Properties

Label 99.4.f.d.37.3
Level $99$
Weight $4$
Character 99.37
Analytic conductor $5.841$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 21 x^{10} - 26 x^{9} + 281 x^{8} + 486 x^{7} + 3506 x^{6} + 15102 x^{5} + \cdots + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.3
Root \(-1.92306 + 1.39719i\) of defining polynomial
Character \(\chi\) \(=\) 99.37
Dual form 99.4.f.d.91.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.73208 + 1.98497i) q^{2} +(1.05201 + 3.23775i) q^{4} +(11.3314 - 8.23272i) q^{5} +(7.21292 + 22.1991i) q^{7} +(4.79582 - 14.7600i) q^{8} +O(q^{10})\) \(q+(2.73208 + 1.98497i) q^{2} +(1.05201 + 3.23775i) q^{4} +(11.3314 - 8.23272i) q^{5} +(7.21292 + 22.1991i) q^{7} +(4.79582 - 14.7600i) q^{8} +47.2999 q^{10} +(28.7668 + 22.4382i) q^{11} +(-30.5289 - 22.1805i) q^{13} +(-24.3583 + 74.9671i) q^{14} +(64.4343 - 46.8143i) q^{16} +(6.96027 - 5.05693i) q^{17} +(-27.3586 + 84.2011i) q^{19} +(38.5762 + 28.0273i) q^{20} +(34.0541 + 118.404i) q^{22} -137.456 q^{23} +(21.9951 - 67.6940i) q^{25} +(-39.3796 - 121.198i) q^{26} +(-64.2871 + 46.7073i) q^{28} +(-68.7037 - 211.448i) q^{29} +(-195.350 - 141.930i) q^{31} +144.808 q^{32} +29.0539 q^{34} +(264.491 + 192.164i) q^{35} +(46.5381 + 143.230i) q^{37} +(-241.883 + 175.738i) q^{38} +(-67.1719 - 206.734i) q^{40} +(43.7700 - 134.710i) q^{41} +246.830 q^{43} +(-42.3862 + 116.745i) q^{44} +(-375.540 - 272.846i) q^{46} +(-19.2348 + 59.1987i) q^{47} +(-163.280 + 118.630i) q^{49} +(194.463 - 141.286i) q^{50} +(39.6984 - 122.179i) q^{52} +(-402.378 - 292.345i) q^{53} +(510.694 + 17.4259i) q^{55} +362.251 q^{56} +(232.015 - 714.068i) q^{58} +(181.127 + 557.451i) q^{59} +(-523.089 + 380.046i) q^{61} +(-251.985 - 775.529i) q^{62} +(-119.848 - 87.0744i) q^{64} -528.540 q^{65} -963.421 q^{67} +(23.6954 + 17.2157i) q^{68} +(341.171 + 1050.02i) q^{70} +(-121.205 + 88.0604i) q^{71} +(133.803 + 411.803i) q^{73} +(-157.161 + 483.692i) q^{74} -301.404 q^{76} +(-290.614 + 800.441i) q^{77} +(1004.73 + 729.982i) q^{79} +(344.720 - 1060.94i) q^{80} +(386.979 - 281.157i) q^{82} +(577.135 - 419.313i) q^{83} +(37.2371 - 114.604i) q^{85} +(674.358 + 489.950i) q^{86} +(469.148 - 316.989i) q^{88} -224.035 q^{89} +(272.185 - 837.700i) q^{91} +(-144.605 - 445.047i) q^{92} +(-170.059 + 123.555i) q^{94} +(383.194 + 1179.35i) q^{95} +(979.471 + 711.627i) q^{97} -681.572 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8} + 100 q^{10} + 54 q^{11} - 18 q^{13} - 156 q^{14} + 308 q^{16} + 80 q^{17} - 280 q^{19} + 15 q^{20} - 193 q^{22} + 392 q^{23} + 77 q^{25} - 406 q^{26} - 429 q^{28} - 13 q^{29} + 413 q^{31} - 1314 q^{32} + 1060 q^{34} + 1239 q^{35} + 654 q^{37} - 912 q^{38} - 1803 q^{40} + 1490 q^{41} + 416 q^{43} - 695 q^{44} - 2369 q^{46} + 150 q^{47} - 301 q^{49} + 1878 q^{50} - 1661 q^{52} - 1359 q^{53} + 3300 q^{55} + 858 q^{56} + 955 q^{58} - 1262 q^{59} - 1044 q^{61} + 701 q^{62} + 78 q^{64} - 4556 q^{65} - 528 q^{67} - 703 q^{68} + 3050 q^{70} - 558 q^{71} - 699 q^{73} + 3224 q^{74} - 868 q^{76} - 390 q^{77} - 1252 q^{79} + 1914 q^{80} + 2987 q^{82} + 4464 q^{83} - 2170 q^{85} + 3209 q^{86} + 1302 q^{88} - 316 q^{89} + 176 q^{91} - 4595 q^{92} + 1247 q^{94} - 1466 q^{95} + 1608 q^{97} - 2810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.73208 + 1.98497i 0.965936 + 0.701794i 0.954522 0.298141i \(-0.0963666\pi\)
0.0114143 + 0.999935i \(0.496367\pi\)
\(3\) 0 0
\(4\) 1.05201 + 3.23775i 0.131501 + 0.404719i
\(5\) 11.3314 8.23272i 1.01351 0.736357i 0.0485664 0.998820i \(-0.484535\pi\)
0.964942 + 0.262463i \(0.0845347\pi\)
\(6\) 0 0
\(7\) 7.21292 + 22.1991i 0.389461 + 1.19864i 0.933192 + 0.359378i \(0.117011\pi\)
−0.543731 + 0.839260i \(0.682989\pi\)
\(8\) 4.79582 14.7600i 0.211947 0.652307i
\(9\) 0 0
\(10\) 47.2999 1.49576
\(11\) 28.7668 + 22.4382i 0.788502 + 0.615033i
\(12\) 0 0
\(13\) −30.5289 22.1805i −0.651322 0.473213i 0.212399 0.977183i \(-0.431872\pi\)
−0.863721 + 0.503970i \(0.831872\pi\)
\(14\) −24.3583 + 74.9671i −0.465002 + 1.43113i
\(15\) 0 0
\(16\) 64.4343 46.8143i 1.00679 0.731473i
\(17\) 6.96027 5.05693i 0.0993008 0.0721463i −0.537027 0.843565i \(-0.680453\pi\)
0.636328 + 0.771419i \(0.280453\pi\)
\(18\) 0 0
\(19\) −27.3586 + 84.2011i −0.330342 + 1.01669i 0.638630 + 0.769514i \(0.279502\pi\)
−0.968971 + 0.247173i \(0.920498\pi\)
\(20\) 38.5762 + 28.0273i 0.431295 + 0.313354i
\(21\) 0 0
\(22\) 34.0541 + 118.404i 0.330016 + 1.14745i
\(23\) −137.456 −1.24615 −0.623076 0.782162i \(-0.714117\pi\)
−0.623076 + 0.782162i \(0.714117\pi\)
\(24\) 0 0
\(25\) 21.9951 67.6940i 0.175961 0.541552i
\(26\) −39.3796 121.198i −0.297038 0.914188i
\(27\) 0 0
\(28\) −64.2871 + 46.7073i −0.433897 + 0.315245i
\(29\) −68.7037 211.448i −0.439929 1.35396i −0.887950 0.459940i \(-0.847871\pi\)
0.448020 0.894023i \(-0.352129\pi\)
\(30\) 0 0
\(31\) −195.350 141.930i −1.13180 0.822304i −0.145848 0.989307i \(-0.546591\pi\)
−0.985956 + 0.167003i \(0.946591\pi\)
\(32\) 144.808 0.799959
\(33\) 0 0
\(34\) 29.0539 0.146550
\(35\) 264.491 + 192.164i 1.27735 + 0.928047i
\(36\) 0 0
\(37\) 46.5381 + 143.230i 0.206779 + 0.636400i 0.999636 + 0.0269922i \(0.00859292\pi\)
−0.792857 + 0.609408i \(0.791407\pi\)
\(38\) −241.883 + 175.738i −1.03259 + 0.750223i
\(39\) 0 0
\(40\) −67.1719 206.734i −0.265520 0.817187i
\(41\) 43.7700 134.710i 0.166725 0.513127i −0.832434 0.554124i \(-0.813053\pi\)
0.999159 + 0.0409972i \(0.0130535\pi\)
\(42\) 0 0
\(43\) 246.830 0.875376 0.437688 0.899127i \(-0.355797\pi\)
0.437688 + 0.899127i \(0.355797\pi\)
\(44\) −42.3862 + 116.745i −0.145226 + 0.399999i
\(45\) 0 0
\(46\) −375.540 272.846i −1.20370 0.874541i
\(47\) −19.2348 + 59.1987i −0.0596955 + 0.183724i −0.976457 0.215710i \(-0.930793\pi\)
0.916762 + 0.399434i \(0.130793\pi\)
\(48\) 0 0
\(49\) −163.280 + 118.630i −0.476036 + 0.345860i
\(50\) 194.463 141.286i 0.550025 0.399616i
\(51\) 0 0
\(52\) 39.6984 122.179i 0.105869 0.325831i
\(53\) −402.378 292.345i −1.04285 0.757672i −0.0720072 0.997404i \(-0.522940\pi\)
−0.970839 + 0.239732i \(0.922940\pi\)
\(54\) 0 0
\(55\) 510.694 + 17.4259i 1.25204 + 0.0427219i
\(56\) 362.251 0.864425
\(57\) 0 0
\(58\) 232.015 714.068i 0.525259 1.61658i
\(59\) 181.127 + 557.451i 0.399673 + 1.23007i 0.925262 + 0.379329i \(0.123845\pi\)
−0.525589 + 0.850739i \(0.676155\pi\)
\(60\) 0 0
\(61\) −523.089 + 380.046i −1.09795 + 0.797704i −0.980723 0.195402i \(-0.937399\pi\)
−0.117222 + 0.993106i \(0.537399\pi\)
\(62\) −251.985 775.529i −0.516163 1.58859i
\(63\) 0 0
\(64\) −119.848 87.0744i −0.234077 0.170067i
\(65\) −528.540 −1.00857
\(66\) 0 0
\(67\) −963.421 −1.75673 −0.878363 0.477995i \(-0.841364\pi\)
−0.878363 + 0.477995i \(0.841364\pi\)
\(68\) 23.6954 + 17.2157i 0.0422571 + 0.0307016i
\(69\) 0 0
\(70\) 341.171 + 1050.02i 0.582538 + 1.79287i
\(71\) −121.205 + 88.0604i −0.202597 + 0.147195i −0.684458 0.729053i \(-0.739961\pi\)
0.481861 + 0.876248i \(0.339961\pi\)
\(72\) 0 0
\(73\) 133.803 + 411.803i 0.214527 + 0.660246i 0.999187 + 0.0403194i \(0.0128376\pi\)
−0.784660 + 0.619926i \(0.787162\pi\)
\(74\) −157.161 + 483.692i −0.246886 + 0.759838i
\(75\) 0 0
\(76\) −301.404 −0.454913
\(77\) −290.614 + 800.441i −0.430111 + 1.18466i
\(78\) 0 0
\(79\) 1004.73 + 729.982i 1.43090 + 1.03961i 0.989847 + 0.142133i \(0.0453962\pi\)
0.441057 + 0.897479i \(0.354604\pi\)
\(80\) 344.720 1060.94i 0.481761 1.48271i
\(81\) 0 0
\(82\) 386.979 281.157i 0.521155 0.378641i
\(83\) 577.135 419.313i 0.763239 0.554525i −0.136663 0.990618i \(-0.543638\pi\)
0.899902 + 0.436092i \(0.143638\pi\)
\(84\) 0 0
\(85\) 37.2371 114.604i 0.0475168 0.146242i
\(86\) 674.358 + 489.950i 0.845557 + 0.614333i
\(87\) 0 0
\(88\) 469.148 316.989i 0.568311 0.383990i
\(89\) −224.035 −0.266828 −0.133414 0.991060i \(-0.542594\pi\)
−0.133414 + 0.991060i \(0.542594\pi\)
\(90\) 0 0
\(91\) 272.185 837.700i 0.313547 0.964998i
\(92\) −144.605 445.047i −0.163870 0.504341i
\(93\) 0 0
\(94\) −170.059 + 123.555i −0.186598 + 0.135571i
\(95\) 383.194 + 1179.35i 0.413841 + 1.27367i
\(96\) 0 0
\(97\) 979.471 + 711.627i 1.02526 + 0.744895i 0.967354 0.253427i \(-0.0815578\pi\)
0.0579053 + 0.998322i \(0.481558\pi\)
\(98\) −681.572 −0.702543
\(99\) 0 0
\(100\) 242.315 0.242315
\(101\) 877.948 + 637.867i 0.864942 + 0.628417i 0.929225 0.369515i \(-0.120476\pi\)
−0.0642832 + 0.997932i \(0.520476\pi\)
\(102\) 0 0
\(103\) −325.959 1003.20i −0.311823 0.959692i −0.977043 0.213044i \(-0.931662\pi\)
0.665220 0.746648i \(-0.268338\pi\)
\(104\) −473.796 + 344.233i −0.446726 + 0.324566i
\(105\) 0 0
\(106\) −519.033 1597.42i −0.475593 1.46373i
\(107\) 166.413 512.166i 0.150353 0.462737i −0.847308 0.531102i \(-0.821778\pi\)
0.997660 + 0.0683645i \(0.0217781\pi\)
\(108\) 0 0
\(109\) −125.822 −0.110565 −0.0552825 0.998471i \(-0.517606\pi\)
−0.0552825 + 0.998471i \(0.517606\pi\)
\(110\) 1360.67 + 1061.32i 1.17941 + 0.919938i
\(111\) 0 0
\(112\) 1503.99 + 1092.72i 1.26888 + 0.921892i
\(113\) 525.463 1617.21i 0.437446 1.34632i −0.453114 0.891453i \(-0.649687\pi\)
0.890559 0.454867i \(-0.150313\pi\)
\(114\) 0 0
\(115\) −1557.56 + 1131.63i −1.26298 + 0.917612i
\(116\) 612.340 444.891i 0.490124 0.356096i
\(117\) 0 0
\(118\) −611.672 + 1882.53i −0.477195 + 1.46866i
\(119\) 162.463 + 118.036i 0.125151 + 0.0909276i
\(120\) 0 0
\(121\) 324.059 + 1290.95i 0.243470 + 0.969908i
\(122\) −2183.50 −1.62037
\(123\) 0 0
\(124\) 254.025 781.807i 0.183968 0.566196i
\(125\) 232.954 + 716.958i 0.166688 + 0.513013i
\(126\) 0 0
\(127\) 1392.16 1011.46i 0.972708 0.706714i 0.0166406 0.999862i \(-0.494703\pi\)
0.956067 + 0.293148i \(0.0947029\pi\)
\(128\) −512.578 1577.55i −0.353953 1.08935i
\(129\) 0 0
\(130\) −1444.01 1049.14i −0.974219 0.707811i
\(131\) 676.499 0.451191 0.225595 0.974221i \(-0.427567\pi\)
0.225595 + 0.974221i \(0.427567\pi\)
\(132\) 0 0
\(133\) −2066.52 −1.34730
\(134\) −2632.14 1912.36i −1.69688 1.23286i
\(135\) 0 0
\(136\) −41.2602 126.986i −0.0260149 0.0800658i
\(137\) 228.143 165.755i 0.142274 0.103368i −0.514372 0.857567i \(-0.671975\pi\)
0.656646 + 0.754199i \(0.271975\pi\)
\(138\) 0 0
\(139\) −157.254 483.978i −0.0959577 0.295327i 0.891544 0.452933i \(-0.149622\pi\)
−0.987502 + 0.157606i \(0.949622\pi\)
\(140\) −343.932 + 1058.52i −0.207626 + 0.639006i
\(141\) 0 0
\(142\) −505.939 −0.298996
\(143\) −380.528 1323.07i −0.222527 0.773714i
\(144\) 0 0
\(145\) −2519.30 1830.38i −1.44287 1.04831i
\(146\) −451.858 + 1390.68i −0.256137 + 0.788309i
\(147\) 0 0
\(148\) −414.784 + 301.358i −0.230372 + 0.167375i
\(149\) −181.653 + 131.979i −0.0998765 + 0.0725646i −0.636603 0.771192i \(-0.719661\pi\)
0.536726 + 0.843757i \(0.319661\pi\)
\(150\) 0 0
\(151\) 816.077 2511.63i 0.439811 1.35360i −0.448265 0.893901i \(-0.647958\pi\)
0.888075 0.459698i \(-0.152042\pi\)
\(152\) 1111.60 + 807.627i 0.593177 + 0.430968i
\(153\) 0 0
\(154\) −2382.83 + 1610.01i −1.24685 + 0.842456i
\(155\) −3382.06 −1.75260
\(156\) 0 0
\(157\) 97.3353 299.567i 0.0494790 0.152281i −0.923264 0.384165i \(-0.874489\pi\)
0.972743 + 0.231885i \(0.0744892\pi\)
\(158\) 1296.02 + 3988.74i 0.652568 + 2.00840i
\(159\) 0 0
\(160\) 1640.87 1192.16i 0.810765 0.589055i
\(161\) −991.456 3051.39i −0.485327 1.49368i
\(162\) 0 0
\(163\) 1131.07 + 821.767i 0.543509 + 0.394882i 0.825386 0.564568i \(-0.190957\pi\)
−0.281878 + 0.959450i \(0.590957\pi\)
\(164\) 482.204 0.229597
\(165\) 0 0
\(166\) 2409.10 1.12640
\(167\) −936.191 680.182i −0.433800 0.315174i 0.349367 0.936986i \(-0.386397\pi\)
−0.783167 + 0.621812i \(0.786397\pi\)
\(168\) 0 0
\(169\) −238.874 735.177i −0.108727 0.334628i
\(170\) 329.220 239.193i 0.148530 0.107913i
\(171\) 0 0
\(172\) 259.667 + 799.173i 0.115113 + 0.354281i
\(173\) −219.309 + 674.963i −0.0963799 + 0.296627i −0.987611 0.156923i \(-0.949843\pi\)
0.891231 + 0.453550i \(0.149843\pi\)
\(174\) 0 0
\(175\) 1661.39 0.717654
\(176\) 2904.00 + 99.0899i 1.24373 + 0.0424385i
\(177\) 0 0
\(178\) −612.083 444.704i −0.257739 0.187258i
\(179\) 123.274 379.400i 0.0514747 0.158423i −0.922015 0.387155i \(-0.873458\pi\)
0.973489 + 0.228732i \(0.0734579\pi\)
\(180\) 0 0
\(181\) −274.375 + 199.345i −0.112675 + 0.0818629i −0.642696 0.766122i \(-0.722184\pi\)
0.530021 + 0.847984i \(0.322184\pi\)
\(182\) 2406.44 1748.38i 0.980095 0.712081i
\(183\) 0 0
\(184\) −659.212 + 2028.85i −0.264118 + 0.812873i
\(185\) 1706.51 + 1239.85i 0.678190 + 0.492734i
\(186\) 0 0
\(187\) 313.693 + 10.7038i 0.122671 + 0.00418577i
\(188\) −211.906 −0.0822065
\(189\) 0 0
\(190\) −1294.06 + 3982.71i −0.494110 + 1.52072i
\(191\) 463.401 + 1426.20i 0.175553 + 0.540295i 0.999658 0.0261409i \(-0.00832186\pi\)
−0.824106 + 0.566436i \(0.808322\pi\)
\(192\) 0 0
\(193\) 1027.08 746.216i 0.383061 0.278310i −0.379545 0.925173i \(-0.623920\pi\)
0.762606 + 0.646863i \(0.223920\pi\)
\(194\) 1263.43 + 3888.44i 0.467573 + 1.43904i
\(195\) 0 0
\(196\) −555.867 403.861i −0.202576 0.147180i
\(197\) −1970.86 −0.712782 −0.356391 0.934337i \(-0.615993\pi\)
−0.356391 + 0.934337i \(0.615993\pi\)
\(198\) 0 0
\(199\) 3706.78 1.32044 0.660218 0.751074i \(-0.270464\pi\)
0.660218 + 0.751074i \(0.270464\pi\)
\(200\) −893.679 649.296i −0.315963 0.229561i
\(201\) 0 0
\(202\) 1132.48 + 3485.41i 0.394459 + 1.21402i
\(203\) 4198.40 3050.32i 1.45158 1.05463i
\(204\) 0 0
\(205\) −613.057 1886.80i −0.208867 0.642827i
\(206\) 1100.78 3387.84i 0.372305 1.14584i
\(207\) 0 0
\(208\) −3005.47 −1.00189
\(209\) −2676.34 + 1808.32i −0.885771 + 0.598489i
\(210\) 0 0
\(211\) 2345.94 + 1704.43i 0.765409 + 0.556102i 0.900565 0.434722i \(-0.143153\pi\)
−0.135156 + 0.990824i \(0.543153\pi\)
\(212\) 523.234 1610.35i 0.169509 0.521694i
\(213\) 0 0
\(214\) 1471.29 1068.95i 0.469977 0.341458i
\(215\) 2796.92 2032.08i 0.887201 0.644589i
\(216\) 0 0
\(217\) 1741.68 5360.33i 0.544851 1.67688i
\(218\) −343.757 249.754i −0.106799 0.0775939i
\(219\) 0 0
\(220\) 480.835 + 1671.83i 0.147354 + 0.512341i
\(221\) −324.655 −0.0988174
\(222\) 0 0
\(223\) −1937.82 + 5964.01i −0.581912 + 1.79094i 0.0294221 + 0.999567i \(0.490633\pi\)
−0.611334 + 0.791373i \(0.709367\pi\)
\(224\) 1044.49 + 3214.61i 0.311553 + 0.958861i
\(225\) 0 0
\(226\) 4645.72 3375.31i 1.36738 0.993462i
\(227\) −463.712 1427.16i −0.135584 0.417286i 0.860096 0.510132i \(-0.170404\pi\)
−0.995680 + 0.0928461i \(0.970404\pi\)
\(228\) 0 0
\(229\) 1747.29 + 1269.48i 0.504212 + 0.366331i 0.810623 0.585568i \(-0.199128\pi\)
−0.306412 + 0.951899i \(0.599128\pi\)
\(230\) −6501.64 −1.86394
\(231\) 0 0
\(232\) −3450.47 −0.976441
\(233\) 1618.62 + 1176.00i 0.455105 + 0.330653i 0.791608 0.611029i \(-0.209244\pi\)
−0.336503 + 0.941682i \(0.609244\pi\)
\(234\) 0 0
\(235\) 269.409 + 829.157i 0.0747844 + 0.230163i
\(236\) −1614.34 + 1172.89i −0.445274 + 0.323511i
\(237\) 0 0
\(238\) 209.563 + 644.970i 0.0570755 + 0.175660i
\(239\) −545.558 + 1679.05i −0.147653 + 0.454431i −0.997343 0.0728532i \(-0.976790\pi\)
0.849689 + 0.527284i \(0.176790\pi\)
\(240\) 0 0
\(241\) −2787.34 −0.745014 −0.372507 0.928029i \(-0.621502\pi\)
−0.372507 + 0.928029i \(0.621502\pi\)
\(242\) −1677.14 + 4170.22i −0.445499 + 1.10774i
\(243\) 0 0
\(244\) −1780.79 1293.82i −0.467227 0.339460i
\(245\) −873.541 + 2688.48i −0.227790 + 0.701065i
\(246\) 0 0
\(247\) 2702.85 1963.74i 0.696269 0.505869i
\(248\) −3031.76 + 2202.70i −0.776277 + 0.563998i
\(249\) 0 0
\(250\) −786.693 + 2421.19i −0.199019 + 0.612519i
\(251\) −829.428 602.614i −0.208578 0.151541i 0.478592 0.878037i \(-0.341147\pi\)
−0.687170 + 0.726497i \(0.741147\pi\)
\(252\) 0 0
\(253\) −3954.16 3084.25i −0.982592 0.766423i
\(254\) 5811.20 1.43554
\(255\) 0 0
\(256\) 1364.77 4200.34i 0.333197 1.02547i
\(257\) −523.409 1610.89i −0.127040 0.390990i 0.867227 0.497913i \(-0.165900\pi\)
−0.994267 + 0.106923i \(0.965900\pi\)
\(258\) 0 0
\(259\) −2843.89 + 2066.21i −0.682281 + 0.495706i
\(260\) −556.029 1711.28i −0.132629 0.408189i
\(261\) 0 0
\(262\) 1848.25 + 1342.83i 0.435821 + 0.316643i
\(263\) 1139.53 0.267172 0.133586 0.991037i \(-0.457351\pi\)
0.133586 + 0.991037i \(0.457351\pi\)
\(264\) 0 0
\(265\) −6966.29 −1.61485
\(266\) −5645.91 4101.99i −1.30140 0.945523i
\(267\) 0 0
\(268\) −1013.53 3119.32i −0.231011 0.710980i
\(269\) −4312.13 + 3132.94i −0.977379 + 0.710107i −0.957121 0.289687i \(-0.906449\pi\)
−0.0202577 + 0.999795i \(0.506449\pi\)
\(270\) 0 0
\(271\) −470.366 1447.64i −0.105434 0.324494i 0.884398 0.466734i \(-0.154569\pi\)
−0.989832 + 0.142240i \(0.954569\pi\)
\(272\) 211.744 651.680i 0.0472017 0.145272i
\(273\) 0 0
\(274\) 952.324 0.209971
\(275\) 2151.66 1453.81i 0.471817 0.318793i
\(276\) 0 0
\(277\) −2207.79 1604.05i −0.478892 0.347935i 0.322005 0.946738i \(-0.395643\pi\)
−0.800897 + 0.598803i \(0.795643\pi\)
\(278\) 531.053 1634.41i 0.114570 0.352610i
\(279\) 0 0
\(280\) 4104.80 2982.31i 0.876102 0.636525i
\(281\) 5566.19 4044.08i 1.18168 0.858538i 0.189317 0.981916i \(-0.439373\pi\)
0.992360 + 0.123378i \(0.0393726\pi\)
\(282\) 0 0
\(283\) −269.323 + 828.892i −0.0565711 + 0.174108i −0.975349 0.220666i \(-0.929177\pi\)
0.918778 + 0.394774i \(0.129177\pi\)
\(284\) −412.626 299.791i −0.0862143 0.0626384i
\(285\) 0 0
\(286\) 1586.63 4370.08i 0.328040 0.903526i
\(287\) 3306.15 0.679986
\(288\) 0 0
\(289\) −1495.33 + 4602.15i −0.304361 + 0.936728i
\(290\) −3249.68 10001.5i −0.658027 2.02520i
\(291\) 0 0
\(292\) −1192.56 + 866.442i −0.239003 + 0.173646i
\(293\) −1409.39 4337.65i −0.281015 0.864874i −0.987565 0.157211i \(-0.949750\pi\)
0.706550 0.707663i \(-0.250250\pi\)
\(294\) 0 0
\(295\) 6641.76 + 4825.52i 1.31084 + 0.952382i
\(296\) 2337.26 0.458954
\(297\) 0 0
\(298\) −758.265 −0.147400
\(299\) 4196.37 + 3048.84i 0.811646 + 0.589695i
\(300\) 0 0
\(301\) 1780.36 + 5479.39i 0.340925 + 1.04926i
\(302\) 7215.10 5242.08i 1.37478 0.998833i
\(303\) 0 0
\(304\) 2178.98 + 6706.22i 0.411096 + 1.26522i
\(305\) −2798.50 + 8612.89i −0.525382 + 1.61696i
\(306\) 0 0
\(307\) −4841.69 −0.900097 −0.450048 0.893004i \(-0.648593\pi\)
−0.450048 + 0.893004i \(0.648593\pi\)
\(308\) −2897.36 98.8634i −0.536014 0.0182898i
\(309\) 0 0
\(310\) −9240.05 6713.29i −1.69290 1.22996i
\(311\) −2246.74 + 6914.76i −0.409650 + 1.26077i 0.507300 + 0.861769i \(0.330643\pi\)
−0.916950 + 0.399002i \(0.869357\pi\)
\(312\) 0 0
\(313\) −1814.17 + 1318.07i −0.327613 + 0.238025i −0.739417 0.673248i \(-0.764899\pi\)
0.411804 + 0.911272i \(0.364899\pi\)
\(314\) 860.560 625.233i 0.154663 0.112369i
\(315\) 0 0
\(316\) −1306.51 + 4021.03i −0.232585 + 0.715824i
\(317\) 4400.59 + 3197.22i 0.779691 + 0.566479i 0.904886 0.425654i \(-0.139956\pi\)
−0.125195 + 0.992132i \(0.539956\pi\)
\(318\) 0 0
\(319\) 2768.12 7624.27i 0.485847 1.33817i
\(320\) −2074.90 −0.362470
\(321\) 0 0
\(322\) 3348.18 10304.6i 0.579463 1.78340i
\(323\) 235.376 + 724.413i 0.0405470 + 0.124791i
\(324\) 0 0
\(325\) −2172.97 + 1578.76i −0.370877 + 0.269458i
\(326\) 1458.98 + 4490.27i 0.247869 + 0.762862i
\(327\) 0 0
\(328\) −1778.41 1292.09i −0.299379 0.217512i
\(329\) −1452.90 −0.243467
\(330\) 0 0
\(331\) 8447.66 1.40280 0.701398 0.712770i \(-0.252560\pi\)
0.701398 + 0.712770i \(0.252560\pi\)
\(332\) 1964.78 + 1427.50i 0.324794 + 0.235976i
\(333\) 0 0
\(334\) −1207.60 3716.62i −0.197836 0.608876i
\(335\) −10916.9 + 7931.58i −1.78046 + 1.29358i
\(336\) 0 0
\(337\) −963.009 2963.84i −0.155663 0.479082i 0.842564 0.538596i \(-0.181045\pi\)
−0.998227 + 0.0595139i \(0.981045\pi\)
\(338\) 806.685 2482.72i 0.129816 0.399533i
\(339\) 0 0
\(340\) 410.233 0.0654353
\(341\) −2434.95 8466.18i −0.386686 1.34448i
\(342\) 0 0
\(343\) 2665.89 + 1936.88i 0.419663 + 0.304903i
\(344\) 1183.75 3643.21i 0.185534 0.571014i
\(345\) 0 0
\(346\) −1938.95 + 1408.73i −0.301268 + 0.218884i
\(347\) 3085.35 2241.64i 0.477321 0.346794i −0.322966 0.946410i \(-0.604680\pi\)
0.800288 + 0.599616i \(0.204680\pi\)
\(348\) 0 0
\(349\) −620.100 + 1908.47i −0.0951094 + 0.292717i −0.987282 0.158978i \(-0.949180\pi\)
0.892173 + 0.451694i \(0.149180\pi\)
\(350\) 4539.06 + 3297.82i 0.693208 + 0.503645i
\(351\) 0 0
\(352\) 4165.67 + 3249.23i 0.630769 + 0.492001i
\(353\) −7986.75 −1.20423 −0.602113 0.798411i \(-0.705674\pi\)
−0.602113 + 0.798411i \(0.705674\pi\)
\(354\) 0 0
\(355\) −648.439 + 1995.69i −0.0969453 + 0.298367i
\(356\) −235.687 725.371i −0.0350882 0.107990i
\(357\) 0 0
\(358\) 1089.89 791.854i 0.160901 0.116902i
\(359\) 159.034 + 489.457i 0.0233802 + 0.0719569i 0.962066 0.272817i \(-0.0879555\pi\)
−0.938686 + 0.344774i \(0.887955\pi\)
\(360\) 0 0
\(361\) −792.285 575.629i −0.115510 0.0839232i
\(362\) −1145.31 −0.166287
\(363\) 0 0
\(364\) 2998.61 0.431785
\(365\) 4906.43 + 3564.73i 0.703601 + 0.511196i
\(366\) 0 0
\(367\) −851.393 2620.32i −0.121096 0.372696i 0.872073 0.489375i \(-0.162775\pi\)
−0.993170 + 0.116679i \(0.962775\pi\)
\(368\) −8856.86 + 6434.89i −1.25461 + 0.911526i
\(369\) 0 0
\(370\) 2201.25 + 6774.75i 0.309291 + 0.951899i
\(371\) 3587.46 11041.1i 0.502027 1.54508i
\(372\) 0 0
\(373\) 191.959 0.0266468 0.0133234 0.999911i \(-0.495759\pi\)
0.0133234 + 0.999911i \(0.495759\pi\)
\(374\) 835.788 + 651.916i 0.115555 + 0.0901330i
\(375\) 0 0
\(376\) 781.527 + 567.812i 0.107192 + 0.0778795i
\(377\) −2592.59 + 7979.16i −0.354178 + 1.09005i
\(378\) 0 0
\(379\) −1271.27 + 923.632i −0.172298 + 0.125182i −0.670592 0.741826i \(-0.733960\pi\)
0.498294 + 0.867008i \(0.333960\pi\)
\(380\) −3415.32 + 2481.37i −0.461058 + 0.334978i
\(381\) 0 0
\(382\) −1564.92 + 4816.34i −0.209603 + 0.645092i
\(383\) −11608.0 8433.73i −1.54868 1.12518i −0.944587 0.328261i \(-0.893537\pi\)
−0.604089 0.796917i \(-0.706463\pi\)
\(384\) 0 0
\(385\) 3296.76 + 11462.6i 0.436412 + 1.51738i
\(386\) 4287.28 0.565328
\(387\) 0 0
\(388\) −1273.66 + 3919.92i −0.166650 + 0.512897i
\(389\) −2330.94 7173.91i −0.303814 0.935043i −0.980117 0.198419i \(-0.936419\pi\)
0.676303 0.736623i \(-0.263581\pi\)
\(390\) 0 0
\(391\) −956.728 + 695.104i −0.123744 + 0.0899051i
\(392\) 967.919 + 2978.95i 0.124713 + 0.383826i
\(393\) 0 0
\(394\) −5384.55 3912.10i −0.688502 0.500226i
\(395\) 17394.8 2.21576
\(396\) 0 0
\(397\) −3008.38 −0.380319 −0.190159 0.981753i \(-0.560900\pi\)
−0.190159 + 0.981753i \(0.560900\pi\)
\(398\) 10127.2 + 7357.86i 1.27546 + 0.926674i
\(399\) 0 0
\(400\) −1751.81 5391.50i −0.218976 0.673938i
\(401\) 10661.6 7746.09i 1.32772 0.964642i 0.327914 0.944708i \(-0.393654\pi\)
0.999801 0.0199341i \(-0.00634564\pi\)
\(402\) 0 0
\(403\) 2815.73 + 8665.94i 0.348044 + 1.07117i
\(404\) −1141.64 + 3513.62i −0.140591 + 0.432696i
\(405\) 0 0
\(406\) 17525.2 2.14226
\(407\) −1875.06 + 5164.49i −0.228361 + 0.628979i
\(408\) 0 0
\(409\) 8699.67 + 6320.68i 1.05176 + 0.764151i 0.972547 0.232707i \(-0.0747582\pi\)
0.0792163 + 0.996857i \(0.474758\pi\)
\(410\) 2070.32 6371.78i 0.249380 0.767512i
\(411\) 0 0
\(412\) 2905.20 2110.75i 0.347400 0.252401i
\(413\) −11068.5 + 8041.71i −1.31875 + 0.958127i
\(414\) 0 0
\(415\) 3087.64 9502.79i 0.365220 1.12403i
\(416\) −4420.83 3211.92i −0.521031 0.378551i
\(417\) 0 0
\(418\) −10901.4 371.978i −1.27561 0.0435264i
\(419\) −440.292 −0.0513358 −0.0256679 0.999671i \(-0.508171\pi\)
−0.0256679 + 0.999671i \(0.508171\pi\)
\(420\) 0 0
\(421\) 3393.63 10444.5i 0.392863 1.20911i −0.537750 0.843105i \(-0.680725\pi\)
0.930613 0.366005i \(-0.119275\pi\)
\(422\) 3026.06 + 9313.26i 0.349067 + 1.07432i
\(423\) 0 0
\(424\) −6244.74 + 4537.07i −0.715263 + 0.519669i
\(425\) −189.232 582.396i −0.0215979 0.0664715i
\(426\) 0 0
\(427\) −12209.7 8870.85i −1.38377 1.00536i
\(428\) 1833.33 0.207050
\(429\) 0 0
\(430\) 11675.0 1.30935
\(431\) 3488.79 + 2534.76i 0.389905 + 0.283283i 0.765417 0.643535i \(-0.222533\pi\)
−0.375511 + 0.926818i \(0.622533\pi\)
\(432\) 0 0
\(433\) 3376.82 + 10392.8i 0.374780 + 1.15345i 0.943627 + 0.331011i \(0.107390\pi\)
−0.568847 + 0.822444i \(0.692610\pi\)
\(434\) 15398.5 11187.7i 1.70311 1.23738i
\(435\) 0 0
\(436\) −132.366 407.382i −0.0145394 0.0447478i
\(437\) 3760.59 11573.9i 0.411656 1.26695i
\(438\) 0 0
\(439\) −5655.67 −0.614876 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(440\) 2706.40 7454.29i 0.293234 0.807657i
\(441\) 0 0
\(442\) −886.983 644.431i −0.0954513 0.0693494i
\(443\) −897.124 + 2761.06i −0.0962159 + 0.296122i −0.987569 0.157188i \(-0.949757\pi\)
0.891353 + 0.453310i \(0.149757\pi\)
\(444\) 0 0
\(445\) −2538.63 + 1844.42i −0.270433 + 0.196481i
\(446\) −17132.7 + 12447.6i −1.81896 + 1.32155i
\(447\) 0 0
\(448\) 1068.52 3288.57i 0.112685 0.346809i
\(449\) 2813.36 + 2044.02i 0.295703 + 0.214841i 0.725738 0.687972i \(-0.241499\pi\)
−0.430035 + 0.902812i \(0.641499\pi\)
\(450\) 0 0
\(451\) 4281.77 2893.06i 0.447052 0.302060i
\(452\) 5788.91 0.602406
\(453\) 0 0
\(454\) 1565.97 4819.57i 0.161883 0.498224i
\(455\) −3812.32 11733.1i −0.392801 1.20892i
\(456\) 0 0
\(457\) −2953.10 + 2145.55i −0.302276 + 0.219616i −0.728575 0.684966i \(-0.759817\pi\)
0.426299 + 0.904582i \(0.359817\pi\)
\(458\) 2253.86 + 6936.66i 0.229947 + 0.707705i
\(459\) 0 0
\(460\) −5302.52 3852.50i −0.537459 0.390487i
\(461\) −11721.5 −1.18422 −0.592111 0.805856i \(-0.701705\pi\)
−0.592111 + 0.805856i \(0.701705\pi\)
\(462\) 0 0
\(463\) −7337.56 −0.736512 −0.368256 0.929724i \(-0.620045\pi\)
−0.368256 + 0.929724i \(0.620045\pi\)
\(464\) −14325.7 10408.2i −1.43330 1.04136i
\(465\) 0 0
\(466\) 2087.88 + 6425.84i 0.207552 + 0.638779i
\(467\) −8516.50 + 6187.60i −0.843890 + 0.613122i −0.923455 0.383708i \(-0.874647\pi\)
0.0795645 + 0.996830i \(0.474647\pi\)
\(468\) 0 0
\(469\) −6949.08 21387.1i −0.684176 2.10568i
\(470\) −909.806 + 2800.09i −0.0892898 + 0.274806i
\(471\) 0 0
\(472\) 9096.64 0.887091
\(473\) 7100.50 + 5538.40i 0.690236 + 0.538385i
\(474\) 0 0
\(475\) 5098.15 + 3704.02i 0.492462 + 0.357794i
\(476\) −211.260 + 650.191i −0.0203426 + 0.0626081i
\(477\) 0 0
\(478\) −4823.38 + 3504.39i −0.461540 + 0.335329i
\(479\) −8519.68 + 6189.91i −0.812681 + 0.590447i −0.914607 0.404345i \(-0.867500\pi\)
0.101926 + 0.994792i \(0.467500\pi\)
\(480\) 0 0
\(481\) 1756.15 5404.88i 0.166473 0.512352i
\(482\) −7615.23 5532.79i −0.719635 0.522846i
\(483\) 0 0
\(484\) −3838.86 + 2407.31i −0.360524 + 0.226081i
\(485\) 16957.4 1.58762
\(486\) 0 0
\(487\) 260.953 803.130i 0.0242811 0.0747295i −0.938182 0.346143i \(-0.887491\pi\)
0.962463 + 0.271414i \(0.0874911\pi\)
\(488\) 3100.85 + 9543.43i 0.287641 + 0.885268i
\(489\) 0 0
\(490\) −7723.15 + 5611.20i −0.712033 + 0.517323i
\(491\) 4083.24 + 12566.9i 0.375303 + 1.15507i 0.943274 + 0.332016i \(0.107729\pi\)
−0.567970 + 0.823049i \(0.692271\pi\)
\(492\) 0 0
\(493\) −1547.48 1124.31i −0.141369 0.102710i
\(494\) 11282.4 1.02757
\(495\) 0 0
\(496\) −19231.6 −1.74098
\(497\) −2829.10 2055.46i −0.255337 0.185513i
\(498\) 0 0
\(499\) −5250.64 16159.8i −0.471044 1.44972i −0.851219 0.524810i \(-0.824136\pi\)
0.380176 0.924914i \(-0.375864\pi\)
\(500\) −2076.26 + 1508.49i −0.185707 + 0.134924i
\(501\) 0 0
\(502\) −1069.89 3292.78i −0.0951225 0.292757i
\(503\) −794.495 + 2445.20i −0.0704270 + 0.216752i −0.980075 0.198628i \(-0.936351\pi\)
0.909648 + 0.415380i \(0.136351\pi\)
\(504\) 0 0
\(505\) 15199.7 1.33936
\(506\) −4680.93 16275.3i −0.411250 1.42989i
\(507\) 0 0
\(508\) 4739.42 + 3443.39i 0.413933 + 0.300740i
\(509\) 6460.29 19882.7i 0.562569 1.73141i −0.112499 0.993652i \(-0.535885\pi\)
0.675067 0.737756i \(-0.264115\pi\)
\(510\) 0 0
\(511\) −8176.55 + 5940.61i −0.707846 + 0.514280i
\(512\) 1330.65 966.775i 0.114857 0.0834489i
\(513\) 0 0
\(514\) 1767.57 5440.02i 0.151681 0.466827i
\(515\) −11952.6 8684.10i −1.02271 0.743043i
\(516\) 0 0
\(517\) −1881.63 + 1271.36i −0.160066 + 0.108152i
\(518\) −11871.1 −1.00692
\(519\) 0 0
\(520\) −2534.78 + 7801.26i −0.213765 + 0.657900i
\(521\) −227.454 700.032i −0.0191266 0.0588656i 0.941038 0.338302i \(-0.109852\pi\)
−0.960164 + 0.279436i \(0.909852\pi\)
\(522\) 0 0
\(523\) −10651.2 + 7738.58i −0.890528 + 0.647007i −0.936016 0.351958i \(-0.885516\pi\)
0.0454874 + 0.998965i \(0.485516\pi\)
\(524\) 711.683 + 2190.34i 0.0593321 + 0.182605i
\(525\) 0 0
\(526\) 3113.28 + 2261.93i 0.258071 + 0.187499i
\(527\) −2077.42 −0.171715
\(528\) 0 0
\(529\) 6727.04 0.552892
\(530\) −19032.4 13827.9i −1.55984 1.13329i
\(531\) 0 0
\(532\) −2174.00 6690.89i −0.177171 0.545276i
\(533\) −4324.19 + 3141.71i −0.351410 + 0.255314i
\(534\) 0 0
\(535\) −2330.83 7173.57i −0.188356 0.579702i
\(536\) −4620.39 + 14220.1i −0.372333 + 1.14592i
\(537\) 0 0
\(538\) −17999.9 −1.44243
\(539\) −7358.90 251.100i −0.588071 0.0200661i
\(540\) 0 0
\(541\) 17769.9 + 12910.6i 1.41218 + 1.02601i 0.993001 + 0.118106i \(0.0376823\pi\)
0.419180 + 0.907903i \(0.362318\pi\)
\(542\) 1588.44 4888.73i 0.125885 0.387433i
\(543\) 0 0
\(544\) 1007.90 732.285i 0.0794366 0.0577141i
\(545\) −1425.74 + 1035.86i −0.112059 + 0.0814154i
\(546\) 0 0
\(547\) −5332.99 + 16413.3i −0.416860 + 1.28296i 0.493717 + 0.869623i \(0.335638\pi\)
−0.910577 + 0.413340i \(0.864362\pi\)
\(548\) 776.683 + 564.293i 0.0605443 + 0.0439880i
\(549\) 0 0
\(550\) 8764.27 + 299.054i 0.679472 + 0.0231849i
\(551\) 19683.8 1.52188
\(552\) 0 0
\(553\) −8957.87 + 27569.5i −0.688838 + 2.12002i
\(554\) −2847.85 8764.79i −0.218400 0.672167i
\(555\) 0 0
\(556\) 1401.57 1018.30i 0.106906 0.0776718i
\(557\) −5616.20 17284.9i −0.427228 1.31487i −0.900845 0.434141i \(-0.857052\pi\)
0.473617 0.880731i \(-0.342948\pi\)
\(558\) 0 0
\(559\) −7535.44 5474.81i −0.570152 0.414240i
\(560\) 26038.3 1.96486
\(561\) 0 0
\(562\) 23234.7 1.74394
\(563\) 18160.5 + 13194.4i 1.35946 + 0.987702i 0.998479 + 0.0551274i \(0.0175565\pi\)
0.360976 + 0.932575i \(0.382443\pi\)
\(564\) 0 0
\(565\) −7359.81 22651.2i −0.548017 1.68662i
\(566\) −2381.14 + 1730.00i −0.176832 + 0.128476i
\(567\) 0 0
\(568\) 718.497 + 2211.31i 0.0530765 + 0.163353i
\(569\) −2899.51 + 8923.77i −0.213627 + 0.657476i 0.785621 + 0.618708i \(0.212343\pi\)
−0.999248 + 0.0387685i \(0.987657\pi\)
\(570\) 0 0
\(571\) 7968.11 0.583984 0.291992 0.956421i \(-0.405682\pi\)
0.291992 + 0.956421i \(0.405682\pi\)
\(572\) 3883.47 2623.94i 0.283874 0.191805i
\(573\) 0 0
\(574\) 9032.67 + 6562.62i 0.656823 + 0.477210i
\(575\) −3023.35 + 9304.92i −0.219274 + 0.674855i
\(576\) 0 0
\(577\) 3988.11 2897.53i 0.287742 0.209057i −0.434545 0.900650i \(-0.643091\pi\)
0.722287 + 0.691593i \(0.243091\pi\)
\(578\) −13220.5 + 9605.24i −0.951384 + 0.691221i
\(579\) 0 0
\(580\) 3275.99 10082.4i 0.234531 0.721812i
\(581\) 13471.2 + 9787.40i 0.961927 + 0.698881i
\(582\) 0 0
\(583\) −5015.45 17438.4i −0.356293 1.23881i
\(584\) 6719.92 0.476151
\(585\) 0 0
\(586\) 4759.55 14648.4i 0.335521 1.03263i
\(587\) 740.099 + 2277.79i 0.0520395 + 0.160161i 0.973699 0.227839i \(-0.0731660\pi\)
−0.921659 + 0.388000i \(0.873166\pi\)
\(588\) 0 0
\(589\) 17295.2 12565.7i 1.20991 0.879049i
\(590\) 8567.29 + 26367.4i 0.597813 + 1.83988i
\(591\) 0 0
\(592\) 9703.85 + 7050.26i 0.673692 + 0.489466i
\(593\) 7389.73 0.511737 0.255868 0.966712i \(-0.417639\pi\)
0.255868 + 0.966712i \(0.417639\pi\)
\(594\) 0 0
\(595\) 2812.69 0.193797
\(596\) −618.415 449.305i −0.0425021 0.0308796i
\(597\) 0 0
\(598\) 5412.95 + 16659.3i 0.370154 + 1.13922i
\(599\) 17663.1 12833.0i 1.20484 0.875364i 0.210084 0.977683i \(-0.432626\pi\)
0.994752 + 0.102319i \(0.0326263\pi\)
\(600\) 0 0
\(601\) −1478.65 4550.80i −0.100358 0.308871i 0.888255 0.459351i \(-0.151918\pi\)
−0.988613 + 0.150480i \(0.951918\pi\)
\(602\) −6012.35 + 18504.1i −0.407052 + 1.25278i
\(603\) 0 0
\(604\) 8990.55 0.605663
\(605\) 14300.0 + 11960.3i 0.960958 + 0.803730i
\(606\) 0 0
\(607\) 13630.6 + 9903.20i 0.911447 + 0.662205i 0.941380 0.337347i \(-0.109529\pi\)
−0.0299333 + 0.999552i \(0.509529\pi\)
\(608\) −3961.75 + 12193.0i −0.264260 + 0.813308i
\(609\) 0 0
\(610\) −24742.1 + 17976.2i −1.64226 + 1.19317i
\(611\) 1900.28 1380.63i 0.125822 0.0914147i
\(612\) 0 0
\(613\) 1062.30 3269.42i 0.0699933 0.215417i −0.909941 0.414737i \(-0.863873\pi\)
0.979934 + 0.199320i \(0.0638734\pi\)
\(614\) −13227.9 9610.62i −0.869436 0.631682i
\(615\) 0 0
\(616\) 10420.8 + 8128.24i 0.681600 + 0.531649i
\(617\) −12049.1 −0.786186 −0.393093 0.919499i \(-0.628595\pi\)
−0.393093 + 0.919499i \(0.628595\pi\)
\(618\) 0 0
\(619\) 6812.82 20967.7i 0.442375 1.36149i −0.442962 0.896541i \(-0.646072\pi\)
0.885337 0.464950i \(-0.153928\pi\)
\(620\) −3557.96 10950.3i −0.230469 0.709311i
\(621\) 0 0
\(622\) −19863.9 + 14432.0i −1.28050 + 0.930335i
\(623\) −1615.95 4973.38i −0.103919 0.319830i
\(624\) 0 0
\(625\) 15740.2 + 11435.9i 1.00737 + 0.731899i
\(626\) −7572.78 −0.483497
\(627\) 0 0
\(628\) 1072.32 0.0681374
\(629\) 1048.22 + 761.577i 0.0664472 + 0.0482767i
\(630\) 0 0
\(631\) 880.012 + 2708.40i 0.0555194 + 0.170871i 0.974971 0.222332i \(-0.0713669\pi\)
−0.919452 + 0.393203i \(0.871367\pi\)
\(632\) 15593.1 11329.0i 0.981422 0.713045i
\(633\) 0 0
\(634\) 5676.38 + 17470.1i 0.355580 + 1.09436i
\(635\) 7447.96 22922.5i 0.465454 1.43252i
\(636\) 0 0
\(637\) 7616.05 0.473719
\(638\) 22696.7 15335.5i 1.40842 0.951626i
\(639\) 0 0
\(640\) −18795.8 13655.9i −1.16089 0.843434i
\(641\) −3145.57 + 9681.08i −0.193826 + 0.596536i 0.806162 + 0.591695i \(0.201541\pi\)
−0.999988 + 0.00484133i \(0.998459\pi\)
\(642\) 0 0
\(643\) 12706.0 9231.45i 0.779278 0.566178i −0.125484 0.992096i \(-0.540048\pi\)
0.904762 + 0.425917i \(0.140048\pi\)
\(644\) 8836.62 6420.18i 0.540701 0.392842i
\(645\) 0 0
\(646\) −794.874 + 2446.37i −0.0484116 + 0.148996i
\(647\) −2754.53 2001.28i −0.167375 0.121605i 0.500944 0.865479i \(-0.332986\pi\)
−0.668320 + 0.743874i \(0.732986\pi\)
\(648\) 0 0
\(649\) −7297.74 + 20100.3i −0.441389 + 1.21572i
\(650\) −9070.53 −0.547347
\(651\) 0 0
\(652\) −1470.79 + 4526.62i −0.0883443 + 0.271896i
\(653\) −7928.85 24402.5i −0.475161 1.46239i −0.845741 0.533594i \(-0.820841\pi\)
0.370580 0.928801i \(-0.379159\pi\)
\(654\) 0 0
\(655\) 7665.66 5569.43i 0.457286 0.332237i
\(656\) −3486.07 10729.0i −0.207482 0.638564i
\(657\) 0 0
\(658\) −3969.43 2883.96i −0.235174 0.170864i
\(659\) −30937.0 −1.82873 −0.914367 0.404887i \(-0.867311\pi\)
−0.914367 + 0.404887i \(0.867311\pi\)
\(660\) 0 0
\(661\) −17637.6 −1.03786 −0.518928 0.854818i \(-0.673669\pi\)
−0.518928 + 0.854818i \(0.673669\pi\)
\(662\) 23079.7 + 16768.4i 1.35501 + 0.984473i
\(663\) 0 0
\(664\) −3421.23 10529.5i −0.199954 0.615396i
\(665\) −23416.5 + 17013.1i −1.36550 + 0.992090i
\(666\) 0 0
\(667\) 9443.71 + 29064.7i 0.548219 + 1.68724i
\(668\) 1217.38 3746.71i 0.0705118 0.217013i
\(669\) 0 0
\(670\) −45569.7 −2.62763
\(671\) −23575.1 804.429i −1.35635 0.0462811i
\(672\) 0 0
\(673\) −22173.8 16110.2i −1.27004 0.922738i −0.270835 0.962626i \(-0.587300\pi\)
−0.999204 + 0.0398882i \(0.987300\pi\)
\(674\) 3252.12 10009.0i 0.185856 0.572006i
\(675\) 0 0
\(676\) 2129.02 1546.83i 0.121132 0.0880079i
\(677\) 1490.85 1083.16i 0.0846351 0.0614910i −0.544663 0.838655i \(-0.683342\pi\)
0.629298 + 0.777164i \(0.283342\pi\)
\(678\) 0 0
\(679\) −8732.63 + 26876.3i −0.493560 + 1.51902i
\(680\) −1512.97 1099.24i −0.0853234 0.0619911i
\(681\) 0 0
\(682\) 10152.6 27963.6i 0.570037 1.57006i
\(683\) −9024.46 −0.505580 −0.252790 0.967521i \(-0.581348\pi\)
−0.252790 + 0.967521i \(0.581348\pi\)
\(684\) 0 0
\(685\) 1220.55 3756.47i 0.0680801 0.209529i
\(686\) 3438.77 + 10583.4i 0.191389 + 0.589034i
\(687\) 0 0
\(688\) 15904.3 11555.2i 0.881317 0.640314i
\(689\) 5799.79 + 17849.9i 0.320688 + 0.986978i
\(690\) 0 0
\(691\) −6227.01 4524.19i −0.342817 0.249071i 0.403032 0.915186i \(-0.367956\pi\)
−0.745850 + 0.666114i \(0.767956\pi\)
\(692\) −2416.08 −0.132725
\(693\) 0 0
\(694\) 12879.0 0.704440
\(695\) −5766.36 4189.51i −0.314720 0.228658i
\(696\) 0 0
\(697\) −376.569 1158.96i −0.0204642 0.0629825i
\(698\) −5482.42 + 3983.21i −0.297296 + 0.215998i
\(699\) 0 0
\(700\) 1747.80 + 5379.18i 0.0943724 + 0.290448i
\(701\) 4124.93 12695.2i 0.222249 0.684011i −0.776310 0.630351i \(-0.782911\pi\)
0.998559 0.0536607i \(-0.0170889\pi\)
\(702\) 0 0
\(703\) −13333.3 −0.715328
\(704\) −1493.85 5194.01i −0.0799736 0.278063i
\(705\) 0 0
\(706\) −21820.4 15853.5i −1.16321 0.845118i
\(707\) −7827.49 + 24090.5i −0.416383 + 1.28150i
\(708\) 0 0
\(709\) 19619.8 14254.6i 1.03926 0.755067i 0.0691197 0.997608i \(-0.477981\pi\)
0.970141 + 0.242541i \(0.0779809\pi\)
\(710\) −5732.98 + 4165.25i −0.303035 + 0.220168i
\(711\) 0 0
\(712\) −1074.43 + 3306.77i −0.0565535 + 0.174054i
\(713\) 26852.0 + 19509.1i 1.41040 + 1.02471i
\(714\) 0 0
\(715\) −15204.4 11859.5i −0.795263 0.620306i
\(716\) 1358.09 0.0708857
\(717\) 0 0
\(718\) −537.064 + 1652.91i −0.0279151 + 0.0859139i
\(719\) 4397.77 + 13534.9i 0.228107 + 0.702042i 0.997961 + 0.0638217i \(0.0203289\pi\)
−0.769854 + 0.638220i \(0.779671\pi\)
\(720\) 0 0
\(721\) 19919.0 14472.0i 1.02888 0.747525i
\(722\) −1021.98 3145.33i −0.0526788 0.162129i
\(723\) 0 0
\(724\) −934.073 678.644i −0.0479483 0.0348365i
\(725\) −15824.9 −0.810652
\(726\) 0 0
\(727\) −9582.44 −0.488849 −0.244424 0.969668i \(-0.578599\pi\)
−0.244424 + 0.969668i \(0.578599\pi\)
\(728\) −11059.1 8034.91i −0.563019 0.409057i
\(729\) 0 0
\(730\) 6328.87 + 19478.3i 0.320880 + 0.987566i
\(731\) 1718.00 1248.20i 0.0869256 0.0631551i
\(732\) 0 0
\(733\) 5812.90 + 17890.3i 0.292912 + 0.901491i 0.983915 + 0.178638i \(0.0571692\pi\)
−0.691003 + 0.722852i \(0.742831\pi\)
\(734\) 2875.19 8848.91i 0.144585 0.444985i
\(735\) 0 0
\(736\) −19904.7 −0.996870
\(737\) −27714.5 21617.4i −1.38518 1.08044i
\(738\) 0 0
\(739\) −11667.0 8476.60i −0.580756 0.421944i 0.258240 0.966081i \(-0.416857\pi\)
−0.838997 + 0.544136i \(0.816857\pi\)
\(740\) −2219.07 + 6829.60i −0.110236 + 0.339272i
\(741\) 0 0
\(742\) 31717.5 23044.1i 1.56925 1.14013i
\(743\) 7563.70 5495.35i 0.373466 0.271339i −0.385181 0.922841i \(-0.625861\pi\)
0.758647 + 0.651502i \(0.225861\pi\)
\(744\) 0 0
\(745\) −971.835 + 2991.00i −0.0477923 + 0.147090i
\(746\) 524.447 + 381.033i 0.0257391 + 0.0187006i
\(747\) 0 0
\(748\) 295.352 + 1026.92i 0.0144373 + 0.0501978i
\(749\) 12569.9 0.613211
\(750\) 0 0
\(751\) −2379.38 + 7322.96i −0.115612 + 0.355817i −0.992074 0.125653i \(-0.959897\pi\)
0.876462 + 0.481471i \(0.159897\pi\)
\(752\) 1531.96 + 4714.89i 0.0742884 + 0.228636i
\(753\) 0 0
\(754\) −22921.6 + 16653.5i −1.10710 + 0.804356i
\(755\) −11430.3 35178.7i −0.550980 1.69574i
\(756\) 0 0
\(757\) −32243.5 23426.3i −1.54810 1.12476i −0.944991 0.327097i \(-0.893930\pi\)
−0.603106 0.797661i \(-0.706070\pi\)
\(758\) −5306.60 −0.254280
\(759\) 0 0
\(760\) 19244.9 0.918536
\(761\) 23628.2 + 17166.9i 1.12552 + 0.817737i 0.985036 0.172346i \(-0.0551347\pi\)
0.140482 + 0.990083i \(0.455135\pi\)
\(762\) 0 0
\(763\) −907.547 2793.14i −0.0430608 0.132528i
\(764\) −4130.19 + 3000.76i −0.195582 + 0.142099i
\(765\) 0 0
\(766\) −14973.4 46083.2i −0.706278 2.17370i
\(767\) 6834.97 21035.9i 0.321768 0.990301i
\(768\) 0 0
\(769\) 19737.4 0.925553 0.462777 0.886475i \(-0.346853\pi\)
0.462777 + 0.886475i \(0.346853\pi\)
\(770\) −13746.0 + 37860.8i −0.643340 + 1.77196i
\(771\) 0 0
\(772\) 3496.56 + 2540.40i 0.163010 + 0.118434i
\(773\) 11172.5 34385.3i 0.519852 1.59994i −0.254424 0.967093i \(-0.581886\pi\)
0.774276 0.632848i \(-0.218114\pi\)
\(774\) 0 0
\(775\) −13904.6 + 10102.3i −0.644473 + 0.468237i
\(776\) 15201.0 11044.2i 0.703201 0.510905i
\(777\) 0 0
\(778\) 7871.68 24226.5i 0.362742 1.11641i
\(779\) 10145.3 + 7370.96i 0.466613 + 0.339014i
\(780\) 0 0
\(781\) −5462.59 186.394i −0.250278 0.00853995i
\(782\) −3993.62 −0.182623
\(783\) 0 0
\(784\) −4967.28 + 15287.7i −0.226279 + 0.696415i
\(785\) −1363.31 4195.84i −0.0619855 0.190772i
\(786\) 0 0
\(787\) −8525.61 + 6194.22i −0.386157 + 0.280559i −0.763879 0.645360i \(-0.776707\pi\)
0.377722 + 0.925919i \(0.376707\pi\)
\(788\) −2073.36 6381.16i −0.0937317 0.288476i
\(789\) 0 0
\(790\) 47523.9 + 34528.1i 2.14028 + 1.55501i
\(791\) 39690.7 1.78412
\(792\) 0 0
\(793\) 24398.9 1.09260
\(794\) −8219.15 5971.56i −0.367363 0.266905i
\(795\) 0 0
\(796\) 3899.57 + 12001.6i 0.173639 + 0.534406i
\(797\) −22288.7 + 16193.7i −0.990597 + 0.719711i −0.960052 0.279823i \(-0.909724\pi\)
−0.0305449 + 0.999533i \(0.509724\pi\)
\(798\) 0 0
\(799\) 165.484 + 509.308i 0.00732717 + 0.0225507i
\(800\) 3185.07 9802.63i 0.140761 0.433219i
\(801\) 0 0
\(802\) 44504.1 1.95947
\(803\) −5391.02 + 14848.6i −0.236918 + 0.652546i
\(804\) 0 0
\(805\) −36355.8 26414.0i −1.59177 1.15649i
\(806\) −9508.84 + 29265.2i −0.415552 + 1.27894i
\(807\) 0 0
\(808\) 13625.4 9899.43i 0.593243 0.431016i
\(809\) 34358.5 24962.9i 1.49318 1.08486i 0.520174 0.854060i \(-0.325867\pi\)
0.973002 0.230796i \(-0.0741330\pi\)
\(810\) 0 0
\(811\) −956.111 + 2942.61i −0.0413978 + 0.127409i −0.969619 0.244618i \(-0.921337\pi\)
0.928222 + 0.372028i \(0.121337\pi\)
\(812\) 14292.9 + 10384.4i 0.617714 + 0.448795i
\(813\) 0 0
\(814\) −15374.2 + 10387.9i −0.661996 + 0.447291i
\(815\) 19581.9 0.841625
\(816\) 0 0
\(817\) −6752.91 + 20783.3i −0.289173 + 0.889984i
\(818\) 11221.8 + 34537.2i 0.479660 + 1.47624i
\(819\) 0 0
\(820\) 5464.04 3969.85i 0.232698 0.169065i
\(821\) 9187.58 + 28276.5i 0.390559 + 1.20202i 0.932367 + 0.361514i \(0.117740\pi\)
−0.541808 + 0.840502i \(0.682260\pi\)
\(822\) 0 0
\(823\) 23522.1 + 17089.8i 0.996268 + 0.723831i 0.961285 0.275557i \(-0.0888622\pi\)
0.0349832 + 0.999388i \(0.488862\pi\)
\(824\) −16370.5 −0.692103
\(825\) 0 0
\(826\) −46202.5 −1.94623
\(827\) −28084.0 20404.3i −1.18087 0.857951i −0.188599 0.982054i \(-0.560395\pi\)
−0.992269 + 0.124103i \(0.960395\pi\)
\(828\) 0 0
\(829\) 11291.2 + 34750.7i 0.473051 + 1.45590i 0.848568 + 0.529086i \(0.177465\pi\)
−0.375517 + 0.926815i \(0.622535\pi\)
\(830\) 27298.4 19833.5i 1.14162 0.829434i
\(831\) 0 0
\(832\) 1727.46 + 5316.57i 0.0719818 + 0.221537i
\(833\) −536.571 + 1651.40i −0.0223182 + 0.0686884i
\(834\) 0 0
\(835\) −16208.1 −0.671741
\(836\) −8670.42 6762.94i −0.358700 0.279786i
\(837\) 0 0
\(838\) −1202.91 873.968i −0.0495871 0.0360271i
\(839\) −1495.43 + 4602.45i −0.0615350 + 0.189385i −0.977098 0.212789i \(-0.931745\pi\)
0.915563 + 0.402174i \(0.131745\pi\)
\(840\) 0 0
\(841\) −20259.0 + 14719.1i −0.830663 + 0.603512i
\(842\) 30003.8 21799.0i 1.22803 0.892213i
\(843\) 0 0
\(844\) −3050.56 + 9388.65i −0.124413 + 0.382904i
\(845\) −8759.28 6363.99i −0.356601 0.259086i
\(846\) 0 0
\(847\) −26320.5 + 16505.3i −1.06775 + 0.669574i
\(848\) −39612.9 −1.60414
\(849\) 0 0
\(850\) 639.043 1966.77i 0.0257871 0.0793644i
\(851\) −6396.93 19687.7i −0.257678 0.793051i
\(852\) 0 0
\(853\) 34422.9 25009.7i 1.38173 1.00389i 0.385015 0.922910i \(-0.374196\pi\)
0.996716 0.0809764i \(-0.0258038\pi\)
\(854\) −15749.4 48471.7i −0.631071 1.94224i
\(855\) 0 0
\(856\) −6761.48 4912.51i −0.269980 0.196152i
\(857\) −4754.94 −0.189528 −0.0947640 0.995500i \(-0.530210\pi\)
−0.0947640 + 0.995500i \(0.530210\pi\)
\(858\) 0 0
\(859\) −15180.5 −0.602972 −0.301486 0.953471i \(-0.597483\pi\)
−0.301486 + 0.953471i \(0.597483\pi\)
\(860\) 9521.76 + 6917.96i 0.377546 + 0.274303i
\(861\) 0 0
\(862\) 4500.24 + 13850.3i 0.177818 + 0.547266i
\(863\) −26671.9 + 19378.3i −1.05206 + 0.764363i −0.972602 0.232476i \(-0.925317\pi\)
−0.0794529 + 0.996839i \(0.525317\pi\)
\(864\) 0 0
\(865\) 3071.71 + 9453.76i 0.120741 + 0.371604i
\(866\) −11403.7 + 35096.9i −0.447474 + 1.37718i
\(867\) 0 0
\(868\) 19187.7 0.750313
\(869\) 12523.5 + 43543.6i 0.488875 + 1.69979i
\(870\) 0 0
\(871\) 29412.2 + 21369.2i 1.14419 + 0.831306i
\(872\) −603.421 + 1857.14i −0.0234340 + 0.0721223i
\(873\) 0 0
\(874\) 33248.1 24156.2i 1.28677 0.934891i
\(875\) −14235.5 + 10342.7i −0.549999 + 0.399597i
\(876\) 0 0
\(877\) 12504.4 38484.7i 0.481465 1.48180i −0.355570 0.934650i \(-0.615713\pi\)
0.837036 0.547149i \(-0.184287\pi\)
\(878\) −15451.7 11226.3i −0.593931 0.431516i
\(879\) 0 0
\(880\) 33722.0 22785.0i 1.29178 0.872820i
\(881\) 33385.1 1.27670 0.638350 0.769746i \(-0.279617\pi\)
0.638350 + 0.769746i \(0.279617\pi\)
\(882\) 0 0
\(883\) −4006.70 + 12331.4i −0.152702 + 0.469969i −0.997921 0.0644514i \(-0.979470\pi\)
0.845219 + 0.534421i \(0.179470\pi\)
\(884\) −341.540 1051.15i −0.0129946 0.0399933i
\(885\) 0 0
\(886\) −7931.65 + 5762.68i −0.300755 + 0.218511i
\(887\) −4396.87 13532.2i −0.166440 0.512251i 0.832699 0.553726i \(-0.186794\pi\)
−0.999140 + 0.0414749i \(0.986794\pi\)
\(888\) 0 0
\(889\) 32495.0 + 23609.0i 1.22593 + 0.890687i
\(890\) −10596.9 −0.399110
\(891\) 0 0
\(892\) −21348.6 −0.801349
\(893\) −4458.36 3239.19i −0.167070 0.121383i
\(894\) 0 0
\(895\) −1726.62 5314.00i −0.0644857 0.198467i
\(896\) 31323.1 22757.5i 1.16789 0.848522i
\(897\) 0 0
\(898\) 3628.99 + 11168.9i 0.134856 + 0.415045i
\(899\) −16589.6 + 51057.6i −0.615455 + 1.89418i
\(900\) 0 0
\(901\) −4279.03 −0.158219
\(902\) 17440.8 + 595.113i 0.643808 + 0.0219680i
\(903\) 0 0
\(904\) −21350.0 15511.7i −0.785498 0.570697i
\(905\) −1467.89 + 4517.70i −0.0539163 + 0.165937i
\(906\) 0 0
\(907\) −17142.6 + 12454.8i −0.627576 + 0.455960i −0.855559 0.517705i \(-0.826787\pi\)
0.227984 + 0.973665i \(0.426787\pi\)
\(908\) 4132.96 3002.77i 0.151054 0.109747i
\(909\) 0 0
\(910\) 12874.3 39623.1i 0.468989 1.44340i
\(911\) −22910.1 16645.2i −0.833200 0.605355i 0.0872628 0.996185i \(-0.472188\pi\)
−0.920463 + 0.390830i \(0.872188\pi\)
\(912\) 0 0
\(913\) 26010.9 + 887.543i 0.942866 + 0.0321724i
\(914\) −12327.0 −0.446105
\(915\) 0 0
\(916\) −2272.10 + 6992.81i −0.0819568 + 0.252237i
\(917\) 4879.53 + 15017.7i 0.175721 + 0.540814i
\(918\) 0 0
\(919\) 5785.49 4203.40i 0.207667 0.150879i −0.479091 0.877765i \(-0.659033\pi\)
0.686757 + 0.726887i \(0.259033\pi\)
\(920\) 9233.15 + 28416.7i 0.330878 + 1.01834i
\(921\) 0 0
\(922\) −32024.2 23266.9i −1.14388 0.831080i
\(923\) 5653.47 0.201610
\(924\) 0 0
\(925\) 10719.4 0.381029
\(926\) −20046.8 14564.8i −0.711424 0.516880i
\(927\) 0 0
\(928\) −9948.85 30619.4i −0.351926 1.08312i
\(929\) −27003.5 + 19619.2i −0.953666 + 0.692879i −0.951671 0.307119i \(-0.900635\pi\)
−0.00199468 + 0.999998i \(0.500635\pi\)
\(930\) 0 0
\(931\) −5521.67 16993.9i −0.194377 0.598232i
\(932\) −2104.78 + 6477.86i −0.0739747 + 0.227671i
\(933\) 0 0
\(934\) −35550.0 −1.24543
\(935\) 3642.69 2461.26i 0.127410 0.0860875i
\(936\) 0 0
\(937\) −8163.43 5931.08i −0.284618 0.206787i 0.436311 0.899796i \(-0.356285\pi\)
−0.720929 + 0.693009i \(0.756285\pi\)
\(938\) 23467.3 72224.9i 0.816881 2.51410i
\(939\) 0 0
\(940\) −2401.18 + 1744.56i −0.0833170 + 0.0605333i
\(941\) 16833.5 12230.2i 0.583162 0.423692i −0.256701 0.966491i \(-0.582635\pi\)
0.839863 + 0.542799i \(0.182635\pi\)
\(942\) 0 0
\(943\) −6016.43 + 18516.7i −0.207764 + 0.639433i
\(944\) 37767.5 + 27439.7i 1.30215 + 0.946066i
\(945\) 0 0
\(946\) 8405.56 + 29225.7i 0.288888 + 1.00445i
\(947\) −35396.1 −1.21459 −0.607296 0.794476i \(-0.707746\pi\)
−0.607296 + 0.794476i \(0.707746\pi\)
\(948\) 0 0
\(949\) 5049.16 15539.7i 0.172711 0.531550i
\(950\) 6576.17 + 20239.4i 0.224589 + 0.691213i
\(951\) 0 0
\(952\) 2521.36 1831.88i 0.0858381 0.0623650i
\(953\) 9626.73 + 29628.0i 0.327220 + 1.00708i 0.970429 + 0.241388i \(0.0776026\pi\)
−0.643209 + 0.765690i \(0.722397\pi\)
\(954\) 0 0
\(955\) 16992.5 + 12345.8i 0.575774 + 0.418324i
\(956\) −6010.29 −0.203333
\(957\) 0 0
\(958\) −35563.3 −1.19937
\(959\) 5325.19 + 3868.98i 0.179311 + 0.130277i
\(960\) 0 0
\(961\) 8811.58 + 27119.2i 0.295780 + 0.910317i
\(962\) 15526.5 11280.7i 0.520368 0.378070i
\(963\) 0 0
\(964\) −2932.31 9024.71i −0.0979701 0.301521i
\(965\) 5494.81 16911.3i 0.183300 0.564139i
\(966\) 0 0
\(967\) −10002.0 −0.332620 −0.166310 0.986074i \(-0.553185\pi\)
−0.166310 + 0.986074i \(0.553185\pi\)
\(968\) 20608.5 + 1408.04i 0.684280 + 0.0467523i
\(969\) 0 0
\(970\) 46328.9 + 33659.9i 1.53354 + 1.11418i
\(971\) −6382.61 + 19643.7i −0.210945 + 0.649222i 0.788472 + 0.615071i \(0.210873\pi\)
−0.999417 + 0.0341510i \(0.989127\pi\)
\(972\) 0 0
\(973\) 9609.62 6981.79i 0.316619 0.230037i
\(974\) 2307.13 1676.23i 0.0758987 0.0551436i
\(975\) 0 0
\(976\) −15913.3 + 48976.1i −0.521898 + 1.60624i
\(977\) −6476.46 4705.43i −0.212078 0.154084i 0.476675 0.879079i \(-0.341842\pi\)
−0.688753 + 0.724996i \(0.741842\pi\)
\(978\) 0 0
\(979\) −6444.78 5026.94i −0.210394 0.164108i
\(980\) −9623.62 −0.313689
\(981\) 0 0
\(982\) −13789.2 + 42438.9i −0.448098 + 1.37910i
\(983\) 1850.68 + 5695.79i 0.0600482 + 0.184809i 0.976581 0.215150i \(-0.0690241\pi\)
−0.916533 + 0.399960i \(0.869024\pi\)
\(984\) 0 0
\(985\) −22332.6 + 16225.6i −0.722411 + 0.524862i
\(986\) −1996.11 6143.39i −0.0644717 0.198423i
\(987\) 0 0
\(988\) 9201.52 + 6685.30i 0.296295 + 0.215271i
\(989\) −33928.1 −1.09085
\(990\) 0 0
\(991\) 24763.7 0.793787 0.396894 0.917865i \(-0.370088\pi\)
0.396894 + 0.917865i \(0.370088\pi\)
\(992\) −28288.3 20552.6i −0.905397 0.657809i
\(993\) 0 0
\(994\) −3649.30 11231.4i −0.116447 0.358388i
\(995\) 42002.9 30516.9i 1.33827 0.972313i
\(996\) 0 0
\(997\) −3134.12 9645.82i −0.0995572 0.306406i 0.888857 0.458184i \(-0.151500\pi\)
−0.988415 + 0.151779i \(0.951500\pi\)
\(998\) 17731.6 54572.3i 0.562409 1.73092i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.d.37.3 12
3.2 odd 2 33.4.e.c.4.1 12
11.3 even 5 inner 99.4.f.d.91.3 12
11.5 even 5 1089.4.a.bi.1.2 6
11.6 odd 10 1089.4.a.bk.1.5 6
33.5 odd 10 363.4.a.v.1.5 6
33.14 odd 10 33.4.e.c.25.1 yes 12
33.17 even 10 363.4.a.u.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.4.1 12 3.2 odd 2
33.4.e.c.25.1 yes 12 33.14 odd 10
99.4.f.d.37.3 12 1.1 even 1 trivial
99.4.f.d.91.3 12 11.3 even 5 inner
363.4.a.u.1.2 6 33.17 even 10
363.4.a.v.1.5 6 33.5 odd 10
1089.4.a.bi.1.2 6 11.5 even 5
1089.4.a.bk.1.5 6 11.6 odd 10