gp: [N,k,chi] = [99,4,Mod(37,99)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(99, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("99.37");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,-10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 10 \zeta_{10} ζ 1 0 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 99 Z ) × \left(\mathbb{Z}/99\mathbb{Z}\right)^\times ( Z / 9 9 Z ) × .
n n n
46 46 4 6
56 56 5 6
χ ( n ) \chi(n) χ ( n )
− ζ 10 3 -\zeta_{10}^{3} − ζ 1 0 3
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + 10 T 2 3 + 60 T 2 2 + 200 T 2 + 400 T_{2}^{4} + 10T_{2}^{3} + 60T_{2}^{2} + 200T_{2} + 400 T 2 4 + 1 0 T 2 3 + 6 0 T 2 2 + 2 0 0 T 2 + 4 0 0
T2^4 + 10*T2^3 + 60*T2^2 + 200*T2 + 400
acting on S 4 n e w ( 99 , [ χ ] ) S_{4}^{\mathrm{new}}(99, [\chi]) S 4 n e w ( 9 9 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 10 T 3 + ⋯ + 400 T^{4} + 10 T^{3} + \cdots + 400 T 4 + 1 0 T 3 + ⋯ + 4 0 0
T^4 + 10*T^3 + 60*T^2 + 200*T + 400
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 21 T 3 + ⋯ + 11881 T^{4} - 21 T^{3} + \cdots + 11881 T 4 − 2 1 T 3 + ⋯ + 1 1 8 8 1
T^4 - 21*T^3 + 496*T^2 - 3706*T + 11881
7 7 7
T 4 − 37 T 3 + ⋯ + 192721 T^{4} - 37 T^{3} + \cdots + 192721 T 4 − 3 7 T 3 + ⋯ + 1 9 2 7 2 1
T^4 - 37*T^3 + 619*T^2 - 3073*T + 192721
11 11 1 1
T 4 + 41 T 3 + ⋯ + 1771561 T^{4} + 41 T^{3} + \cdots + 1771561 T 4 + 4 1 T 3 + ⋯ + 1 7 7 1 5 6 1
T^4 + 41*T^3 + 1881*T^2 + 54571*T + 1771561
13 13 1 3
T 4 + 77 T 3 + ⋯ + 14641 T^{4} + 77 T^{3} + \cdots + 14641 T 4 + 7 7 T 3 + ⋯ + 1 4 6 4 1
T^4 + 77*T^3 + 2299*T^2 + 3993*T + 14641
17 17 1 7
T 4 + 192 T 3 + ⋯ + 2595321 T^{4} + 192 T^{3} + \cdots + 2595321 T 4 + 1 9 2 T 3 + ⋯ + 2 5 9 5 3 2 1
T^4 + 192*T^3 + 14634*T^2 + 149823*T + 2595321
19 19 1 9
T 4 + 52 T 3 + ⋯ + 1274641 T^{4} + 52 T^{3} + \cdots + 1274641 T 4 + 5 2 T 3 + ⋯ + 1 2 7 4 6 4 1
T^4 + 52*T^3 + 11254*T^2 - 195317*T + 1274641
23 23 2 3
( T 2 − 74 T − 1051 ) 2 (T^{2} - 74 T - 1051)^{2} ( T 2 − 7 4 T − 1 0 5 1 ) 2
(T^2 - 74*T - 1051)^2
29 29 2 9
T 4 + ⋯ + 1740892176 T^{4} + \cdots + 1740892176 T 4 + ⋯ + 1 7 4 0 8 9 2 1 7 6
T^4 + 414*T^3 + 142596*T^2 + 22781304*T + 1740892176
31 31 3 1
T 4 + 198 T 3 + ⋯ + 54479161 T^{4} + 198 T^{3} + \cdots + 54479161 T 4 + 1 9 8 T 3 + ⋯ + 5 4 4 7 9 1 6 1
T^4 + 198*T^3 + 22264*T^2 + 1380247*T + 54479161
37 37 3 7
T 4 + ⋯ + 4216034761 T^{4} + \cdots + 4216034761 T 4 + ⋯ + 4 2 1 6 0 3 4 7 6 1
T^4 - 201*T^3 + 67351*T^2 - 20193541*T + 4216034761
41 41 4 1
T 4 − 129 T 3 + ⋯ + 241081 T^{4} - 129 T^{3} + \cdots + 241081 T 4 − 1 2 9 T 3 + ⋯ + 2 4 1 0 8 1
T^4 - 129*T^3 + 6271*T^2 + 20131*T + 241081
43 43 4 3
( T 2 + 66 T − 7731 ) 2 (T^{2} + 66 T - 7731)^{2} ( T 2 + 6 6 T − 7 7 3 1 ) 2
(T^2 + 66*T - 7731)^2
47 47 4 7
T 4 − 35 T 3 + ⋯ + 674700625 T^{4} - 35 T^{3} + \cdots + 674700625 T 4 − 3 5 T 3 + ⋯ + 6 7 4 7 0 0 6 2 5
T^4 - 35*T^3 + 41100*T^2 - 8052250*T + 674700625
53 53 5 3
T 4 + 188 T 3 + ⋯ + 10042561 T^{4} + 188 T^{3} + \cdots + 10042561 T 4 + 1 8 8 T 3 + ⋯ + 1 0 0 4 2 5 6 1
T^4 + 188*T^3 + 105414*T^2 - 1670063*T + 10042561
59 59 5 9
T 4 + ⋯ + 47173668025 T^{4} + \cdots + 47173668025 T 4 + ⋯ + 4 7 1 7 3 6 6 8 0 2 5
T^4 - 1320*T^3 + 799810*T^2 - 203077325*T + 47173668025
61 61 6 1
T 4 + ⋯ + 55792802025 T^{4} + \cdots + 55792802025 T 4 + ⋯ + 5 5 7 9 2 8 0 2 0 2 5
T^4 - 1275*T^3 + 625410*T^2 + 28344600*T + 55792802025
67 67 6 7
( T 2 − 75 T − 391995 ) 2 (T^{2} - 75 T - 391995)^{2} ( T 2 − 7 5 T − 3 9 1 9 9 5 ) 2
(T^2 - 75*T - 391995)^2
71 71 7 1
T 4 + ⋯ + 53332821721 T^{4} + \cdots + 53332821721 T 4 + ⋯ + 5 3 3 3 2 8 2 1 7 2 1
T^4 + 117*T^3 + 609064*T^2 - 290521262*T + 53332821721
73 73 7 3
T 4 + ⋯ + 8360542096 T^{4} + \cdots + 8360542096 T 4 + ⋯ + 8 3 6 0 5 4 2 0 9 6
T^4 + 982*T^3 + 414184*T^2 + 55593088*T + 8360542096
79 79 7 9
T 4 + ⋯ + 285379255681 T^{4} + \cdots + 285379255681 T 4 + ⋯ + 2 8 5 3 7 9 2 5 5 6 8 1
T^4 + 1469*T^3 + 1929811*T^2 + 1090320569*T + 285379255681
83 83 8 3
T 4 + ⋯ + 53935882081 T^{4} + \cdots + 53935882081 T 4 + ⋯ + 5 3 9 3 5 8 8 2 0 8 1
T^4 - 967*T^3 + 853539*T^2 - 316544483*T + 53935882081
89 89 8 9
( T 2 − 2712 T + 1809091 ) 2 (T^{2} - 2712 T + 1809091)^{2} ( T 2 − 2 7 1 2 T + 1 8 0 9 0 9 1 ) 2
(T^2 - 2712*T + 1809091)^2
97 97 9 7
T 4 + ⋯ + 932420053161 T^{4} + \cdots + 932420053161 T 4 + ⋯ + 9 3 2 4 2 0 0 5 3 1 6 1
T^4 - 2391*T^3 + 3003786*T^2 - 1993037616*T + 932420053161
show more
show less