Properties

Label 99.4.f.b.82.2
Level $99$
Weight $4$
Character 99.82
Analytic conductor $5.841$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.2
Root \(2.51217 - 1.82520i\) of defining polynomial
Character \(\chi\) \(=\) 99.82
Dual form 99.4.f.b.64.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45957 + 4.49208i) q^{2} +(-11.5763 + 8.41069i) q^{4} +(-1.86000 + 5.72450i) q^{5} +(-8.05785 + 5.85437i) q^{7} +(-24.1083 - 17.5157i) q^{8} +O(q^{10})\) \(q+(1.45957 + 4.49208i) q^{2} +(-11.5763 + 8.41069i) q^{4} +(-1.86000 + 5.72450i) q^{5} +(-8.05785 + 5.85437i) q^{7} +(-24.1083 - 17.5157i) q^{8} -28.4297 q^{10} +(-8.30870 + 35.5242i) q^{11} +(-27.8826 - 85.8139i) q^{13} +(-38.0593 - 27.6517i) q^{14} +(8.12031 - 24.9917i) q^{16} +(-13.8539 + 42.6379i) q^{17} +(110.890 + 80.5660i) q^{19} +(-26.6150 - 81.9125i) q^{20} +(-171.704 + 14.5265i) q^{22} +71.4719 q^{23} +(71.8169 + 52.1780i) q^{25} +(344.786 - 250.502i) q^{26} +(44.0409 - 135.544i) q^{28} +(-119.601 + 86.8950i) q^{29} +(2.38514 + 7.34071i) q^{31} -114.279 q^{32} -211.753 q^{34} +(-18.5257 - 57.0163i) q^{35} +(-8.18776 + 5.94875i) q^{37} +(-200.058 + 615.716i) q^{38} +(145.110 - 105.429i) q^{40} +(305.780 + 222.162i) q^{41} +276.048 q^{43} +(-202.598 - 481.121i) q^{44} +(104.318 + 321.057i) q^{46} +(-191.854 - 139.390i) q^{47} +(-75.3376 + 231.865i) q^{49} +(-129.566 + 398.764i) q^{50} +(1044.53 + 758.897i) q^{52} +(68.6297 + 211.221i) q^{53} +(-187.904 - 113.638i) q^{55} +296.805 q^{56} +(-564.905 - 410.427i) q^{58} +(136.832 - 99.4144i) q^{59} +(70.1651 - 215.946i) q^{61} +(-29.4938 + 21.4285i) q^{62} +(-231.761 - 713.286i) q^{64} +543.103 q^{65} -362.669 q^{67} +(-198.237 - 610.110i) q^{68} +(229.082 - 166.438i) q^{70} +(219.919 - 676.841i) q^{71} +(845.463 - 614.265i) q^{73} +(-38.6729 - 28.0975i) q^{74} -1961.31 q^{76} +(-141.021 - 334.890i) q^{77} +(15.6957 + 48.3063i) q^{79} +(127.961 + 92.9694i) q^{80} +(-551.665 + 1697.85i) q^{82} +(378.188 - 1163.94i) q^{83} +(-218.312 - 158.613i) q^{85} +(402.911 + 1240.03i) q^{86} +(822.541 - 710.895i) q^{88} -964.845 q^{89} +(727.060 + 528.240i) q^{91} +(-827.381 + 601.128i) q^{92} +(346.128 - 1065.27i) q^{94} +(-667.455 + 484.934i) q^{95} +(78.8462 + 242.664i) q^{97} -1151.52 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} - 16 q^{4} - 9 q^{5} + 3 q^{7} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{2} - 16 q^{4} - 9 q^{5} + 3 q^{7} - 36 q^{8} + 8 q^{10} + 87 q^{11} + 171 q^{13} - 12 q^{14} + 44 q^{16} - 36 q^{17} + 324 q^{19} + 87 q^{20} - 521 q^{22} + 84 q^{23} + 263 q^{25} + 774 q^{26} + 387 q^{28} - 393 q^{29} + 15 q^{31} - 102 q^{32} - 712 q^{34} - 1002 q^{35} - 747 q^{37} + 36 q^{38} + 41 q^{40} - 159 q^{41} - 644 q^{43} - 219 q^{44} + 753 q^{46} + 351 q^{47} - 1967 q^{49} - 330 q^{50} + 2871 q^{52} + 531 q^{53} - 716 q^{55} - 1470 q^{56} - 1205 q^{58} + 1002 q^{59} + 1449 q^{61} - 99 q^{62} - 1118 q^{64} + 954 q^{65} - 518 q^{67} - 873 q^{68} + 26 q^{70} - 429 q^{71} + 2547 q^{73} - 468 q^{74} - 2276 q^{76} + 2697 q^{77} + 2805 q^{79} + 1620 q^{80} - 1631 q^{82} + 2553 q^{83} - 197 q^{85} + 1713 q^{86} + 2866 q^{88} - 1788 q^{89} + 2885 q^{91} - 423 q^{92} + 1159 q^{94} - 3009 q^{95} + 9 q^{97} - 5550 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45957 + 4.49208i 0.516034 + 1.58819i 0.781392 + 0.624040i \(0.214510\pi\)
−0.265358 + 0.964150i \(0.585490\pi\)
\(3\) 0 0
\(4\) −11.5763 + 8.41069i −1.44704 + 1.05134i
\(5\) −1.86000 + 5.72450i −0.166364 + 0.512014i −0.999134 0.0416038i \(-0.986753\pi\)
0.832771 + 0.553618i \(0.186753\pi\)
\(6\) 0 0
\(7\) −8.05785 + 5.85437i −0.435083 + 0.316106i −0.783678 0.621167i \(-0.786659\pi\)
0.348595 + 0.937273i \(0.386659\pi\)
\(8\) −24.1083 17.5157i −1.06545 0.774094i
\(9\) 0 0
\(10\) −28.4297 −0.899026
\(11\) −8.30870 + 35.5242i −0.227743 + 0.973721i
\(12\) 0 0
\(13\) −27.8826 85.8139i −0.594865 1.83081i −0.555396 0.831586i \(-0.687433\pi\)
−0.0394690 0.999221i \(-0.512567\pi\)
\(14\) −38.0593 27.6517i −0.726555 0.527873i
\(15\) 0 0
\(16\) 8.12031 24.9917i 0.126880 0.390496i
\(17\) −13.8539 + 42.6379i −0.197651 + 0.608306i 0.802285 + 0.596941i \(0.203618\pi\)
−0.999935 + 0.0113645i \(0.996382\pi\)
\(18\) 0 0
\(19\) 110.890 + 80.5660i 1.33894 + 0.972795i 0.999482 + 0.0321734i \(0.0102429\pi\)
0.339456 + 0.940622i \(0.389757\pi\)
\(20\) −26.6150 81.9125i −0.297564 0.915809i
\(21\) 0 0
\(22\) −171.704 + 14.5265i −1.66398 + 0.140775i
\(23\) 71.4719 0.647953 0.323977 0.946065i \(-0.394980\pi\)
0.323977 + 0.946065i \(0.394980\pi\)
\(24\) 0 0
\(25\) 71.8169 + 52.1780i 0.574535 + 0.417424i
\(26\) 344.786 250.502i 2.60070 1.88952i
\(27\) 0 0
\(28\) 44.0409 135.544i 0.297248 0.914837i
\(29\) −119.601 + 86.8950i −0.765838 + 0.556414i −0.900695 0.434451i \(-0.856942\pi\)
0.134857 + 0.990865i \(0.456942\pi\)
\(30\) 0 0
\(31\) 2.38514 + 7.34071i 0.0138188 + 0.0425300i 0.957728 0.287675i \(-0.0928822\pi\)
−0.943909 + 0.330205i \(0.892882\pi\)
\(32\) −114.279 −0.631310
\(33\) 0 0
\(34\) −211.753 −1.06810
\(35\) −18.5257 57.0163i −0.0894690 0.275357i
\(36\) 0 0
\(37\) −8.18776 + 5.94875i −0.0363800 + 0.0264316i −0.605827 0.795597i \(-0.707158\pi\)
0.569447 + 0.822028i \(0.307158\pi\)
\(38\) −200.058 + 615.716i −0.854046 + 2.62848i
\(39\) 0 0
\(40\) 145.110 105.429i 0.573599 0.416744i
\(41\) 305.780 + 222.162i 1.16475 + 0.846242i 0.990371 0.138436i \(-0.0442075\pi\)
0.174381 + 0.984678i \(0.444207\pi\)
\(42\) 0 0
\(43\) 276.048 0.979000 0.489500 0.872003i \(-0.337179\pi\)
0.489500 + 0.872003i \(0.337179\pi\)
\(44\) −202.598 481.121i −0.694156 1.64845i
\(45\) 0 0
\(46\) 104.318 + 321.057i 0.334366 + 1.02907i
\(47\) −191.854 139.390i −0.595421 0.432599i 0.248830 0.968547i \(-0.419954\pi\)
−0.844251 + 0.535949i \(0.819954\pi\)
\(48\) 0 0
\(49\) −75.3376 + 231.865i −0.219643 + 0.675992i
\(50\) −129.566 + 398.764i −0.366469 + 1.12788i
\(51\) 0 0
\(52\) 1044.53 + 758.897i 2.78559 + 2.02385i
\(53\) 68.6297 + 211.221i 0.177868 + 0.547422i 0.999753 0.0222318i \(-0.00707718\pi\)
−0.821885 + 0.569654i \(0.807077\pi\)
\(54\) 0 0
\(55\) −187.904 113.638i −0.460671 0.278599i
\(56\) 296.805 0.708254
\(57\) 0 0
\(58\) −564.905 410.427i −1.27889 0.929168i
\(59\) 136.832 99.4144i 0.301933 0.219367i −0.426494 0.904490i \(-0.640252\pi\)
0.728427 + 0.685123i \(0.240252\pi\)
\(60\) 0 0
\(61\) 70.1651 215.946i 0.147274 0.453263i −0.850022 0.526747i \(-0.823412\pi\)
0.997296 + 0.0734835i \(0.0234116\pi\)
\(62\) −29.4938 + 21.4285i −0.0604147 + 0.0438939i
\(63\) 0 0
\(64\) −231.761 713.286i −0.452658 1.39314i
\(65\) 543.103 1.03636
\(66\) 0 0
\(67\) −362.669 −0.661300 −0.330650 0.943753i \(-0.607268\pi\)
−0.330650 + 0.943753i \(0.607268\pi\)
\(68\) −198.237 610.110i −0.353526 1.08804i
\(69\) 0 0
\(70\) 229.082 166.438i 0.391151 0.284188i
\(71\) 219.919 676.841i 0.367600 1.13136i −0.580737 0.814091i \(-0.697236\pi\)
0.948337 0.317265i \(-0.102764\pi\)
\(72\) 0 0
\(73\) 845.463 614.265i 1.35553 0.984853i 0.356820 0.934173i \(-0.383861\pi\)
0.998715 0.0506801i \(-0.0161389\pi\)
\(74\) −38.6729 28.0975i −0.0607517 0.0441387i
\(75\) 0 0
\(76\) −1961.31 −2.96023
\(77\) −141.021 334.890i −0.208713 0.495640i
\(78\) 0 0
\(79\) 15.6957 + 48.3063i 0.0223532 + 0.0687959i 0.961611 0.274417i \(-0.0884848\pi\)
−0.939258 + 0.343213i \(0.888485\pi\)
\(80\) 127.961 + 92.9694i 0.178831 + 0.129929i
\(81\) 0 0
\(82\) −551.665 + 1697.85i −0.742942 + 2.28654i
\(83\) 378.188 1163.94i 0.500139 1.53927i −0.308653 0.951175i \(-0.599878\pi\)
0.808792 0.588095i \(-0.200122\pi\)
\(84\) 0 0
\(85\) −218.312 158.613i −0.278580 0.202400i
\(86\) 402.911 + 1240.03i 0.505197 + 1.55484i
\(87\) 0 0
\(88\) 822.541 710.895i 0.996399 0.861156i
\(89\) −964.845 −1.14914 −0.574569 0.818456i \(-0.694830\pi\)
−0.574569 + 0.818456i \(0.694830\pi\)
\(90\) 0 0
\(91\) 727.060 + 528.240i 0.837545 + 0.608512i
\(92\) −827.381 + 601.128i −0.937614 + 0.681216i
\(93\) 0 0
\(94\) 346.128 1065.27i 0.379791 1.16888i
\(95\) −667.455 + 484.934i −0.720836 + 0.523718i
\(96\) 0 0
\(97\) 78.8462 + 242.664i 0.0825321 + 0.254008i 0.983804 0.179245i \(-0.0573656\pi\)
−0.901272 + 0.433253i \(0.857366\pi\)
\(98\) −1151.52 −1.18695
\(99\) 0 0
\(100\) −1270.23 −1.27023
\(101\) −41.9267 129.037i −0.0413055 0.127125i 0.928277 0.371889i \(-0.121290\pi\)
−0.969583 + 0.244763i \(0.921290\pi\)
\(102\) 0 0
\(103\) 557.554 405.087i 0.533373 0.387518i −0.288245 0.957557i \(-0.593072\pi\)
0.821618 + 0.570039i \(0.193072\pi\)
\(104\) −830.890 + 2557.21i −0.783418 + 2.41111i
\(105\) 0 0
\(106\) −848.650 + 616.581i −0.777625 + 0.564977i
\(107\) 784.130 + 569.704i 0.708455 + 0.514723i 0.882675 0.469984i \(-0.155740\pi\)
−0.174220 + 0.984707i \(0.555740\pi\)
\(108\) 0 0
\(109\) −235.888 −0.207284 −0.103642 0.994615i \(-0.533050\pi\)
−0.103642 + 0.994615i \(0.533050\pi\)
\(110\) 236.214 1009.94i 0.204746 0.875400i
\(111\) 0 0
\(112\) 80.8787 + 248.919i 0.0682350 + 0.210006i
\(113\) 416.768 + 302.800i 0.346958 + 0.252080i 0.747592 0.664159i \(-0.231210\pi\)
−0.400634 + 0.916238i \(0.631210\pi\)
\(114\) 0 0
\(115\) −132.938 + 409.141i −0.107796 + 0.331761i
\(116\) 653.689 2011.85i 0.523220 1.61031i
\(117\) 0 0
\(118\) 646.293 + 469.559i 0.504204 + 0.366326i
\(119\) −137.985 424.675i −0.106295 0.327142i
\(120\) 0 0
\(121\) −1192.93 590.319i −0.896267 0.443515i
\(122\) 1072.46 0.795867
\(123\) 0 0
\(124\) −89.3515 64.9177i −0.0647097 0.0470144i
\(125\) −1040.97 + 756.306i −0.744854 + 0.541168i
\(126\) 0 0
\(127\) 319.132 982.188i 0.222980 0.686261i −0.775511 0.631334i \(-0.782508\pi\)
0.998490 0.0549264i \(-0.0174924\pi\)
\(128\) 2126.24 1544.80i 1.46824 1.06674i
\(129\) 0 0
\(130\) 792.694 + 2439.66i 0.534799 + 1.64594i
\(131\) −1366.16 −0.911157 −0.455578 0.890196i \(-0.650568\pi\)
−0.455578 + 0.890196i \(0.650568\pi\)
\(132\) 0 0
\(133\) −1365.19 −0.890056
\(134\) −529.339 1629.14i −0.341253 1.05027i
\(135\) 0 0
\(136\) 1080.83 785.267i 0.681472 0.495118i
\(137\) −467.210 + 1437.92i −0.291361 + 0.896716i 0.693059 + 0.720881i \(0.256263\pi\)
−0.984420 + 0.175835i \(0.943737\pi\)
\(138\) 0 0
\(139\) 848.109 616.187i 0.517523 0.376002i −0.298147 0.954520i \(-0.596369\pi\)
0.815670 + 0.578518i \(0.196369\pi\)
\(140\) 694.005 + 504.224i 0.418958 + 0.304391i
\(141\) 0 0
\(142\) 3361.41 1.98650
\(143\) 3280.13 277.505i 1.91817 0.162280i
\(144\) 0 0
\(145\) −274.973 846.279i −0.157484 0.484687i
\(146\) 3993.34 + 2901.33i 2.26364 + 1.64463i
\(147\) 0 0
\(148\) 44.7510 137.729i 0.0248548 0.0764952i
\(149\) 119.658 368.270i 0.0657905 0.202482i −0.912757 0.408502i \(-0.866051\pi\)
0.978548 + 0.206020i \(0.0660512\pi\)
\(150\) 0 0
\(151\) −549.139 398.973i −0.295949 0.215019i 0.429895 0.902879i \(-0.358551\pi\)
−0.725844 + 0.687859i \(0.758551\pi\)
\(152\) −1262.19 3884.63i −0.673535 2.07293i
\(153\) 0 0
\(154\) 1298.53 1122.27i 0.679468 0.587243i
\(155\) −46.4582 −0.0240749
\(156\) 0 0
\(157\) 2919.99 + 2121.50i 1.48434 + 1.07843i 0.976127 + 0.217200i \(0.0696925\pi\)
0.508210 + 0.861233i \(0.330308\pi\)
\(158\) −194.087 + 141.012i −0.0977260 + 0.0710021i
\(159\) 0 0
\(160\) 212.560 654.192i 0.105027 0.323240i
\(161\) −575.910 + 418.423i −0.281913 + 0.204822i
\(162\) 0 0
\(163\) 284.219 + 874.736i 0.136575 + 0.420335i 0.995832 0.0912099i \(-0.0290734\pi\)
−0.859257 + 0.511545i \(0.829073\pi\)
\(164\) −5408.35 −2.57513
\(165\) 0 0
\(166\) 5780.52 2.70274
\(167\) 713.424 + 2195.69i 0.330577 + 1.01741i 0.968860 + 0.247610i \(0.0796453\pi\)
−0.638282 + 0.769802i \(0.720355\pi\)
\(168\) 0 0
\(169\) −4809.17 + 3494.07i −2.18897 + 1.59038i
\(170\) 393.861 1212.18i 0.177693 0.546883i
\(171\) 0 0
\(172\) −3195.62 + 2321.76i −1.41665 + 1.02926i
\(173\) −370.871 269.454i −0.162987 0.118417i 0.503302 0.864111i \(-0.332118\pi\)
−0.666289 + 0.745693i \(0.732118\pi\)
\(174\) 0 0
\(175\) −884.159 −0.381921
\(176\) 820.342 + 496.116i 0.351338 + 0.212478i
\(177\) 0 0
\(178\) −1408.25 4334.16i −0.592995 1.82505i
\(179\) −2880.70 2092.95i −1.20287 0.873935i −0.208304 0.978064i \(-0.566794\pi\)
−0.994564 + 0.104129i \(0.966794\pi\)
\(180\) 0 0
\(181\) 248.804 765.741i 0.102174 0.314459i −0.886883 0.461994i \(-0.847134\pi\)
0.989057 + 0.147535i \(0.0471340\pi\)
\(182\) −1311.71 + 4037.01i −0.534231 + 1.64419i
\(183\) 0 0
\(184\) −1723.07 1251.88i −0.690360 0.501576i
\(185\) −18.8244 57.9355i −0.00748106 0.0230243i
\(186\) 0 0
\(187\) −1399.57 846.413i −0.547307 0.330994i
\(188\) 3393.33 1.31640
\(189\) 0 0
\(190\) −3152.56 2290.47i −1.20374 0.874568i
\(191\) −1836.35 + 1334.19i −0.695674 + 0.505437i −0.878520 0.477705i \(-0.841469\pi\)
0.182847 + 0.983141i \(0.441469\pi\)
\(192\) 0 0
\(193\) −1477.59 + 4547.55i −0.551083 + 1.69606i 0.154986 + 0.987917i \(0.450467\pi\)
−0.706069 + 0.708143i \(0.749533\pi\)
\(194\) −974.983 + 708.367i −0.360823 + 0.262153i
\(195\) 0 0
\(196\) −1078.01 3317.79i −0.392862 1.20911i
\(197\) 2009.15 0.726630 0.363315 0.931666i \(-0.381645\pi\)
0.363315 + 0.931666i \(0.381645\pi\)
\(198\) 0 0
\(199\) 3250.22 1.15780 0.578900 0.815398i \(-0.303482\pi\)
0.578900 + 0.815398i \(0.303482\pi\)
\(200\) −817.450 2515.85i −0.289012 0.889488i
\(201\) 0 0
\(202\) 518.450 376.676i 0.180584 0.131202i
\(203\) 455.009 1400.37i 0.157317 0.484172i
\(204\) 0 0
\(205\) −1840.52 + 1337.22i −0.627061 + 0.455586i
\(206\) 2633.47 + 1913.33i 0.890691 + 0.647125i
\(207\) 0 0
\(208\) −2371.05 −0.790399
\(209\) −3783.39 + 3269.86i −1.25216 + 1.08221i
\(210\) 0 0
\(211\) −95.3371 293.417i −0.0311056 0.0957331i 0.934298 0.356492i \(-0.116027\pi\)
−0.965404 + 0.260759i \(0.916027\pi\)
\(212\) −2570.99 1867.93i −0.832907 0.605143i
\(213\) 0 0
\(214\) −1414.67 + 4353.89i −0.451890 + 1.39078i
\(215\) −513.450 + 1580.24i −0.162870 + 0.501262i
\(216\) 0 0
\(217\) −62.1943 45.1868i −0.0194563 0.0141359i
\(218\) −344.294 1059.63i −0.106966 0.329207i
\(219\) 0 0
\(220\) 3131.01 264.888i 0.959511 0.0811762i
\(221\) 4045.20 1.23127
\(222\) 0 0
\(223\) −3744.98 2720.89i −1.12458 0.817058i −0.139687 0.990196i \(-0.544610\pi\)
−0.984898 + 0.173137i \(0.944610\pi\)
\(224\) 920.846 669.033i 0.274672 0.199561i
\(225\) 0 0
\(226\) −751.901 + 2314.11i −0.221308 + 0.681117i
\(227\) 2093.34 1520.90i 0.612070 0.444695i −0.238073 0.971247i \(-0.576516\pi\)
0.850142 + 0.526553i \(0.176516\pi\)
\(228\) 0 0
\(229\) 675.764 + 2079.79i 0.195003 + 0.600158i 0.999977 + 0.00684712i \(0.00217952\pi\)
−0.804973 + 0.593311i \(0.797820\pi\)
\(230\) −2031.92 −0.582526
\(231\) 0 0
\(232\) 4405.41 1.24668
\(233\) −2059.58 6338.75i −0.579090 1.78225i −0.621810 0.783168i \(-0.713603\pi\)
0.0427208 0.999087i \(-0.486397\pi\)
\(234\) 0 0
\(235\) 1154.79 839.002i 0.320553 0.232895i
\(236\) −747.869 + 2301.71i −0.206280 + 0.634866i
\(237\) 0 0
\(238\) 1706.28 1239.68i 0.464712 0.337633i
\(239\) 1800.04 + 1307.80i 0.487174 + 0.353953i 0.804097 0.594499i \(-0.202650\pi\)
−0.316922 + 0.948451i \(0.602650\pi\)
\(240\) 0 0
\(241\) 745.650 0.199301 0.0996505 0.995023i \(-0.468228\pi\)
0.0996505 + 0.995023i \(0.468228\pi\)
\(242\) 910.600 6220.35i 0.241883 1.65231i
\(243\) 0 0
\(244\) 1004.00 + 3090.00i 0.263420 + 0.810724i
\(245\) −1187.18 862.539i −0.309577 0.224921i
\(246\) 0 0
\(247\) 3821.79 11762.3i 0.984513 3.03002i
\(248\) 71.0761 218.750i 0.0181989 0.0560106i
\(249\) 0 0
\(250\) −4916.74 3572.22i −1.24385 0.903709i
\(251\) 546.697 + 1682.56i 0.137479 + 0.423116i 0.995967 0.0897164i \(-0.0285961\pi\)
−0.858489 + 0.512833i \(0.828596\pi\)
\(252\) 0 0
\(253\) −593.839 + 2538.98i −0.147566 + 0.630926i
\(254\) 4877.86 1.20498
\(255\) 0 0
\(256\) 5188.69 + 3769.81i 1.26677 + 0.920363i
\(257\) −1942.61 + 1411.39i −0.471505 + 0.342569i −0.798028 0.602621i \(-0.794123\pi\)
0.326522 + 0.945189i \(0.394123\pi\)
\(258\) 0 0
\(259\) 31.1495 95.8683i 0.00747311 0.0229999i
\(260\) −6287.13 + 4567.87i −1.49966 + 1.08957i
\(261\) 0 0
\(262\) −1993.99 6136.88i −0.470188 1.44709i
\(263\) 5999.10 1.40654 0.703270 0.710923i \(-0.251722\pi\)
0.703270 + 0.710923i \(0.251722\pi\)
\(264\) 0 0
\(265\) −1336.78 −0.309879
\(266\) −1992.59 6132.57i −0.459299 1.41358i
\(267\) 0 0
\(268\) 4198.37 3050.30i 0.956927 0.695248i
\(269\) −241.484 + 743.212i −0.0547344 + 0.168455i −0.974687 0.223575i \(-0.928227\pi\)
0.919952 + 0.392030i \(0.128227\pi\)
\(270\) 0 0
\(271\) −363.969 + 264.439i −0.0815851 + 0.0592751i −0.627830 0.778350i \(-0.716057\pi\)
0.546245 + 0.837625i \(0.316057\pi\)
\(272\) 953.097 + 692.465i 0.212463 + 0.154364i
\(273\) 0 0
\(274\) −7141.19 −1.57451
\(275\) −2450.28 + 2117.70i −0.537301 + 0.464372i
\(276\) 0 0
\(277\) −1303.43 4011.55i −0.282728 0.870147i −0.987070 0.160287i \(-0.948758\pi\)
0.704342 0.709860i \(-0.251242\pi\)
\(278\) 4005.83 + 2910.41i 0.864223 + 0.627895i
\(279\) 0 0
\(280\) −552.058 + 1699.06i −0.117828 + 0.362636i
\(281\) 945.957 2911.36i 0.200822 0.618068i −0.799037 0.601282i \(-0.794657\pi\)
0.999859 0.0167855i \(-0.00534323\pi\)
\(282\) 0 0
\(283\) 4714.18 + 3425.05i 0.990208 + 0.719428i 0.959967 0.280115i \(-0.0903725\pi\)
0.0302411 + 0.999543i \(0.490372\pi\)
\(284\) 3146.85 + 9685.00i 0.657504 + 2.02359i
\(285\) 0 0
\(286\) 6034.14 + 14329.6i 1.24757 + 2.96268i
\(287\) −3764.55 −0.774267
\(288\) 0 0
\(289\) 2348.64 + 1706.39i 0.478047 + 0.347321i
\(290\) 3400.21 2470.40i 0.688508 0.500230i
\(291\) 0 0
\(292\) −4620.96 + 14221.9i −0.926100 + 2.85024i
\(293\) −370.485 + 269.173i −0.0738703 + 0.0536699i −0.624108 0.781338i \(-0.714537\pi\)
0.550237 + 0.835008i \(0.314537\pi\)
\(294\) 0 0
\(295\) 314.589 + 968.206i 0.0620885 + 0.191089i
\(296\) 301.590 0.0592215
\(297\) 0 0
\(298\) 1828.95 0.355531
\(299\) −1992.82 6133.28i −0.385445 1.18628i
\(300\) 0 0
\(301\) −2224.36 + 1616.09i −0.425946 + 0.309468i
\(302\) 990.713 3049.10i 0.188772 0.580980i
\(303\) 0 0
\(304\) 2913.94 2117.10i 0.549757 0.399422i
\(305\) 1105.67 + 803.320i 0.207576 + 0.150813i
\(306\) 0 0
\(307\) 3941.62 0.732769 0.366385 0.930463i \(-0.380595\pi\)
0.366385 + 0.930463i \(0.380595\pi\)
\(308\) 4449.17 + 2690.71i 0.823100 + 0.497784i
\(309\) 0 0
\(310\) −67.8088 208.694i −0.0124235 0.0382356i
\(311\) 2220.01 + 1612.93i 0.404776 + 0.294087i 0.771483 0.636249i \(-0.219515\pi\)
−0.366708 + 0.930336i \(0.619515\pi\)
\(312\) 0 0
\(313\) −607.584 + 1869.95i −0.109721 + 0.337687i −0.990809 0.135265i \(-0.956811\pi\)
0.881088 + 0.472952i \(0.156811\pi\)
\(314\) −5268.02 + 16213.3i −0.946789 + 2.91392i
\(315\) 0 0
\(316\) −587.987 427.197i −0.104674 0.0760498i
\(317\) −1972.03 6069.28i −0.349401 1.07535i −0.959185 0.282778i \(-0.908744\pi\)
0.609784 0.792568i \(-0.291256\pi\)
\(318\) 0 0
\(319\) −2093.15 4970.70i −0.367378 0.872432i
\(320\) 4514.28 0.788612
\(321\) 0 0
\(322\) −2720.17 1976.32i −0.470773 0.342037i
\(323\) −4971.41 + 3611.94i −0.856399 + 0.622210i
\(324\) 0 0
\(325\) 2475.16 7617.74i 0.422452 1.30017i
\(326\) −3514.55 + 2553.47i −0.597094 + 0.433814i
\(327\) 0 0
\(328\) −3480.52 10711.9i −0.585913 1.80326i
\(329\) 2361.97 0.395805
\(330\) 0 0
\(331\) 3351.60 0.556557 0.278279 0.960500i \(-0.410236\pi\)
0.278279 + 0.960500i \(0.410236\pi\)
\(332\) 5411.54 + 16655.0i 0.894569 + 2.75320i
\(333\) 0 0
\(334\) −8821.95 + 6409.52i −1.44526 + 1.05004i
\(335\) 674.565 2076.10i 0.110016 0.338595i
\(336\) 0 0
\(337\) 2127.64 1545.82i 0.343916 0.249870i −0.402396 0.915466i \(-0.631823\pi\)
0.746312 + 0.665596i \(0.231823\pi\)
\(338\) −22714.9 16503.4i −3.65541 2.65581i
\(339\) 0 0
\(340\) 3861.29 0.615906
\(341\) −280.590 + 23.7383i −0.0445595 + 0.00376981i
\(342\) 0 0
\(343\) −1806.06 5558.48i −0.284309 0.875014i
\(344\) −6655.07 4835.19i −1.04307 0.757837i
\(345\) 0 0
\(346\) 669.097 2059.27i 0.103962 0.319962i
\(347\) 2710.55 8342.20i 0.419336 1.29058i −0.488978 0.872296i \(-0.662630\pi\)
0.908314 0.418288i \(-0.137370\pi\)
\(348\) 0 0
\(349\) 5365.95 + 3898.59i 0.823017 + 0.597957i 0.917575 0.397563i \(-0.130144\pi\)
−0.0945581 + 0.995519i \(0.530144\pi\)
\(350\) −1290.49 3971.71i −0.197084 0.606563i
\(351\) 0 0
\(352\) 949.513 4059.68i 0.143776 0.614720i
\(353\) −722.467 −0.108932 −0.0544661 0.998516i \(-0.517346\pi\)
−0.0544661 + 0.998516i \(0.517346\pi\)
\(354\) 0 0
\(355\) 3465.52 + 2517.85i 0.518115 + 0.376433i
\(356\) 11169.4 8115.01i 1.66285 1.20813i
\(357\) 0 0
\(358\) 5197.13 15995.1i 0.767254 2.36136i
\(359\) 6597.95 4793.69i 0.969990 0.704739i 0.0145406 0.999894i \(-0.495371\pi\)
0.955449 + 0.295155i \(0.0953714\pi\)
\(360\) 0 0
\(361\) 3686.08 + 11344.6i 0.537407 + 1.65397i
\(362\) 3802.92 0.552146
\(363\) 0 0
\(364\) −12859.5 −1.85171
\(365\) 1943.79 + 5982.39i 0.278748 + 0.857897i
\(366\) 0 0
\(367\) −9647.07 + 7009.00i −1.37213 + 0.996913i −0.374566 + 0.927200i \(0.622208\pi\)
−0.997567 + 0.0697126i \(0.977792\pi\)
\(368\) 580.374 1786.21i 0.0822122 0.253023i
\(369\) 0 0
\(370\) 232.775 169.121i 0.0327065 0.0237627i
\(371\) −1789.57 1300.20i −0.250431 0.181949i
\(372\) 0 0
\(373\) −5520.95 −0.766391 −0.383195 0.923667i \(-0.625176\pi\)
−0.383195 + 0.923667i \(0.625176\pi\)
\(374\) 1759.39 7522.36i 0.243252 1.04003i
\(375\) 0 0
\(376\) 2183.76 + 6720.93i 0.299518 + 0.921823i
\(377\) 10791.6 + 7840.54i 1.47426 + 1.07111i
\(378\) 0 0
\(379\) 2086.95 6422.98i 0.282848 0.870518i −0.704187 0.710015i \(-0.748688\pi\)
0.987035 0.160503i \(-0.0513117\pi\)
\(380\) 3648.04 11227.5i 0.492475 1.51568i
\(381\) 0 0
\(382\) −8673.55 6301.70i −1.16172 0.844040i
\(383\) 1642.23 + 5054.26i 0.219097 + 0.674310i 0.998837 + 0.0482074i \(0.0153509\pi\)
−0.779741 + 0.626102i \(0.784649\pi\)
\(384\) 0 0
\(385\) 2179.38 184.379i 0.288497 0.0244073i
\(386\) −22584.6 −2.97804
\(387\) 0 0
\(388\) −2953.72 2146.00i −0.386475 0.280790i
\(389\) −92.0601 + 66.8856i −0.0119991 + 0.00871783i −0.593769 0.804636i \(-0.702361\pi\)
0.581770 + 0.813354i \(0.302361\pi\)
\(390\) 0 0
\(391\) −990.163 + 3047.41i −0.128068 + 0.394154i
\(392\) 5877.55 4270.29i 0.757299 0.550210i
\(393\) 0 0
\(394\) 2932.49 + 9025.27i 0.374966 + 1.15403i
\(395\) −305.723 −0.0389433
\(396\) 0 0
\(397\) −4034.28 −0.510012 −0.255006 0.966940i \(-0.582077\pi\)
−0.255006 + 0.966940i \(0.582077\pi\)
\(398\) 4743.91 + 14600.3i 0.597465 + 1.83881i
\(399\) 0 0
\(400\) 1887.20 1371.13i 0.235899 0.171391i
\(401\) −3098.74 + 9536.93i −0.385894 + 1.18766i 0.549936 + 0.835207i \(0.314652\pi\)
−0.935830 + 0.352452i \(0.885348\pi\)
\(402\) 0 0
\(403\) 563.430 409.356i 0.0696438 0.0505992i
\(404\) 1570.65 + 1141.14i 0.193422 + 0.140529i
\(405\) 0 0
\(406\) 6954.71 0.850139
\(407\) −143.295 340.290i −0.0174517 0.0414436i
\(408\) 0 0
\(409\) 91.0554 + 280.240i 0.0110083 + 0.0338801i 0.956410 0.292028i \(-0.0943300\pi\)
−0.945401 + 0.325908i \(0.894330\pi\)
\(410\) −8693.24 6316.01i −1.04714 0.760794i
\(411\) 0 0
\(412\) −3047.36 + 9378.82i −0.364400 + 1.12151i
\(413\) −520.564 + 1602.13i −0.0620225 + 0.190886i
\(414\) 0 0
\(415\) 5959.56 + 4329.87i 0.704924 + 0.512157i
\(416\) 3186.41 + 9806.75i 0.375544 + 1.15581i
\(417\) 0 0
\(418\) −20210.6 12222.7i −2.36491 1.43022i
\(419\) 1094.76 0.127643 0.0638215 0.997961i \(-0.479671\pi\)
0.0638215 + 0.997961i \(0.479671\pi\)
\(420\) 0 0
\(421\) −10574.2 7682.63i −1.22412 0.889379i −0.227689 0.973734i \(-0.573117\pi\)
−0.996436 + 0.0843554i \(0.973117\pi\)
\(422\) 1178.90 856.524i 0.135991 0.0988031i
\(423\) 0 0
\(424\) 2045.14 6294.28i 0.234247 0.720937i
\(425\) −3219.70 + 2339.25i −0.367479 + 0.266989i
\(426\) 0 0
\(427\) 698.848 + 2150.83i 0.0792029 + 0.243761i
\(428\) −13868.9 −1.56631
\(429\) 0 0
\(430\) −7847.97 −0.880146
\(431\) 455.301 + 1401.27i 0.0508842 + 0.156605i 0.973270 0.229665i \(-0.0737631\pi\)
−0.922386 + 0.386271i \(0.873763\pi\)
\(432\) 0 0
\(433\) 3285.04 2386.72i 0.364594 0.264893i −0.390372 0.920657i \(-0.627654\pi\)
0.754966 + 0.655764i \(0.227654\pi\)
\(434\) 112.206 345.335i 0.0124103 0.0381949i
\(435\) 0 0
\(436\) 2730.72 1983.98i 0.299949 0.217926i
\(437\) 7925.49 + 5758.21i 0.867569 + 0.630326i
\(438\) 0 0
\(439\) 11732.1 1.27550 0.637749 0.770244i \(-0.279866\pi\)
0.637749 + 0.770244i \(0.279866\pi\)
\(440\) 2539.59 + 6030.90i 0.275160 + 0.653436i
\(441\) 0 0
\(442\) 5904.24 + 18171.4i 0.635375 + 1.95548i
\(443\) −738.883 536.830i −0.0792447 0.0575747i 0.547458 0.836833i \(-0.315596\pi\)
−0.626702 + 0.779259i \(0.715596\pi\)
\(444\) 0 0
\(445\) 1794.61 5523.25i 0.191175 0.588376i
\(446\) 6756.40 20794.1i 0.717320 2.20768i
\(447\) 0 0
\(448\) 6043.33 + 4390.74i 0.637323 + 0.463042i
\(449\) −4495.39 13835.4i −0.472495 1.45419i −0.849306 0.527901i \(-0.822979\pi\)
0.376810 0.926290i \(-0.377021\pi\)
\(450\) 0 0
\(451\) −10432.8 + 9016.71i −1.08927 + 0.941419i
\(452\) −7371.40 −0.767083
\(453\) 0 0
\(454\) 9887.37 + 7183.59i 1.02211 + 0.742605i
\(455\) −4376.24 + 3179.52i −0.450904 + 0.327601i
\(456\) 0 0
\(457\) 559.410 1721.69i 0.0572606 0.176230i −0.918335 0.395803i \(-0.870466\pi\)
0.975596 + 0.219573i \(0.0704663\pi\)
\(458\) −8356.25 + 6071.17i −0.852537 + 0.619404i
\(459\) 0 0
\(460\) −1902.22 5854.44i −0.192808 0.593401i
\(461\) −15271.1 −1.54284 −0.771419 0.636328i \(-0.780453\pi\)
−0.771419 + 0.636328i \(0.780453\pi\)
\(462\) 0 0
\(463\) −12919.4 −1.29679 −0.648397 0.761302i \(-0.724560\pi\)
−0.648397 + 0.761302i \(0.724560\pi\)
\(464\) 1200.46 + 3694.65i 0.120108 + 0.369654i
\(465\) 0 0
\(466\) 25468.1 18503.6i 2.53173 1.83941i
\(467\) 1120.49 3448.51i 0.111028 0.341709i −0.880070 0.474844i \(-0.842504\pi\)
0.991098 + 0.133135i \(0.0425045\pi\)
\(468\) 0 0
\(469\) 2922.33 2123.20i 0.287720 0.209041i
\(470\) 5454.35 + 3962.82i 0.535299 + 0.388917i
\(471\) 0 0
\(472\) −5040.11 −0.491504
\(473\) −2293.60 + 9806.38i −0.222960 + 0.953273i
\(474\) 0 0
\(475\) 3759.97 + 11572.0i 0.363199 + 1.11781i
\(476\) 5169.17 + 3755.62i 0.497749 + 0.361636i
\(477\) 0 0
\(478\) −3247.48 + 9994.73i −0.310746 + 0.956377i
\(479\) −2325.95 + 7158.52i −0.221869 + 0.682842i 0.776726 + 0.629839i \(0.216879\pi\)
−0.998594 + 0.0530027i \(0.983121\pi\)
\(480\) 0 0
\(481\) 738.782 + 536.756i 0.0700323 + 0.0508815i
\(482\) 1088.32 + 3349.52i 0.102846 + 0.316528i
\(483\) 0 0
\(484\) 18774.7 3199.65i 1.76322 0.300493i
\(485\) −1535.78 −0.143786
\(486\) 0 0
\(487\) 8956.17 + 6507.04i 0.833353 + 0.605466i 0.920506 0.390729i \(-0.127777\pi\)
−0.0871530 + 0.996195i \(0.527777\pi\)
\(488\) −5474.02 + 3977.11i −0.507781 + 0.368925i
\(489\) 0 0
\(490\) 2141.82 6591.85i 0.197465 0.607734i
\(491\) 12589.0 9146.43i 1.15709 0.840678i 0.167686 0.985840i \(-0.446371\pi\)
0.989408 + 0.145163i \(0.0463706\pi\)
\(492\) 0 0
\(493\) −2048.08 6303.35i −0.187102 0.575839i
\(494\) 58415.2 5.32029
\(495\) 0 0
\(496\) 202.825 0.0183611
\(497\) 2190.40 + 6741.37i 0.197692 + 0.608434i
\(498\) 0 0
\(499\) 6505.61 4726.61i 0.583630 0.424032i −0.256401 0.966570i \(-0.582537\pi\)
0.840031 + 0.542539i \(0.182537\pi\)
\(500\) 5689.50 17510.5i 0.508884 1.56618i
\(501\) 0 0
\(502\) −6760.25 + 4911.61i −0.601045 + 0.436685i
\(503\) 2493.19 + 1811.41i 0.221005 + 0.160570i 0.692779 0.721150i \(-0.256386\pi\)
−0.471774 + 0.881720i \(0.656386\pi\)
\(504\) 0 0
\(505\) 816.656 0.0719618
\(506\) −12272.0 + 1038.23i −1.07818 + 0.0912157i
\(507\) 0 0
\(508\) 4566.50 + 14054.2i 0.398830 + 1.22747i
\(509\) −9792.05 7114.34i −0.852701 0.619524i 0.0731882 0.997318i \(-0.476683\pi\)
−0.925890 + 0.377794i \(0.876683\pi\)
\(510\) 0 0
\(511\) −3216.48 + 9899.31i −0.278452 + 0.856986i
\(512\) −2863.84 + 8813.98i −0.247197 + 0.760794i
\(513\) 0 0
\(514\) −9175.45 6666.36i −0.787377 0.572063i
\(515\) 1281.87 + 3945.18i 0.109681 + 0.337563i
\(516\) 0 0
\(517\) 6545.77 5657.30i 0.556833 0.481253i
\(518\) 476.113 0.0403846
\(519\) 0 0
\(520\) −13093.3 9512.85i −1.10419 0.802242i
\(521\) −723.094 + 525.359i −0.0608048 + 0.0441773i −0.617772 0.786357i \(-0.711965\pi\)
0.556968 + 0.830534i \(0.311965\pi\)
\(522\) 0 0
\(523\) 1461.97 4499.48i 0.122232 0.376193i −0.871154 0.491009i \(-0.836628\pi\)
0.993387 + 0.114817i \(0.0366281\pi\)
\(524\) 15815.0 11490.3i 1.31848 0.957932i
\(525\) 0 0
\(526\) 8756.07 + 26948.4i 0.725823 + 2.23385i
\(527\) −346.035 −0.0286025
\(528\) 0 0
\(529\) −7058.77 −0.580157
\(530\) −1951.12 6004.94i −0.159908 0.492147i
\(531\) 0 0
\(532\) 15803.9 11482.2i 1.28795 0.935748i
\(533\) 10538.7 32434.7i 0.856435 2.63584i
\(534\) 0 0
\(535\) −4719.75 + 3429.10i −0.381406 + 0.277108i
\(536\) 8743.35 + 6352.42i 0.704581 + 0.511908i
\(537\) 0 0
\(538\) −3691.03 −0.295783
\(539\) −7610.86 4602.80i −0.608205 0.367823i
\(540\) 0 0
\(541\) −5944.61 18295.6i −0.472419 1.45396i −0.849407 0.527739i \(-0.823040\pi\)
0.376987 0.926219i \(-0.376960\pi\)
\(542\) −1719.12 1249.01i −0.136241 0.0989847i
\(543\) 0 0
\(544\) 1583.21 4872.63i 0.124779 0.384030i
\(545\) 438.753 1350.34i 0.0344846 0.106133i
\(546\) 0 0
\(547\) −1572.62 1142.57i −0.122925 0.0893105i 0.524624 0.851334i \(-0.324206\pi\)
−0.647549 + 0.762024i \(0.724206\pi\)
\(548\) −6685.36 20575.4i −0.521139 1.60390i
\(549\) 0 0
\(550\) −13089.2 7915.95i −1.01478 0.613704i
\(551\) −20263.3 −1.56669
\(552\) 0 0
\(553\) −409.276 297.356i −0.0314723 0.0228660i
\(554\) 16117.8 11710.2i 1.23606 0.898052i
\(555\) 0 0
\(556\) −4635.42 + 14266.4i −0.353571 + 1.08818i
\(557\) −11344.0 + 8241.91i −0.862947 + 0.626967i −0.928685 0.370869i \(-0.879060\pi\)
0.0657384 + 0.997837i \(0.479060\pi\)
\(558\) 0 0
\(559\) −7696.95 23688.8i −0.582373 1.79236i
\(560\) −1575.37 −0.118878
\(561\) 0 0
\(562\) 14458.7 1.08524
\(563\) −2766.65 8514.86i −0.207105 0.637404i −0.999620 0.0275520i \(-0.991229\pi\)
0.792515 0.609852i \(-0.208771\pi\)
\(564\) 0 0
\(565\) −2508.57 + 1822.58i −0.186790 + 0.135711i
\(566\) −8504.95 + 26175.6i −0.631607 + 1.94389i
\(567\) 0 0
\(568\) −17157.3 + 12465.5i −1.26743 + 0.920845i
\(569\) 14526.8 + 10554.4i 1.07029 + 0.777612i 0.975965 0.217929i \(-0.0699301\pi\)
0.0943269 + 0.995541i \(0.469930\pi\)
\(570\) 0 0
\(571\) −10089.5 −0.739464 −0.369732 0.929138i \(-0.620551\pi\)
−0.369732 + 0.929138i \(0.620551\pi\)
\(572\) −35637.9 + 30800.7i −2.60506 + 2.25147i
\(573\) 0 0
\(574\) −5494.61 16910.7i −0.399548 1.22968i
\(575\) 5132.89 + 3729.26i 0.372272 + 0.270471i
\(576\) 0 0
\(577\) −6570.03 + 20220.5i −0.474027 + 1.45891i 0.373238 + 0.927736i \(0.378248\pi\)
−0.847265 + 0.531170i \(0.821752\pi\)
\(578\) −4237.24 + 13040.9i −0.304924 + 0.938459i
\(579\) 0 0
\(580\) 10301.0 + 7484.08i 0.737455 + 0.535793i
\(581\) 3766.77 + 11592.9i 0.268971 + 0.827807i
\(582\) 0 0
\(583\) −8073.66 + 683.044i −0.573545 + 0.0485228i
\(584\) −31142.0 −2.20662
\(585\) 0 0
\(586\) −1749.90 1271.37i −0.123358 0.0896245i
\(587\) 6016.43 4371.19i 0.423040 0.307357i −0.355820 0.934555i \(-0.615798\pi\)
0.778860 + 0.627198i \(0.215798\pi\)
\(588\) 0 0
\(589\) −326.924 + 1006.17i −0.0228704 + 0.0703879i
\(590\) −3890.10 + 2826.32i −0.271445 + 0.197217i
\(591\) 0 0
\(592\) 82.1826 + 252.932i 0.00570555 + 0.0175599i
\(593\) −1727.95 −0.119660 −0.0598301 0.998209i \(-0.519056\pi\)
−0.0598301 + 0.998209i \(0.519056\pi\)
\(594\) 0 0
\(595\) 2687.70 0.185185
\(596\) 1712.20 + 5269.62i 0.117675 + 0.362168i
\(597\) 0 0
\(598\) 24642.5 17903.8i 1.68513 1.22432i
\(599\) −854.645 + 2630.33i −0.0582969 + 0.179419i −0.975965 0.217929i \(-0.930070\pi\)
0.917668 + 0.397349i \(0.130070\pi\)
\(600\) 0 0
\(601\) 9978.89 7250.09i 0.677283 0.492075i −0.195172 0.980769i \(-0.562527\pi\)
0.872455 + 0.488694i \(0.162527\pi\)
\(602\) −10506.2 7633.20i −0.711297 0.516787i
\(603\) 0 0
\(604\) 9712.64 0.654307
\(605\) 5598.13 5730.93i 0.376192 0.385117i
\(606\) 0 0
\(607\) 2570.13 + 7910.05i 0.171859 + 0.528928i 0.999476 0.0323655i \(-0.0103041\pi\)
−0.827617 + 0.561293i \(0.810304\pi\)
\(608\) −12672.4 9207.03i −0.845285 0.614136i
\(609\) 0 0
\(610\) −1994.77 + 6139.28i −0.132403 + 0.407495i
\(611\) −6612.21 + 20350.3i −0.437809 + 1.34744i
\(612\) 0 0
\(613\) 1049.66 + 762.620i 0.0691602 + 0.0502478i 0.621828 0.783154i \(-0.286390\pi\)
−0.552668 + 0.833402i \(0.686390\pi\)
\(614\) 5753.05 + 17706.1i 0.378134 + 1.16378i
\(615\) 0 0
\(616\) −2466.06 + 10543.7i −0.161300 + 0.689642i
\(617\) 13415.2 0.875328 0.437664 0.899139i \(-0.355806\pi\)
0.437664 + 0.899139i \(0.355806\pi\)
\(618\) 0 0
\(619\) −11943.5 8677.44i −0.775523 0.563450i 0.128109 0.991760i \(-0.459109\pi\)
−0.903632 + 0.428310i \(0.859109\pi\)
\(620\) 537.815 390.745i 0.0348374 0.0253108i
\(621\) 0 0
\(622\) −4005.17 + 12326.6i −0.258188 + 0.794620i
\(623\) 7774.57 5648.56i 0.499971 0.363250i
\(624\) 0 0
\(625\) 1035.68 + 3187.49i 0.0662835 + 0.204000i
\(626\) −9286.78 −0.592930
\(627\) 0 0
\(628\) −51646.0 −3.28169
\(629\) −140.210 431.522i −0.00888797 0.0273544i
\(630\) 0 0
\(631\) −20996.8 + 15255.1i −1.32467 + 0.962432i −0.324813 + 0.945778i \(0.605301\pi\)
−0.999861 + 0.0166535i \(0.994699\pi\)
\(632\) 467.723 1439.50i 0.0294384 0.0906019i
\(633\) 0 0
\(634\) 24385.4 17717.0i 1.52755 1.10983i
\(635\) 5028.95 + 3653.74i 0.314280 + 0.228338i
\(636\) 0 0
\(637\) 21997.9 1.36827
\(638\) 19273.7 16657.6i 1.19601 1.03367i
\(639\) 0 0
\(640\) 4888.41 + 15045.0i 0.301924 + 0.929226i
\(641\) −16063.7 11671.0i −0.989827 0.719152i −0.0299440 0.999552i \(-0.509533\pi\)
−0.959883 + 0.280400i \(0.909533\pi\)
\(642\) 0 0
\(643\) −4581.91 + 14101.7i −0.281015 + 0.864877i 0.706549 + 0.707664i \(0.250251\pi\)
−0.987565 + 0.157213i \(0.949749\pi\)
\(644\) 3147.69 9687.59i 0.192603 0.592771i
\(645\) 0 0
\(646\) −23481.2 17060.1i −1.43012 1.03904i
\(647\) −9349.60 28775.1i −0.568115 1.74848i −0.658509 0.752573i \(-0.728812\pi\)
0.0903934 0.995906i \(-0.471188\pi\)
\(648\) 0 0
\(649\) 2394.71 + 5686.85i 0.144839 + 0.343958i
\(650\) 37832.2 2.28292
\(651\) 0 0
\(652\) −10647.3 7735.74i −0.639543 0.464655i
\(653\) −7520.52 + 5463.98i −0.450690 + 0.327446i −0.789868 0.613277i \(-0.789851\pi\)
0.339178 + 0.940722i \(0.389851\pi\)
\(654\) 0 0
\(655\) 2541.05 7820.55i 0.151583 0.466525i
\(656\) 8035.26 5837.96i 0.478238 0.347460i
\(657\) 0 0
\(658\) 3447.45 + 10610.2i 0.204249 + 0.628613i
\(659\) −15034.4 −0.888705 −0.444353 0.895852i \(-0.646566\pi\)
−0.444353 + 0.895852i \(0.646566\pi\)
\(660\) 0 0
\(661\) 18459.0 1.08619 0.543095 0.839671i \(-0.317252\pi\)
0.543095 + 0.839671i \(0.317252\pi\)
\(662\) 4891.88 + 15055.6i 0.287203 + 0.883919i
\(663\) 0 0
\(664\) −29504.8 + 21436.5i −1.72441 + 1.25286i
\(665\) 2539.26 7815.05i 0.148073 0.455721i
\(666\) 0 0
\(667\) −8548.09 + 6210.55i −0.496227 + 0.360530i
\(668\) −26726.1 19417.7i −1.54800 1.12469i
\(669\) 0 0
\(670\) 10310.6 0.594525
\(671\) 7088.32 + 4286.79i 0.407811 + 0.246631i
\(672\) 0 0
\(673\) −4568.65 14060.8i −0.261677 0.805358i −0.992440 0.122727i \(-0.960836\pi\)
0.730764 0.682630i \(-0.239164\pi\)
\(674\) 10049.4 + 7301.29i 0.574313 + 0.417263i
\(675\) 0 0
\(676\) 26285.0 80896.9i 1.49550 4.60269i
\(677\) 9528.48 29325.6i 0.540929 1.66481i −0.189547 0.981872i \(-0.560702\pi\)
0.730476 0.682938i \(-0.239298\pi\)
\(678\) 0 0
\(679\) −2055.97 1493.75i −0.116202 0.0844255i
\(680\) 2484.92 + 7647.79i 0.140136 + 0.431293i
\(681\) 0 0
\(682\) −516.174 1225.78i −0.0289814 0.0688236i
\(683\) −7599.08 −0.425726 −0.212863 0.977082i \(-0.568279\pi\)
−0.212863 + 0.977082i \(0.568279\pi\)
\(684\) 0 0
\(685\) −7362.37 5349.08i −0.410660 0.298362i
\(686\) 22333.1 16225.9i 1.24297 0.903074i
\(687\) 0 0
\(688\) 2241.60 6898.93i 0.124215 0.382296i
\(689\) 16212.1 11778.8i 0.896417 0.651285i
\(690\) 0 0
\(691\) −795.657 2448.78i −0.0438035 0.134813i 0.926763 0.375647i \(-0.122579\pi\)
−0.970567 + 0.240833i \(0.922579\pi\)
\(692\) 6559.61 0.360345
\(693\) 0 0
\(694\) 41430.1 2.26609
\(695\) 1949.88 + 6001.11i 0.106422 + 0.327532i
\(696\) 0 0
\(697\) −13708.8 + 9960.01i −0.744988 + 0.541266i
\(698\) −9680.84 + 29794.5i −0.524964 + 1.61567i
\(699\) 0 0
\(700\) 10235.3 7436.38i 0.552655 0.401527i
\(701\) 15435.4 + 11214.5i 0.831652 + 0.604231i 0.920026 0.391857i \(-0.128167\pi\)
−0.0883741 + 0.996087i \(0.528167\pi\)
\(702\) 0 0
\(703\) −1387.20 −0.0744231
\(704\) 27264.5 2306.62i 1.45962 0.123486i
\(705\) 0 0
\(706\) −1054.49 3245.38i −0.0562127 0.173005i
\(707\) 1093.27 + 794.307i 0.0581565 + 0.0422531i
\(708\) 0 0
\(709\) 4345.14 13373.0i 0.230162 0.708367i −0.767564 0.640972i \(-0.778531\pi\)
0.997726 0.0673949i \(-0.0214687\pi\)
\(710\) −6252.23 + 19242.4i −0.330482 + 1.01712i
\(711\) 0 0
\(712\) 23260.8 + 16900.0i 1.22435 + 0.889541i
\(713\) 170.470 + 524.654i 0.00895395 + 0.0275574i
\(714\) 0 0
\(715\) −4512.48 + 19293.3i −0.236024 + 1.00913i
\(716\) 50951.0 2.65940
\(717\) 0 0
\(718\) 31163.8 + 22641.8i 1.61981 + 1.17686i
\(719\) −9313.93 + 6766.96i −0.483103 + 0.350995i −0.802526 0.596618i \(-0.796511\pi\)
0.319423 + 0.947612i \(0.396511\pi\)
\(720\) 0 0
\(721\) −2121.16 + 6528.25i −0.109565 + 0.337205i
\(722\) −45580.7 + 33116.3i −2.34950 + 1.70701i
\(723\) 0 0
\(724\) 3560.17 + 10957.1i 0.182752 + 0.562454i
\(725\) −13123.4 −0.672261
\(726\) 0 0
\(727\) 23297.3 1.18851 0.594257 0.804275i \(-0.297446\pi\)
0.594257 + 0.804275i \(0.297446\pi\)
\(728\) −8275.70 25470.0i −0.421316 1.29668i
\(729\) 0 0
\(730\) −24036.3 + 17463.4i −1.21866 + 0.885408i
\(731\) −3824.34 + 11770.1i −0.193500 + 0.595531i
\(732\) 0 0
\(733\) 10078.1 7322.20i 0.507837 0.368965i −0.304165 0.952619i \(-0.598377\pi\)
0.812003 + 0.583654i \(0.198377\pi\)
\(734\) −45565.5 33105.3i −2.29136 1.66477i
\(735\) 0 0
\(736\) −8167.76 −0.409059
\(737\) 3013.31 12883.5i 0.150606 0.643922i
\(738\) 0 0
\(739\) 6903.68 + 21247.4i 0.343648 + 1.05764i 0.962303 + 0.271978i \(0.0876778\pi\)
−0.618655 + 0.785663i \(0.712322\pi\)
\(740\) 705.194 + 512.354i 0.0350317 + 0.0254520i
\(741\) 0 0
\(742\) 3228.61 9936.63i 0.159738 0.491624i
\(743\) −10596.5 + 32612.5i −0.523212 + 1.61028i 0.244614 + 0.969621i \(0.421339\pi\)
−0.767825 + 0.640659i \(0.778661\pi\)
\(744\) 0 0
\(745\) 1885.60 + 1369.97i 0.0927287 + 0.0673714i
\(746\) −8058.18 24800.5i −0.395484 1.21717i
\(747\) 0 0
\(748\) 23320.7 1972.97i 1.13996 0.0964425i
\(749\) −9653.65 −0.470944
\(750\) 0 0
\(751\) 15565.4 + 11308.9i 0.756312 + 0.549493i 0.897777 0.440450i \(-0.145181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(752\) −5041.52 + 3662.88i −0.244475 + 0.177622i
\(753\) 0 0
\(754\) −19469.3 + 59920.4i −0.940360 + 2.89413i
\(755\) 3305.31 2401.45i 0.159328 0.115759i
\(756\) 0 0
\(757\) −4457.45 13718.6i −0.214014 0.658668i −0.999222 0.0394359i \(-0.987444\pi\)
0.785208 0.619232i \(-0.212556\pi\)
\(758\) 31898.6 1.52851
\(759\) 0 0
\(760\) 24585.2 1.17342
\(761\) 7973.32 + 24539.4i 0.379806 + 1.16892i 0.940178 + 0.340683i \(0.110658\pi\)
−0.560372 + 0.828241i \(0.689342\pi\)
\(762\) 0 0
\(763\) 1900.75 1380.98i 0.0901859 0.0655239i
\(764\) 10036.8 30890.0i 0.475284 1.46277i
\(765\) 0 0
\(766\) −20307.2 + 14754.1i −0.957871 + 0.695934i
\(767\) −12346.4 8970.17i −0.581228 0.422287i
\(768\) 0 0
\(769\) −1832.44 −0.0859291 −0.0429646 0.999077i \(-0.513680\pi\)
−0.0429646 + 0.999077i \(0.513680\pi\)
\(770\) 4009.19 + 9520.83i 0.187638 + 0.445593i
\(771\) 0 0
\(772\) −21143.0 65071.4i −0.985689 3.03364i
\(773\) 30476.8 + 22142.7i 1.41808 + 1.03030i 0.992085 + 0.125570i \(0.0400760\pi\)
0.425995 + 0.904725i \(0.359924\pi\)
\(774\) 0 0
\(775\) −211.730 + 651.638i −0.00981364 + 0.0302033i
\(776\) 2349.58 7231.27i 0.108692 0.334520i
\(777\) 0 0
\(778\) −434.823 315.918i −0.0200375 0.0145581i
\(779\) 16009.1 + 49271.0i 0.736311 + 2.26613i
\(780\) 0 0
\(781\) 22217.0 + 13436.1i 1.01791 + 0.615598i
\(782\) −15134.4 −0.692079
\(783\) 0 0
\(784\) 5182.95 + 3765.63i 0.236104 + 0.171539i
\(785\) −17575.7 + 12769.5i −0.799113 + 0.580590i
\(786\) 0 0
\(787\) 9808.52 30187.5i 0.444264 1.36730i −0.439024 0.898475i \(-0.644676\pi\)
0.883289 0.468830i \(-0.155324\pi\)
\(788\) −23258.6 + 16898.3i −1.05146 + 0.763932i
\(789\) 0 0
\(790\) −446.223 1373.33i −0.0200961 0.0618493i
\(791\) −5130.96 −0.230639
\(792\) 0 0
\(793\) −20487.6 −0.917446
\(794\) −5888.29 18122.3i −0.263184 0.809996i
\(795\) 0 0
\(796\) −37625.6 + 27336.6i −1.67538 + 1.21724i
\(797\) 9351.45 28780.8i 0.415615 1.27913i −0.496084 0.868275i \(-0.665229\pi\)
0.911699 0.410858i \(-0.134771\pi\)
\(798\) 0 0
\(799\) 8601.22 6249.15i 0.380838 0.276695i
\(800\) −8207.19 5962.87i −0.362710 0.263524i
\(801\) 0 0
\(802\) −47363.4 −2.08536
\(803\) 14796.5 + 35138.1i 0.650260 + 1.54421i
\(804\) 0 0
\(805\) −1324.07 4075.06i −0.0579717 0.178419i
\(806\) 2661.22 + 1933.49i 0.116300 + 0.0844967i
\(807\) 0 0
\(808\) −1249.40 + 3845.25i −0.0543980 + 0.167420i
\(809\) 2434.74 7493.36i 0.105811 0.325652i −0.884109 0.467281i \(-0.845234\pi\)
0.989920 + 0.141628i \(0.0452338\pi\)
\(810\) 0 0
\(811\) −33536.1 24365.4i −1.45205 1.05498i −0.985347 0.170564i \(-0.945441\pi\)
−0.466704 0.884413i \(-0.654559\pi\)
\(812\) 6510.78 + 20038.1i 0.281384 + 0.866010i
\(813\) 0 0
\(814\) 1319.46 1140.37i 0.0568146 0.0491030i
\(815\) −5536.07 −0.237939
\(816\) 0 0
\(817\) 30610.9 + 22240.1i 1.31082 + 0.952366i
\(818\) −1125.96 + 818.056i −0.0481274 + 0.0349666i
\(819\) 0 0
\(820\) 10059.5 30960.1i 0.428408 1.31850i
\(821\) −14844.6 + 10785.2i −0.631034 + 0.458473i −0.856758 0.515718i \(-0.827525\pi\)
0.225724 + 0.974191i \(0.427525\pi\)
\(822\) 0 0
\(823\) −8201.31 25241.0i −0.347363 1.06907i −0.960307 0.278946i \(-0.910015\pi\)
0.612944 0.790126i \(-0.289985\pi\)
\(824\) −20537.1 −0.868256
\(825\) 0 0
\(826\) −7956.70 −0.335168
\(827\) 2363.74 + 7274.85i 0.0993898 + 0.305890i 0.988373 0.152050i \(-0.0485874\pi\)
−0.888983 + 0.457940i \(0.848587\pi\)
\(828\) 0 0
\(829\) 23147.8 16817.9i 0.969791 0.704595i 0.0143874 0.999896i \(-0.495420\pi\)
0.955404 + 0.295302i \(0.0954202\pi\)
\(830\) −10751.8 + 33090.6i −0.449638 + 1.38384i
\(831\) 0 0
\(832\) −54747.7 + 39776.6i −2.28129 + 1.65746i
\(833\) −8842.52 6424.46i −0.367797 0.267220i
\(834\) 0 0
\(835\) −13896.2 −0.575926
\(836\) 16295.9 69673.8i 0.674171 2.88244i
\(837\) 0 0
\(838\) 1597.87 + 4917.74i 0.0658682 + 0.202721i
\(839\) 10416.9 + 7568.35i 0.428644 + 0.311428i 0.781107 0.624398i \(-0.214656\pi\)
−0.352462 + 0.935826i \(0.614656\pi\)
\(840\) 0 0
\(841\) −783.022 + 2409.89i −0.0321055 + 0.0988107i
\(842\) 19077.2 58713.6i 0.780812 2.40309i
\(843\) 0 0
\(844\) 3571.49 + 2594.84i 0.145659 + 0.105827i
\(845\) −11056.7 34029.0i −0.450133 1.38537i
\(846\) 0 0
\(847\) 13068.4 2227.16i 0.530148 0.0903495i
\(848\) 5836.07 0.236334
\(849\) 0 0
\(850\) −15207.5 11048.9i −0.613661 0.445851i
\(851\) −585.195 + 425.169i −0.0235725 + 0.0171264i
\(852\) 0 0
\(853\) −196.513 + 604.804i −0.00788800 + 0.0242768i −0.954923 0.296853i \(-0.904063\pi\)
0.947035 + 0.321130i \(0.104063\pi\)
\(854\) −8641.70 + 6278.56i −0.346268 + 0.251578i
\(855\) 0 0
\(856\) −8925.29 27469.2i −0.356379 1.09682i
\(857\) 7820.86 0.311733 0.155867 0.987778i \(-0.450183\pi\)
0.155867 + 0.987778i \(0.450183\pi\)
\(858\) 0 0
\(859\) 119.816 0.00475910 0.00237955 0.999997i \(-0.499243\pi\)
0.00237955 + 0.999997i \(0.499243\pi\)
\(860\) −7347.02 22611.8i −0.291315 0.896577i
\(861\) 0 0
\(862\) −5630.09 + 4090.50i −0.222461 + 0.161628i
\(863\) 9940.00 30592.2i 0.392076 1.20669i −0.539139 0.842217i \(-0.681250\pi\)
0.931215 0.364469i \(-0.118750\pi\)
\(864\) 0 0
\(865\) 2232.31 1621.87i 0.0877465 0.0637515i
\(866\) 15516.1 + 11273.1i 0.608843 + 0.442351i
\(867\) 0 0
\(868\) 1100.03 0.0430156
\(869\) −1846.45 + 156.213i −0.0720788 + 0.00609799i
\(870\) 0 0
\(871\) 10112.2 + 31122.0i 0.393384 + 1.21071i
\(872\) 5686.88 + 4131.76i 0.220851 + 0.160458i
\(873\) 0 0
\(874\) −14298.6 + 44006.4i −0.553382 + 1.70313i
\(875\) 3960.25 12188.4i 0.153007 0.470906i
\(876\) 0 0
\(877\) −6320.86 4592.37i −0.243375 0.176822i 0.459410 0.888224i \(-0.348061\pi\)
−0.702786 + 0.711402i \(0.748061\pi\)
\(878\) 17123.8 + 52701.6i 0.658201 + 2.02573i
\(879\) 0 0
\(880\) −4365.85 + 3773.26i −0.167242 + 0.144542i
\(881\) 11759.7 0.449709 0.224855 0.974392i \(-0.427809\pi\)
0.224855 + 0.974392i \(0.427809\pi\)
\(882\) 0 0
\(883\) 7639.22 + 5550.22i 0.291144 + 0.211529i 0.723764 0.690048i \(-0.242411\pi\)
−0.432619 + 0.901577i \(0.642411\pi\)
\(884\) −46828.5 + 34022.9i −1.78169 + 1.29447i
\(885\) 0 0
\(886\) 1333.04 4102.66i 0.0505465 0.155566i
\(887\) 30976.4 22505.6i 1.17259 0.851934i 0.181270 0.983433i \(-0.441979\pi\)
0.991316 + 0.131499i \(0.0419791\pi\)
\(888\) 0 0
\(889\) 3178.57 + 9782.64i 0.119917 + 0.369066i
\(890\) 27430.2 1.03311
\(891\) 0 0
\(892\) 66237.6 2.48632
\(893\) −10044.5 30913.8i −0.376402 1.15845i
\(894\) 0 0
\(895\) 17339.2 12597.6i 0.647581 0.470495i
\(896\) −8089.05 + 24895.5i −0.301603 + 0.928239i
\(897\) 0 0
\(898\) 55588.3 40387.3i 2.06571 1.50083i
\(899\) −923.135 670.697i −0.0342473 0.0248821i
\(900\) 0 0
\(901\) −9956.78 −0.368156
\(902\) −55731.1 33704.4i −2.05725 1.24416i
\(903\) 0 0
\(904\) −4743.83 14600.0i −0.174533 0.537156i
\(905\) 3920.70 + 2848.56i 0.144010 + 0.104629i
\(906\) 0 0
\(907\) 12422.6 38232.9i 0.454782 1.39967i −0.416610 0.909085i \(-0.636782\pi\)
0.871391 0.490588i \(-0.163218\pi\)
\(908\) −11441.3 + 35212.8i −0.418166 + 1.28698i
\(909\) 0 0
\(910\) −20670.1 15017.7i −0.752974 0.547068i
\(911\) −6470.55 19914.3i −0.235323 0.724249i −0.997078 0.0763845i \(-0.975662\pi\)
0.761756 0.647864i \(-0.224338\pi\)
\(912\) 0 0
\(913\) 38205.9 + 23105.7i 1.38492 + 0.837553i
\(914\) 8550.45 0.309435
\(915\) 0 0
\(916\) −25315.3 18392.6i −0.913145 0.663439i
\(917\) 11008.3 7997.98i 0.396429 0.288022i
\(918\) 0 0
\(919\) −14412.6 + 44357.6i −0.517333 + 1.59219i 0.261663 + 0.965159i \(0.415729\pi\)
−0.778996 + 0.627029i \(0.784271\pi\)
\(920\) 10371.3 7535.20i 0.371665 0.270031i
\(921\) 0 0
\(922\) −22289.2 68599.2i −0.796157 2.45032i
\(923\) −64214.3 −2.28997
\(924\) 0 0
\(925\) −898.413 −0.0319348
\(926\) −18856.7 58035.0i −0.669190 2.05956i
\(927\) 0 0
\(928\) 13667.9 9930.31i 0.483481 0.351270i
\(929\) −15712.4 + 48357.8i −0.554906 + 1.70782i 0.141286 + 0.989969i \(0.454876\pi\)
−0.696192 + 0.717856i \(0.745124\pi\)
\(930\) 0 0
\(931\) −27034.6 + 19641.8i −0.951690 + 0.691443i
\(932\) 77155.7 + 56056.9i 2.71171 + 1.97018i
\(933\) 0 0
\(934\) 17126.4 0.599993
\(935\) 7448.48 6437.48i 0.260525 0.225164i
\(936\) 0 0
\(937\) 5230.89 + 16099.0i 0.182375 + 0.561293i 0.999893 0.0146096i \(-0.00465055\pi\)
−0.817518 + 0.575903i \(0.804651\pi\)
\(938\) 13802.9 + 10028.4i 0.480470 + 0.349082i
\(939\) 0 0
\(940\) −6311.60 + 19425.1i −0.219002 + 0.674018i
\(941\) 6371.09 19608.2i 0.220714 0.679287i −0.777985 0.628283i \(-0.783758\pi\)
0.998698 0.0510038i \(-0.0162421\pi\)
\(942\) 0 0
\(943\) 21854.7 + 15878.4i 0.754705 + 0.548325i
\(944\) −1373.42 4226.95i −0.0473528 0.145737i
\(945\) 0 0
\(946\) −47398.7 + 4010.01i −1.62903 + 0.137819i
\(947\) 46642.8 1.60052 0.800258 0.599656i \(-0.204696\pi\)
0.800258 + 0.599656i \(0.204696\pi\)
\(948\) 0 0
\(949\) −76286.2 55425.2i −2.60944 1.89587i
\(950\) −46494.4 + 33780.2i −1.58787 + 1.15366i
\(951\) 0 0
\(952\) −4111.90 + 12655.1i −0.139987 + 0.430835i
\(953\) −12290.8 + 8929.79i −0.417773 + 0.303530i −0.776741 0.629820i \(-0.783129\pi\)
0.358968 + 0.933350i \(0.383129\pi\)
\(954\) 0 0
\(955\) −4221.93 12993.8i −0.143056 0.440281i
\(956\) −31837.3 −1.07708
\(957\) 0 0
\(958\) −35551.5 −1.19897
\(959\) −4653.43 14321.8i −0.156691 0.482247i
\(960\) 0 0
\(961\) 24053.2 17475.7i 0.807399 0.586610i
\(962\) −1332.85 + 4102.10i −0.0446704 + 0.137481i
\(963\) 0 0
\(964\) −8631.88 + 6271.43i −0.288396 + 0.209532i
\(965\) −23284.1 16916.9i −0.776727 0.564325i
\(966\) 0 0
\(967\) −31663.0 −1.05296 −0.526481 0.850187i \(-0.676489\pi\)
−0.526481 + 0.850187i \(0.676489\pi\)
\(968\) 18419.7 + 35126.7i 0.611603 + 1.16634i
\(969\) 0 0
\(970\) −2241.57 6898.85i −0.0741985 0.228359i
\(971\) −18374.8 13350.1i −0.607287 0.441220i 0.241171 0.970483i \(-0.422469\pi\)
−0.848458 + 0.529263i \(0.822469\pi\)
\(972\) 0 0
\(973\) −3226.55 + 9930.29i −0.106309 + 0.327184i
\(974\) −16158.0 + 49729.3i −0.531557 + 1.63596i
\(975\) 0 0
\(976\) −4827.11 3507.10i −0.158311 0.115020i
\(977\) −17034.6 52427.1i −0.557815 1.71678i −0.688390 0.725340i \(-0.741682\pi\)
0.130575 0.991438i \(-0.458318\pi\)
\(978\) 0 0
\(979\) 8016.61 34275.3i 0.261708 1.11894i
\(980\) 20997.8 0.684437
\(981\) 0 0
\(982\) 59461.0 + 43200.9i 1.93226 + 1.40387i
\(983\) 41726.4 30316.0i 1.35388 0.983653i 0.355075 0.934838i \(-0.384455\pi\)
0.998808 0.0488155i \(-0.0155446\pi\)
\(984\) 0 0
\(985\) −3737.03 + 11501.4i −0.120885 + 0.372045i
\(986\) 25325.9 18400.3i 0.817991 0.594306i
\(987\) 0 0
\(988\) 54686.4 + 168308.i 1.76094 + 5.41961i
\(989\) 19729.7 0.634346
\(990\) 0 0
\(991\) 8219.68 0.263478 0.131739 0.991284i \(-0.457944\pi\)
0.131739 + 0.991284i \(0.457944\pi\)
\(992\) −272.572 838.891i −0.00872397 0.0268496i
\(993\) 0 0
\(994\) −27085.7 + 19678.9i −0.864293 + 0.627946i
\(995\) −6045.42 + 18605.9i −0.192616 + 0.592811i
\(996\) 0 0
\(997\) 22916.4 16649.7i 0.727952 0.528888i −0.160963 0.986960i \(-0.551460\pi\)
0.888915 + 0.458072i \(0.151460\pi\)
\(998\) 30727.7 + 22325.0i 0.974616 + 0.708100i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.b.82.2 8
3.2 odd 2 33.4.e.b.16.1 8
11.3 even 5 1089.4.a.bg.1.4 4
11.8 odd 10 1089.4.a.z.1.1 4
11.9 even 5 inner 99.4.f.b.64.2 8
33.8 even 10 363.4.a.t.1.4 4
33.14 odd 10 363.4.a.p.1.1 4
33.20 odd 10 33.4.e.b.31.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.b.16.1 8 3.2 odd 2
33.4.e.b.31.1 yes 8 33.20 odd 10
99.4.f.b.64.2 8 11.9 even 5 inner
99.4.f.b.82.2 8 1.1 even 1 trivial
363.4.a.p.1.1 4 33.14 odd 10
363.4.a.t.1.4 4 33.8 even 10
1089.4.a.z.1.1 4 11.8 odd 10
1089.4.a.bg.1.4 4 11.3 even 5