Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [99,4,Mod(37,99)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(99, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("99.37");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 99.f (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 33) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
−3.61803 | − | 2.62866i | 0 | 3.70820 | + | 11.4127i | 4.69098 | − | 3.40820i | 0 | −4.72542 | − | 14.5434i | 5.52786 | − | 17.0130i | 0 | −25.9311 | ||||||||||||||||||||
64.1 | −1.38197 | + | 4.25325i | 0 | −9.70820 | − | 7.05342i | 5.80902 | + | 17.8783i | 0 | 23.2254 | + | 16.8743i | 14.4721 | − | 10.5146i | 0 | −84.0689 | |||||||||||||||||||||
82.1 | −1.38197 | − | 4.25325i | 0 | −9.70820 | + | 7.05342i | 5.80902 | − | 17.8783i | 0 | 23.2254 | − | 16.8743i | 14.4721 | + | 10.5146i | 0 | −84.0689 | |||||||||||||||||||||
91.1 | −3.61803 | + | 2.62866i | 0 | 3.70820 | − | 11.4127i | 4.69098 | + | 3.40820i | 0 | −4.72542 | + | 14.5434i | 5.52786 | + | 17.0130i | 0 | −25.9311 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.4.f.a | 4 | |
3.b | odd | 2 | 1 | 33.4.e.a | ✓ | 4 | |
11.c | even | 5 | 1 | inner | 99.4.f.a | 4 | |
11.c | even | 5 | 1 | 1089.4.a.p | 2 | ||
11.d | odd | 10 | 1 | 1089.4.a.q | 2 | ||
33.f | even | 10 | 1 | 363.4.a.o | 2 | ||
33.h | odd | 10 | 1 | 33.4.e.a | ✓ | 4 | |
33.h | odd | 10 | 1 | 363.4.a.n | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.4.e.a | ✓ | 4 | 3.b | odd | 2 | 1 | |
33.4.e.a | ✓ | 4 | 33.h | odd | 10 | 1 | |
99.4.f.a | 4 | 1.a | even | 1 | 1 | trivial | |
99.4.f.a | 4 | 11.c | even | 5 | 1 | inner | |
363.4.a.n | 2 | 33.h | odd | 10 | 1 | ||
363.4.a.o | 2 | 33.f | even | 10 | 1 | ||
1089.4.a.p | 2 | 11.c | even | 5 | 1 | ||
1089.4.a.q | 2 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .