Properties

Label 99.4.f.a
Level 9999
Weight 44
Character orbit 99.f
Analytic conductor 5.8415.841
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 99=3211 99 = 3^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 99.f (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.841189090575.84118909057
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ103+2ζ102+2)q212ζ103q4+(11ζ10212ζ10+11)q5+(19ζ1036ζ10+6)q7+(16ζ103++16ζ10)q8++(744ζ103+744ζ102948)q98+O(q100) q + (2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} + \cdots - 2) q^{2} - 12 \zeta_{10}^{3} q^{4} + (11 \zeta_{10}^{2} - 12 \zeta_{10} + 11) q^{5} + (19 \zeta_{10}^{3} - 6 \zeta_{10} + 6) q^{7} + (16 \zeta_{10}^{3} + \cdots + 16 \zeta_{10}) q^{8} + \cdots + ( - 744 \zeta_{10}^{3} + 744 \zeta_{10}^{2} - 948) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q212q4+21q5+37q7+40q8220q1041q1177q13250q14+16q16192q1752q19+252q20+40q22+148q23426q25+110q26+5280q98+O(q100) 4 q - 10 q^{2} - 12 q^{4} + 21 q^{5} + 37 q^{7} + 40 q^{8} - 220 q^{10} - 41 q^{11} - 77 q^{13} - 250 q^{14} + 16 q^{16} - 192 q^{17} - 52 q^{19} + 252 q^{20} + 40 q^{22} + 148 q^{23} - 426 q^{25} + 110 q^{26}+ \cdots - 5280 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/99Z)×\left(\mathbb{Z}/99\mathbb{Z}\right)^\times.

nn 4646 5656
χ(n)\chi(n) ζ103-\zeta_{10}^{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
37.1
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 + 0.587785i
−3.61803 2.62866i 0 3.70820 + 11.4127i 4.69098 3.40820i 0 −4.72542 14.5434i 5.52786 17.0130i 0 −25.9311
64.1 −1.38197 + 4.25325i 0 −9.70820 7.05342i 5.80902 + 17.8783i 0 23.2254 + 16.8743i 14.4721 10.5146i 0 −84.0689
82.1 −1.38197 4.25325i 0 −9.70820 + 7.05342i 5.80902 17.8783i 0 23.2254 16.8743i 14.4721 + 10.5146i 0 −84.0689
91.1 −3.61803 + 2.62866i 0 3.70820 11.4127i 4.69098 + 3.40820i 0 −4.72542 + 14.5434i 5.52786 + 17.0130i 0 −25.9311
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 99.4.f.a 4
3.b odd 2 1 33.4.e.a 4
11.c even 5 1 inner 99.4.f.a 4
11.c even 5 1 1089.4.a.p 2
11.d odd 10 1 1089.4.a.q 2
33.f even 10 1 363.4.a.o 2
33.h odd 10 1 33.4.e.a 4
33.h odd 10 1 363.4.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.e.a 4 3.b odd 2 1
33.4.e.a 4 33.h odd 10 1
99.4.f.a 4 1.a even 1 1 trivial
99.4.f.a 4 11.c even 5 1 inner
363.4.a.n 2 33.h odd 10 1
363.4.a.o 2 33.f even 10 1
1089.4.a.p 2 11.c even 5 1
1089.4.a.q 2 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+10T23+60T22+200T2+400 T_{2}^{4} + 10T_{2}^{3} + 60T_{2}^{2} + 200T_{2} + 400 acting on S4new(99,[χ])S_{4}^{\mathrm{new}}(99, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+10T3++400 T^{4} + 10 T^{3} + \cdots + 400 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T421T3++11881 T^{4} - 21 T^{3} + \cdots + 11881 Copy content Toggle raw display
77 T437T3++192721 T^{4} - 37 T^{3} + \cdots + 192721 Copy content Toggle raw display
1111 T4+41T3++1771561 T^{4} + 41 T^{3} + \cdots + 1771561 Copy content Toggle raw display
1313 T4+77T3++14641 T^{4} + 77 T^{3} + \cdots + 14641 Copy content Toggle raw display
1717 T4+192T3++2595321 T^{4} + 192 T^{3} + \cdots + 2595321 Copy content Toggle raw display
1919 T4+52T3++1274641 T^{4} + 52 T^{3} + \cdots + 1274641 Copy content Toggle raw display
2323 (T274T1051)2 (T^{2} - 74 T - 1051)^{2} Copy content Toggle raw display
2929 T4++1740892176 T^{4} + \cdots + 1740892176 Copy content Toggle raw display
3131 T4+198T3++54479161 T^{4} + 198 T^{3} + \cdots + 54479161 Copy content Toggle raw display
3737 T4++4216034761 T^{4} + \cdots + 4216034761 Copy content Toggle raw display
4141 T4129T3++241081 T^{4} - 129 T^{3} + \cdots + 241081 Copy content Toggle raw display
4343 (T2+66T7731)2 (T^{2} + 66 T - 7731)^{2} Copy content Toggle raw display
4747 T435T3++674700625 T^{4} - 35 T^{3} + \cdots + 674700625 Copy content Toggle raw display
5353 T4+188T3++10042561 T^{4} + 188 T^{3} + \cdots + 10042561 Copy content Toggle raw display
5959 T4++47173668025 T^{4} + \cdots + 47173668025 Copy content Toggle raw display
6161 T4++55792802025 T^{4} + \cdots + 55792802025 Copy content Toggle raw display
6767 (T275T391995)2 (T^{2} - 75 T - 391995)^{2} Copy content Toggle raw display
7171 T4++53332821721 T^{4} + \cdots + 53332821721 Copy content Toggle raw display
7373 T4++8360542096 T^{4} + \cdots + 8360542096 Copy content Toggle raw display
7979 T4++285379255681 T^{4} + \cdots + 285379255681 Copy content Toggle raw display
8383 T4++53935882081 T^{4} + \cdots + 53935882081 Copy content Toggle raw display
8989 (T22712T+1809091)2 (T^{2} - 2712 T + 1809091)^{2} Copy content Toggle raw display
9797 T4++932420053161 T^{4} + \cdots + 932420053161 Copy content Toggle raw display
show more
show less