546358\pi\)
−0.145123 + 0.989414i \(0.546358\pi\)
\(734\) 18769.8 0.943877
\(735\) 0 0
\(736\) −25406.1 −1.27239
\(737\) −2413.46 −0.120625
\(738\) 0 0
\(739\) −17937.2 −0.892870 −0.446435 0.894816i \(-0.647307\pi\)
−0.446435 + 0.894816i \(0.647307\pi\)
\(740\) −6910.59 −0.343295
\(741\) 0 0
\(742\) 24206.8 1.19766
\(743\) −20217.9 −0.998279 −0.499140 0.866522i \(-0.666351\pi\)
−0.499140 + 0.866522i \(0.666351\pi\)
\(744\) 0 0
\(745\) 10655.9 0.524027
\(746\) 37942.4 1.86216
\(747\) 0 0
\(748\) −8032.09 −0.392623
\(749\) 9848.00 0.480425
\(750\) 0 0
\(751\) 6649.29 0.323084 0.161542 0.986866i \(-0.448353\pi\)
0.161542 + 0.986866i \(0.448353\pi\)
\(752\) −1418.57 −0.0687896
\(753\) 0 0
\(754\) −1184.17 −0.0571946
\(755\) −8814.76 −0.424903
\(756\) 0 0
\(757\) 9493.38 0.455803 0.227901 0.973684i \(-0.426814\pi\)
0.227901 + 0.973684i \(0.426814\pi\)
\(758\) 17419.8 0.834717
\(759\) 0 0
\(760\) −13973.9 −0.666958
\(761\) 18781.3 0.894642 0.447321 0.894374i \(-0.352378\pi\)
0.447321 + 0.894374i \(0.352378\pi\)
\(762\) 0 0
\(763\) −12887.3 −0.611469
\(764\) 28258.5 1.33817
\(765\) 0 0
\(766\) 52146.5 2.45970
\(767\) −1321.37 −0.0622061
\(768\) 0 0
\(769\) −11023.8 −0.516942 −0.258471 0.966019i \(-0.583219\pi\)
−0.258471 + 0.966019i \(0.583219\pi\)
\(770\) 2991.38 0.140002
\(771\) 0 0
\(772\) 53909.8 2.51328
\(773\) −14027.8 −0.652710 −0.326355 0.945247i \(-0.605820\pi\)
−0.326355 + 0.945247i \(0.605820\pi\)
\(774\) 0 0
\(775\) 25842.0 1.19777
\(776\) −26698.3 −1.23507
\(777\) 0 0
\(778\) 39793.2 1.83375
\(779\) 11234.4 0.516708
\(780\) 0 0
\(781\) 9752.91 0.446846
\(782\) −32021.1 −1.46429
\(783\) 0 0
\(784\) 4390.96 0.200025
\(785\) 8872.77 0.403417
\(786\) 0 0
\(787\) −30940.0 −1.40139 −0.700693 0.713463i \(-0.747126\pi\)
−0.700693 + 0.713463i \(0.747126\pi\)
\(788\) −43235.2 −1.95456
\(789\) 0 0
\(790\) 6084.43 0.274018
\(791\) 2455.07 0.110357
\(792\) 0 0
\(793\) 348.838 0.0156212
\(794\) 60022.0 2.68275
\(795\) 0 0
\(796\) −12107.1 −0.539102
\(797\) −33897.3 −1.50653 −0.753265 0.657717i \(-0.771522\pi\)
−0.753265 + 0.657717i \(0.771522\pi\)
\(798\) 0 0
\(799\) −5065.34 −0.224279
\(800\) −17840.2 −0.788434
\(801\) 0 0
\(802\) −52743.8 −2.32226
\(803\) 3725.78 0.163736
\(804\) 0 0
\(805\) 7138.17 0.312531
\(806\) 2656.67 0.116101
\(807\) 0 0
\(808\) 31903.7 1.38907
\(809\) 34155.0 1.48433 0.742166 0.670216i \(-0.233798\pi\)
0.742166 + 0.670216i \(0.233798\pi\)
\(810\) 0 0
\(811\) 42765.4 1.85166 0.925830 0.377941i \(-0.123368\pi\)
0.925830 + 0.377941i \(0.123368\pi\)
\(812\) 15563.6 0.672631
\(813\) 0 0
\(814\) −4352.73 −0.187424
\(815\) 5343.15 0.229647
\(816\) 0 0
\(817\) −48366.6 −2.07115
\(818\) 65620.3 2.80484
\(819\) 0 0
\(820\) 7183.66 0.305932
\(821\) −15670.6 −0.666148 −0.333074 0.942901i \(-0.608086\pi\)
−0.333074 + 0.942901i \(0.608086\pi\)
\(822\) 0 0
\(823\) 16111.0 0.682373 0.341186 0.939996i \(-0.389171\pi\)
0.341186 + 0.939996i \(0.389171\pi\)
\(824\) −20030.1 −0.846824
\(825\) 0 0
\(826\) 29014.6 1.22221
\(827\) −12505.1 −0.525810 −0.262905 0.964822i \(-0.584681\pi\)
−0.262905 + 0.964822i \(0.584681\pi\)
\(828\) 0 0
\(829\) −5981.63 −0.250604 −0.125302 0.992119i \(-0.539990\pi\)
−0.125302 + 0.992119i \(0.539990\pi\)
\(830\) −13535.8 −0.566067
\(831\) 0 0
\(832\) −1574.17 −0.0655944
\(833\) 15679.0 0.652154
\(834\) 0 0
\(835\) −10886.7 −0.451198
\(836\) −15997.6 −0.661826
\(837\) 0 0
\(838\) −28466.6 −1.17346
\(839\) −42174.9 −1.73545 −0.867724 0.497047i \(-0.834418\pi\)
−0.867724 + 0.497047i \(0.834418\pi\)
\(840\) 0 0
\(841\) −4791.89 −0.196477
\(842\) −30113.9 −1.23253
\(843\) 0 0
\(844\) 7287.09 0.297194
\(845\) 14335.9 0.583633
\(846\) 0 0
\(847\) 1127.78 0.0457509
\(848\) 9973.92 0.403898
\(849\) 0 0
\(850\) −22485.4 −0.907343
\(851\) −10386.7 −0.418391
\(852\) 0 0
\(853\) 20426.0 0.819898 0.409949 0.912108i \(-0.365546\pi\)
0.409949 + 0.912108i \(0.365546\pi\)
\(854\) −7659.76 −0.306922
\(855\) 0 0
\(856\) −18528.3 −0.739820
\(857\) −4325.90 −0.172427 −0.0862136 0.996277i \(-0.527477\pi\)
−0.0862136 + 0.996277i \(0.527477\pi\)
\(858\) 0 0
\(859\) −37355.7 −1.48377 −0.741887 0.670525i \(-0.766069\pi\)
−0.741887 + 0.670525i \(0.766069\pi\)
\(860\) −30927.1 −1.22629
\(861\) 0 0
\(862\) 60679.7 2.39763
\(863\) −38444.8 −1.51643 −0.758214 0.652006i \(-0.773928\pi\)
−0.758214 + 0.652006i \(0.773928\pi\)
\(864\) 0 0
\(865\) −4783.67 −0.188034
\(866\) 11209.8 0.439868
\(867\) 0 0
\(868\) −34917.0 −1.36539
\(869\) 2293.89 0.0895455
\(870\) 0 0
\(871\) −415.747 −0.0161734
\(872\) 24246.5 0.941618
\(873\) 0 0
\(874\) −63776.7 −2.46828
\(875\) 12627.2 0.487859
\(876\) 0 0
\(877\) −21521.3 −0.828645 −0.414323 0.910130i \(-0.635982\pi\)
−0.414323 + 0.910130i \(0.635982\pi\)
\(878\) −43398.5 −1.66814
\(879\) 0 0
\(880\) 1232.54 0.0472145
\(881\) −24114.4 −0.922173 −0.461086 0.887355i \(-0.652540\pi\)
−0.461086 + 0.887355i \(0.652540\pi\)
\(882\) 0 0
\(883\) 5203.36 0.198309 0.0991546 0.995072i \(-0.468386\pi\)
0.0991546 + 0.995072i \(0.468386\pi\)
\(884\) −1383.62 −0.0526429
\(885\) 0 0
\(886\) −50549.9 −1.91677
\(887\) −25749.8 −0.974738 −0.487369 0.873196i \(-0.662043\pi\)
−0.487369 + 0.873196i \(0.662043\pi\)
\(888\) 0 0
\(889\) −11349.4 −0.428174
\(890\) −33194.0 −1.25019
\(891\) 0 0
\(892\) −5302.86 −0.199050
\(893\) −10088.7 −0.378056
\(894\) 0 0
\(895\) −27927.7 −1.04304
\(896\) 18398.7 0.686002
\(897\) 0 0
\(898\) 46526.6 1.72897
\(899\) −43966.1 −1.63109
\(900\) 0 0
\(901\) 35614.3 1.31685
\(902\) 4524.72 0.167025
\(903\) 0 0
\(904\) −4619.04 −0.169941
\(905\) −6856.39 −0.251839
\(906\) 0 0
\(907\) 41969.7 1.53647 0.768237 0.640166i \(-0.221134\pi\)
0.768237 + 0.640166i \(0.221134\pi\)
\(908\) −69384.4 −2.53591
\(909\) 0 0
\(910\) 515.301 0.0187715
\(911\) 5980.10 0.217486 0.108743 0.994070i \(-0.465317\pi\)
0.108743 + 0.994070i \(0.465317\pi\)
\(912\) 0 0
\(913\) −5103.15 −0.184983
\(914\) 27538.9 0.996613
\(915\) 0 0
\(916\) −69372.4 −2.50232
\(917\) 8627.30 0.310685
\(918\) 0 0
\(919\) 8614.03 0.309195 0.154598 0.987978i \(-0.450592\pi\)
0.154598 + 0.987978i \(0.450592\pi\)
\(920\) −13430.0 −0.481275
\(921\) 0 0
\(922\) −12767.3 −0.456041
\(923\) 1680.06 0.0599130
\(924\) 0 0
\(925\) −7293.56 −0.259255
\(926\) 46910.4 1.66476
\(927\) 0 0
\(928\) 30352.3 1.07367
\(929\) 29940.6 1.05740 0.528698 0.848810i \(-0.322681\pi\)
0.528698 + 0.848810i \(0.322681\pi\)
\(930\) 0 0
\(931\) 31227.9 1.09931
\(932\) 28726.2 1.00961
\(933\) 0 0
\(934\) −41843.9 −1.46593
\(935\) 4401.07 0.153936
\(936\) 0 0
\(937\) 7361.97 0.256676 0.128338 0.991731i \(-0.459036\pi\)
0.128338 + 0.991731i \(0.459036\pi\)
\(938\) 9128.94 0.317772
\(939\) 0 0
\(940\) −6451.01 −0.223839
\(941\) 13364.9 0.463001 0.231501 0.972835i \(-0.425636\pi\)
0.231501 + 0.972835i \(0.425636\pi\)
\(942\) 0 0
\(943\) 10797.1 0.372855
\(944\) 11954.9 0.412180
\(945\) 0 0
\(946\) −19479.9 −0.669498
\(947\) 11892.5 0.408081 0.204041 0.978962i \(-0.434593\pi\)
0.204041 + 0.978962i \(0.434593\pi\)
\(948\) 0 0
\(949\) 641.811 0.0219537
\(950\) −44784.2 −1.52946
\(951\) 0 0
\(952\) 10005.3 0.340622
\(953\) 39943.0 1.35769 0.678846 0.734280i \(-0.262480\pi\)
0.678846 + 0.734280i \(0.262480\pi\)
\(954\) 0 0
\(955\) −15483.9 −0.524656
\(956\) 75124.9 2.54154
\(957\) 0 0
\(958\) 2485.50 0.0838235
\(959\) 10404.7 0.350350
\(960\) 0 0
\(961\) 68846.9 2.31100
\(962\) −749.810 −0.0251298
\(963\) 0 0
\(964\) 48190.5 1.61007
\(965\) −29539.1 −0.985387
\(966\) 0 0
\(967\) 51655.2 1.71781 0.858903 0.512138i \(-0.171146\pi\)
0.858903 + 0.512138i \(0.171146\pi\)
\(968\) −2121.84 −0.0704531
\(969\) 0 0
\(970\) 44421.6 1.47040
\(971\) 11420.4 0.377445 0.188722 0.982030i \(-0.439565\pi\)
0.188722 + 0.982030i \(0.439565\pi\)
\(972\) 0 0
\(973\) −5376.50 −0.177145
\(974\) 28850.8 0.949117
\(975\) 0 0
\(976\) −3156.05 −0.103507
\(977\) 31161.4 1.02041 0.510205 0.860053i \(-0.329570\pi\)
0.510205 + 0.860053i \(0.329570\pi\)
\(978\) 0 0
\(979\) −12514.5 −0.408545
\(980\) 19968.1 0.650876
\(981\) 0 0
\(982\) −13868.2 −0.450664
\(983\) −23732.3 −0.770032 −0.385016 0.922910i \(-0.625804\pi\)
−0.385016 + 0.922910i \(0.625804\pi\)
\(984\) 0 0
\(985\) 23690.2 0.766326
\(986\) 38255.2 1.23559
\(987\) 0 0
\(988\) −2755.77 −0.0887376
\(989\) −46483.8 −1.49454
\(990\) 0 0
\(991\) 25272.0 0.810081 0.405041 0.914299i \(-0.367257\pi\)
0.405041 + 0.914299i \(0.367257\pi\)
\(992\) −68095.3 −2.17946
\(993\) 0 0
\(994\) −36890.5 −1.17716
\(995\) 6633.93 0.211367
\(996\) 0 0
\(997\) −31125.7 −0.988726 −0.494363 0.869256i \(-0.664599\pi\)
−0.494363 + 0.869256i \(0.664599\pi\)
\(998\) −995.603 −0.0315784
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.a.d.1.1 2
3.2 odd 2 99.4.a.g.1.2 yes 2
4.3 odd 2 1584.4.a.w.1.2 2
5.4 even 2 2475.4.a.r.1.2 2
11.10 odd 2 1089.4.a.w.1.2 2
12.11 even 2 1584.4.a.bk.1.1 2
15.14 odd 2 2475.4.a.m.1.1 2
33.32 even 2 1089.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.a.d.1.1 2 1.1 even 1 trivial
99.4.a.g.1.2 yes 2 3.2 odd 2
1089.4.a.l.1.1 2 33.32 even 2
1089.4.a.w.1.2 2 11.10 odd 2
1584.4.a.w.1.2 2 4.3 odd 2
1584.4.a.bk.1.1 2 12.11 even 2
2475.4.a.m.1.1 2 15.14 odd 2
2475.4.a.r.1.2 2 5.4 even 2