Properties

Label 99.4.f.d.82.1
Level $99$
Weight $4$
Character 99.82
Analytic conductor $5.841$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 21 x^{10} - 26 x^{9} + 281 x^{8} + 486 x^{7} + 3506 x^{6} + 15102 x^{5} + \cdots + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.1
Root \(1.27457 - 3.92271i\) of defining polynomial
Character \(\chi\) \(=\) 99.82
Dual form 99.4.f.d.64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58358 - 4.87376i) q^{2} +(-14.7737 + 10.7337i) q^{4} +(-4.61569 + 14.2056i) q^{5} +(9.98349 - 7.25343i) q^{7} +(42.5421 + 30.9086i) q^{8} +O(q^{10})\) \(q+(-1.58358 - 4.87376i) q^{2} +(-14.7737 + 10.7337i) q^{4} +(-4.61569 + 14.2056i) q^{5} +(9.98349 - 7.25343i) q^{7} +(42.5421 + 30.9086i) q^{8} +76.5442 q^{10} +(31.7200 - 18.0234i) q^{11} +(9.43188 + 29.0283i) q^{13} +(-51.1612 - 37.1708i) q^{14} +(38.1281 - 117.346i) q^{16} +(-40.8103 + 125.601i) q^{17} +(18.0466 + 13.1116i) q^{19} +(-84.2885 - 259.413i) q^{20} +(-138.073 - 126.054i) q^{22} +158.801 q^{23} +(-79.3681 - 57.6643i) q^{25} +(126.541 - 91.9375i) q^{26} +(-69.6368 + 214.320i) q^{28} +(-38.6035 + 28.0471i) q^{29} +(21.0238 + 64.7045i) q^{31} -211.617 q^{32} +676.778 q^{34} +(56.9588 + 175.301i) q^{35} +(-128.156 + 93.1106i) q^{37} +(35.3247 - 108.718i) q^{38} +(-635.437 + 461.672i) q^{40} +(231.508 + 168.200i) q^{41} +103.549 q^{43} +(-275.164 + 606.746i) q^{44} +(-251.475 - 773.960i) q^{46} +(-375.576 - 272.872i) q^{47} +(-58.9350 + 181.383i) q^{49} +(-155.356 + 478.138i) q^{50} +(-450.926 - 327.617i) q^{52} +(1.86904 + 5.75232i) q^{53} +(109.624 + 533.793i) q^{55} +648.912 q^{56} +(197.827 + 143.729i) q^{58} +(-179.294 + 130.264i) q^{59} +(-84.7750 + 260.911i) q^{61} +(282.061 - 204.930i) q^{62} +(30.0884 + 92.6027i) q^{64} -455.900 q^{65} +187.178 q^{67} +(-745.250 - 2293.64i) q^{68} +(764.178 - 555.208i) q^{70} +(141.442 - 435.312i) q^{71} +(218.703 - 158.897i) q^{73} +(656.744 + 477.153i) q^{74} -407.352 q^{76} +(185.945 - 410.015i) q^{77} +(152.545 + 469.486i) q^{79} +(1490.99 + 1083.27i) q^{80} +(453.157 - 1394.67i) q^{82} +(83.7540 - 257.768i) q^{83} +(-1595.88 - 1159.47i) q^{85} +(-163.979 - 504.674i) q^{86} +(1906.51 + 213.670i) q^{88} +77.4891 q^{89} +(304.718 + 221.391i) q^{91} +(-2346.08 + 1704.53i) q^{92} +(-735.158 + 2262.58i) q^{94} +(-269.556 + 195.844i) q^{95} +(-392.262 - 1207.26i) q^{97} +977.348 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8} + 100 q^{10} + 54 q^{11} - 18 q^{13} - 156 q^{14} + 308 q^{16} + 80 q^{17} - 280 q^{19} + 15 q^{20} - 193 q^{22} + 392 q^{23} + 77 q^{25} - 406 q^{26} - 429 q^{28} - 13 q^{29} + 413 q^{31} - 1314 q^{32} + 1060 q^{34} + 1239 q^{35} + 654 q^{37} - 912 q^{38} - 1803 q^{40} + 1490 q^{41} + 416 q^{43} - 695 q^{44} - 2369 q^{46} + 150 q^{47} - 301 q^{49} + 1878 q^{50} - 1661 q^{52} - 1359 q^{53} + 3300 q^{55} + 858 q^{56} + 955 q^{58} - 1262 q^{59} - 1044 q^{61} + 701 q^{62} + 78 q^{64} - 4556 q^{65} - 528 q^{67} - 703 q^{68} + 3050 q^{70} - 558 q^{71} - 699 q^{73} + 3224 q^{74} - 868 q^{76} - 390 q^{77} - 1252 q^{79} + 1914 q^{80} + 2987 q^{82} + 4464 q^{83} - 2170 q^{85} + 3209 q^{86} + 1302 q^{88} - 316 q^{89} + 176 q^{91} - 4595 q^{92} + 1247 q^{94} - 1466 q^{95} + 1608 q^{97} - 2810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58358 4.87376i −0.559881 1.72314i −0.682692 0.730706i \(-0.739191\pi\)
0.122812 0.992430i \(-0.460809\pi\)
\(3\) 0 0
\(4\) −14.7737 + 10.7337i −1.84671 + 1.34172i
\(5\) −4.61569 + 14.2056i −0.412840 + 1.27059i 0.501329 + 0.865257i \(0.332845\pi\)
−0.914169 + 0.405333i \(0.867155\pi\)
\(6\) 0 0
\(7\) 9.98349 7.25343i 0.539058 0.391648i −0.284677 0.958623i \(-0.591886\pi\)
0.823735 + 0.566975i \(0.191886\pi\)
\(8\) 42.5421 + 30.9086i 1.88011 + 1.36598i
\(9\) 0 0
\(10\) 76.5442 2.42054
\(11\) 31.7200 18.0234i 0.869449 0.494023i
\(12\) 0 0
\(13\) 9.43188 + 29.0283i 0.201226 + 0.619308i 0.999847 + 0.0174752i \(0.00556282\pi\)
−0.798622 + 0.601833i \(0.794437\pi\)
\(14\) −51.1612 37.1708i −0.976671 0.709593i
\(15\) 0 0
\(16\) 38.1281 117.346i 0.595751 1.83353i
\(17\) −40.8103 + 125.601i −0.582233 + 1.79193i 0.0278760 + 0.999611i \(0.491126\pi\)
−0.610109 + 0.792317i \(0.708874\pi\)
\(18\) 0 0
\(19\) 18.0466 + 13.1116i 0.217904 + 0.158316i 0.691383 0.722489i \(-0.257002\pi\)
−0.473479 + 0.880805i \(0.657002\pi\)
\(20\) −84.2885 259.413i −0.942374 2.90033i
\(21\) 0 0
\(22\) −138.073 126.054i −1.33806 1.22158i
\(23\) 158.801 1.43967 0.719834 0.694147i \(-0.244218\pi\)
0.719834 + 0.694147i \(0.244218\pi\)
\(24\) 0 0
\(25\) −79.3681 57.6643i −0.634945 0.461314i
\(26\) 126.541 91.9375i 0.954490 0.693478i
\(27\) 0 0
\(28\) −69.6368 + 214.320i −0.470004 + 1.44652i
\(29\) −38.6035 + 28.0471i −0.247189 + 0.179594i −0.704480 0.709724i \(-0.748820\pi\)
0.457291 + 0.889317i \(0.348820\pi\)
\(30\) 0 0
\(31\) 21.0238 + 64.7045i 0.121806 + 0.374880i 0.993306 0.115516i \(-0.0368522\pi\)
−0.871500 + 0.490396i \(0.836852\pi\)
\(32\) −211.617 −1.16903
\(33\) 0 0
\(34\) 676.778 3.41372
\(35\) 56.9588 + 175.301i 0.275080 + 0.846609i
\(36\) 0 0
\(37\) −128.156 + 93.1106i −0.569424 + 0.413710i −0.834896 0.550408i \(-0.814472\pi\)
0.265472 + 0.964119i \(0.414472\pi\)
\(38\) 35.3247 108.718i 0.150801 0.464116i
\(39\) 0 0
\(40\) −635.437 + 461.672i −2.51179 + 1.82492i
\(41\) 231.508 + 168.200i 0.881839 + 0.640694i 0.933737 0.357959i \(-0.116527\pi\)
−0.0518980 + 0.998652i \(0.516527\pi\)
\(42\) 0 0
\(43\) 103.549 0.367235 0.183617 0.982998i \(-0.441219\pi\)
0.183617 + 0.982998i \(0.441219\pi\)
\(44\) −275.164 + 606.746i −0.942785 + 2.07887i
\(45\) 0 0
\(46\) −251.475 773.960i −0.806042 2.48074i
\(47\) −375.576 272.872i −1.16560 0.846861i −0.175128 0.984546i \(-0.556034\pi\)
−0.990476 + 0.137684i \(0.956034\pi\)
\(48\) 0 0
\(49\) −58.9350 + 181.383i −0.171822 + 0.528815i
\(50\) −155.356 + 478.138i −0.439414 + 1.35238i
\(51\) 0 0
\(52\) −450.926 327.617i −1.20254 0.873698i
\(53\) 1.86904 + 5.75232i 0.00484402 + 0.0149084i 0.953449 0.301553i \(-0.0975051\pi\)
−0.948605 + 0.316462i \(0.897505\pi\)
\(54\) 0 0
\(55\) 109.624 + 533.793i 0.268758 + 1.30867i
\(56\) 648.912 1.54847
\(57\) 0 0
\(58\) 197.827 + 143.729i 0.447861 + 0.325390i
\(59\) −179.294 + 130.264i −0.395628 + 0.287440i −0.767758 0.640740i \(-0.778628\pi\)
0.372130 + 0.928181i \(0.378628\pi\)
\(60\) 0 0
\(61\) −84.7750 + 260.911i −0.177940 + 0.547642i −0.999756 0.0221111i \(-0.992961\pi\)
0.821816 + 0.569753i \(0.192961\pi\)
\(62\) 282.061 204.930i 0.577772 0.419776i
\(63\) 0 0
\(64\) 30.0884 + 92.6027i 0.0587665 + 0.180865i
\(65\) −455.900 −0.869961
\(66\) 0 0
\(67\) 187.178 0.341304 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(68\) −745.250 2293.64i −1.32904 4.09037i
\(69\) 0 0
\(70\) 764.178 555.208i 1.30481 0.948000i
\(71\) 141.442 435.312i 0.236423 0.727635i −0.760507 0.649330i \(-0.775049\pi\)
0.996929 0.0783045i \(-0.0249506\pi\)
\(72\) 0 0
\(73\) 218.703 158.897i 0.350647 0.254760i −0.398493 0.917171i \(-0.630467\pi\)
0.749141 + 0.662411i \(0.230467\pi\)
\(74\) 656.744 + 477.153i 1.03169 + 0.749566i
\(75\) 0 0
\(76\) −407.352 −0.614822
\(77\) 185.945 410.015i 0.275200 0.606825i
\(78\) 0 0
\(79\) 152.545 + 469.486i 0.217249 + 0.668624i 0.998986 + 0.0450161i \(0.0143339\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(80\) 1490.99 + 1083.27i 2.08372 + 1.51391i
\(81\) 0 0
\(82\) 453.157 1394.67i 0.610278 1.87824i
\(83\) 83.7540 257.768i 0.110761 0.340888i −0.880278 0.474458i \(-0.842644\pi\)
0.991039 + 0.133570i \(0.0426440\pi\)
\(84\) 0 0
\(85\) −1595.88 1159.47i −2.03644 1.47956i
\(86\) −163.979 504.674i −0.205608 0.632795i
\(87\) 0 0
\(88\) 1906.51 + 213.670i 2.30949 + 0.258833i
\(89\) 77.4891 0.0922902 0.0461451 0.998935i \(-0.485306\pi\)
0.0461451 + 0.998935i \(0.485306\pi\)
\(90\) 0 0
\(91\) 304.718 + 221.391i 0.351023 + 0.255033i
\(92\) −2346.08 + 1704.53i −2.65865 + 1.93163i
\(93\) 0 0
\(94\) −735.158 + 2262.58i −0.806657 + 2.48264i
\(95\) −269.556 + 195.844i −0.291115 + 0.211507i
\(96\) 0 0
\(97\) −392.262 1207.26i −0.410600 1.26370i −0.916128 0.400886i \(-0.868702\pi\)
0.505528 0.862810i \(-0.331298\pi\)
\(98\) 977.348 1.00742
\(99\) 0 0
\(100\) 1791.51 1.79151
\(101\) 382.582 + 1177.46i 0.376914 + 1.16002i 0.942178 + 0.335112i \(0.108774\pi\)
−0.565265 + 0.824910i \(0.691226\pi\)
\(102\) 0 0
\(103\) −737.795 + 536.039i −0.705797 + 0.512791i −0.881815 0.471595i \(-0.843678\pi\)
0.176018 + 0.984387i \(0.443678\pi\)
\(104\) −495.974 + 1526.45i −0.467637 + 1.43924i
\(105\) 0 0
\(106\) 25.0757 18.2186i 0.0229770 0.0166938i
\(107\) −1280.95 930.666i −1.15733 0.840849i −0.167892 0.985805i \(-0.553696\pi\)
−0.989438 + 0.144956i \(0.953696\pi\)
\(108\) 0 0
\(109\) 296.898 0.260896 0.130448 0.991455i \(-0.458358\pi\)
0.130448 + 0.991455i \(0.458358\pi\)
\(110\) 2427.98 1379.58i 2.10454 1.19580i
\(111\) 0 0
\(112\) −470.511 1448.08i −0.396956 1.22170i
\(113\) −88.5099 64.3062i −0.0736842 0.0535347i 0.550333 0.834945i \(-0.314501\pi\)
−0.624018 + 0.781410i \(0.714501\pi\)
\(114\) 0 0
\(115\) −732.977 + 2255.87i −0.594352 + 1.82923i
\(116\) 269.267 828.719i 0.215524 0.663316i
\(117\) 0 0
\(118\) 918.804 + 667.550i 0.716803 + 0.520788i
\(119\) 503.610 + 1549.95i 0.387949 + 1.19398i
\(120\) 0 0
\(121\) 681.316 1143.40i 0.511883 0.859055i
\(122\) 1405.86 1.04329
\(123\) 0 0
\(124\) −1005.12 730.262i −0.727922 0.528867i
\(125\) −325.007 + 236.132i −0.232556 + 0.168962i
\(126\) 0 0
\(127\) 428.722 1319.47i 0.299550 0.921921i −0.682104 0.731255i \(-0.738935\pi\)
0.981655 0.190667i \(-0.0610649\pi\)
\(128\) −965.938 + 701.795i −0.667013 + 0.484613i
\(129\) 0 0
\(130\) 721.955 + 2221.95i 0.487074 + 1.49906i
\(131\) −1515.23 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(132\) 0 0
\(133\) 275.272 0.179467
\(134\) −296.411 912.260i −0.191090 0.588114i
\(135\) 0 0
\(136\) −5618.32 + 4081.95i −3.54240 + 2.57371i
\(137\) 917.808 2824.72i 0.572362 1.76155i −0.0726287 0.997359i \(-0.523139\pi\)
0.644991 0.764190i \(-0.276861\pi\)
\(138\) 0 0
\(139\) 1741.07 1264.96i 1.06241 0.771890i 0.0878812 0.996131i \(-0.471990\pi\)
0.974534 + 0.224241i \(0.0719904\pi\)
\(140\) −2723.13 1978.47i −1.64390 1.19437i
\(141\) 0 0
\(142\) −2345.59 −1.38618
\(143\) 822.368 + 750.784i 0.480908 + 0.439047i
\(144\) 0 0
\(145\) −220.245 677.843i −0.126140 0.388220i
\(146\) −1120.76 814.281i −0.635307 0.461578i
\(147\) 0 0
\(148\) 893.912 2751.18i 0.496480 1.52801i
\(149\) 41.0610 126.373i 0.0225761 0.0694822i −0.939134 0.343552i \(-0.888370\pi\)
0.961710 + 0.274070i \(0.0883699\pi\)
\(150\) 0 0
\(151\) −172.306 125.188i −0.0928613 0.0674677i 0.540386 0.841417i \(-0.318278\pi\)
−0.633247 + 0.773950i \(0.718278\pi\)
\(152\) 362.478 + 1115.59i 0.193426 + 0.595305i
\(153\) 0 0
\(154\) −2292.77 256.959i −1.19972 0.134457i
\(155\) −1016.21 −0.526604
\(156\) 0 0
\(157\) 2366.45 + 1719.32i 1.20295 + 0.873994i 0.994572 0.104055i \(-0.0331817\pi\)
0.208378 + 0.978048i \(0.433182\pi\)
\(158\) 2046.60 1486.94i 1.03050 0.748700i
\(159\) 0 0
\(160\) 976.758 3006.15i 0.482622 1.48536i
\(161\) 1585.39 1151.85i 0.776064 0.563843i
\(162\) 0 0
\(163\) −195.690 602.273i −0.0940346 0.289409i 0.892966 0.450124i \(-0.148620\pi\)
−0.987001 + 0.160715i \(0.948620\pi\)
\(164\) −5225.64 −2.48813
\(165\) 0 0
\(166\) −1388.93 −0.649410
\(167\) 473.826 + 1458.29i 0.219555 + 0.675722i 0.998799 + 0.0490007i \(0.0156036\pi\)
−0.779243 + 0.626722i \(0.784396\pi\)
\(168\) 0 0
\(169\) 1023.73 743.781i 0.465966 0.338544i
\(170\) −3123.79 + 9614.05i −1.40932 + 4.33744i
\(171\) 0 0
\(172\) −1529.81 + 1111.47i −0.678178 + 0.492725i
\(173\) 2691.34 + 1955.37i 1.18277 + 0.859331i 0.992481 0.122398i \(-0.0390583\pi\)
0.190286 + 0.981729i \(0.439058\pi\)
\(174\) 0 0
\(175\) −1210.63 −0.522945
\(176\) −905.551 4409.41i −0.387832 1.88848i
\(177\) 0 0
\(178\) −122.710 377.663i −0.0516715 0.159028i
\(179\) 3447.54 + 2504.79i 1.43956 + 1.04590i 0.988134 + 0.153595i \(0.0490853\pi\)
0.451428 + 0.892307i \(0.350915\pi\)
\(180\) 0 0
\(181\) 229.269 705.618i 0.0941516 0.289769i −0.892880 0.450295i \(-0.851319\pi\)
0.987032 + 0.160526i \(0.0513190\pi\)
\(182\) 596.459 1835.71i 0.242926 0.747649i
\(183\) 0 0
\(184\) 6755.74 + 4908.33i 2.70674 + 1.96656i
\(185\) −731.167 2250.30i −0.290576 0.894300i
\(186\) 0 0
\(187\) 969.256 + 4719.61i 0.379032 + 1.84563i
\(188\) 8477.59 3.28879
\(189\) 0 0
\(190\) 1381.36 + 1003.62i 0.527445 + 0.383211i
\(191\) 3342.99 2428.82i 1.26644 0.920124i 0.267386 0.963589i \(-0.413840\pi\)
0.999055 + 0.0434658i \(0.0138400\pi\)
\(192\) 0 0
\(193\) 952.321 2930.94i 0.355179 1.09313i −0.600726 0.799455i \(-0.705122\pi\)
0.955906 0.293674i \(-0.0948781\pi\)
\(194\) −5262.71 + 3823.58i −1.94763 + 1.41504i
\(195\) 0 0
\(196\) −1076.23 3312.30i −0.392213 1.20711i
\(197\) −3059.84 −1.10662 −0.553310 0.832975i \(-0.686636\pi\)
−0.553310 + 0.832975i \(0.686636\pi\)
\(198\) 0 0
\(199\) −971.928 −0.346222 −0.173111 0.984902i \(-0.555382\pi\)
−0.173111 + 0.984902i \(0.555382\pi\)
\(200\) −1594.16 4906.32i −0.563621 1.73465i
\(201\) 0 0
\(202\) 5132.84 3729.22i 1.78785 1.29895i
\(203\) −181.960 + 560.015i −0.0629118 + 0.193623i
\(204\) 0 0
\(205\) −3457.96 + 2512.35i −1.17812 + 0.855952i
\(206\) 3780.89 + 2746.98i 1.27877 + 0.929082i
\(207\) 0 0
\(208\) 3765.98 1.25540
\(209\) 808.754 + 90.6399i 0.267668 + 0.0299985i
\(210\) 0 0
\(211\) 1028.15 + 3164.32i 0.335453 + 1.03242i 0.966498 + 0.256673i \(0.0826264\pi\)
−0.631045 + 0.775746i \(0.717374\pi\)
\(212\) −89.3566 64.9214i −0.0289483 0.0210322i
\(213\) 0 0
\(214\) −2507.35 + 7716.84i −0.800931 + 2.46501i
\(215\) −477.950 + 1470.98i −0.151609 + 0.466605i
\(216\) 0 0
\(217\) 679.220 + 493.482i 0.212481 + 0.154377i
\(218\) −470.162 1447.01i −0.146071 0.449559i
\(219\) 0 0
\(220\) −7349.14 6709.43i −2.25218 2.05613i
\(221\) −4030.91 −1.22692
\(222\) 0 0
\(223\) −3976.34 2888.98i −1.19406 0.867535i −0.200372 0.979720i \(-0.564215\pi\)
−0.993687 + 0.112185i \(0.964215\pi\)
\(224\) −2112.68 + 1534.95i −0.630175 + 0.457849i
\(225\) 0 0
\(226\) −173.251 + 533.211i −0.0509932 + 0.156941i
\(227\) −859.697 + 624.607i −0.251366 + 0.182628i −0.706332 0.707881i \(-0.749651\pi\)
0.454966 + 0.890509i \(0.349651\pi\)
\(228\) 0 0
\(229\) −1332.75 4101.80i −0.384589 1.18364i −0.936778 0.349924i \(-0.886207\pi\)
0.552189 0.833719i \(-0.313793\pi\)
\(230\) 12155.3 3.48477
\(231\) 0 0
\(232\) −2509.17 −0.710065
\(233\) −1592.86 4902.32i −0.447862 1.37838i −0.879315 0.476241i \(-0.841999\pi\)
0.431453 0.902135i \(-0.358001\pi\)
\(234\) 0 0
\(235\) 5609.86 4075.80i 1.55722 1.13139i
\(236\) 1250.61 3848.98i 0.344948 1.06164i
\(237\) 0 0
\(238\) 6756.60 4908.96i 1.84019 1.33698i
\(239\) −100.555 73.0575i −0.0272149 0.0197728i 0.574095 0.818789i \(-0.305354\pi\)
−0.601310 + 0.799016i \(0.705354\pi\)
\(240\) 0 0
\(241\) −445.539 −0.119086 −0.0595429 0.998226i \(-0.518964\pi\)
−0.0595429 + 0.998226i \(0.518964\pi\)
\(242\) −6651.59 1509.90i −1.76686 0.401075i
\(243\) 0 0
\(244\) −1548.10 4764.57i −0.406177 1.25008i
\(245\) −2304.64 1674.42i −0.600971 0.436631i
\(246\) 0 0
\(247\) −210.395 + 647.530i −0.0541989 + 0.166807i
\(248\) −1105.53 + 3402.48i −0.283070 + 0.871200i
\(249\) 0 0
\(250\) 1665.53 + 1210.08i 0.421349 + 0.306128i
\(251\) −454.595 1399.10i −0.114318 0.351834i 0.877486 0.479602i \(-0.159219\pi\)
−0.991804 + 0.127767i \(0.959219\pi\)
\(252\) 0 0
\(253\) 5037.17 2862.13i 1.25172 0.711229i
\(254\) −7109.70 −1.75631
\(255\) 0 0
\(256\) 5580.21 + 4054.26i 1.36236 + 0.989809i
\(257\) 1183.60 859.935i 0.287280 0.208721i −0.434807 0.900524i \(-0.643183\pi\)
0.722086 + 0.691803i \(0.243183\pi\)
\(258\) 0 0
\(259\) −604.070 + 1859.14i −0.144923 + 0.446028i
\(260\) 6735.34 4893.51i 1.60657 1.16724i
\(261\) 0 0
\(262\) 2399.49 + 7384.87i 0.565805 + 1.74137i
\(263\) 734.717 0.172261 0.0861304 0.996284i \(-0.472550\pi\)
0.0861304 + 0.996284i \(0.472550\pi\)
\(264\) 0 0
\(265\) −90.3423 −0.0209422
\(266\) −435.916 1341.61i −0.100480 0.309246i
\(267\) 0 0
\(268\) −2765.31 + 2009.11i −0.630292 + 0.457934i
\(269\) −1059.09 + 3259.54i −0.240051 + 0.738802i 0.756360 + 0.654156i \(0.226976\pi\)
−0.996411 + 0.0846463i \(0.973024\pi\)
\(270\) 0 0
\(271\) −1390.98 + 1010.61i −0.311793 + 0.226531i −0.732666 0.680589i \(-0.761724\pi\)
0.420872 + 0.907120i \(0.361724\pi\)
\(272\) 13182.8 + 9577.87i 2.93870 + 2.13509i
\(273\) 0 0
\(274\) −15220.5 −3.35584
\(275\) −3556.86 398.630i −0.779952 0.0874120i
\(276\) 0 0
\(277\) 1593.31 + 4903.72i 0.345607 + 1.06367i 0.961258 + 0.275649i \(0.0888928\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(278\) −8922.25 6482.40i −1.92490 1.39852i
\(279\) 0 0
\(280\) −2995.17 + 9218.20i −0.639271 + 1.96747i
\(281\) −1551.48 + 4774.96i −0.329372 + 1.01370i 0.640057 + 0.768328i \(0.278911\pi\)
−0.969428 + 0.245374i \(0.921089\pi\)
\(282\) 0 0
\(283\) 1519.35 + 1103.87i 0.319138 + 0.231868i 0.735808 0.677190i \(-0.236803\pi\)
−0.416669 + 0.909058i \(0.636803\pi\)
\(284\) 2582.91 + 7949.37i 0.539674 + 1.66095i
\(285\) 0 0
\(286\) 2356.86 5196.95i 0.487287 1.07448i
\(287\) 3531.28 0.726289
\(288\) 0 0
\(289\) −10135.5 7363.87i −2.06300 1.49885i
\(290\) −2954.87 + 2146.84i −0.598332 + 0.434713i
\(291\) 0 0
\(292\) −1525.50 + 4695.00i −0.305729 + 0.940939i
\(293\) 3892.69 2828.20i 0.776154 0.563909i −0.127668 0.991817i \(-0.540749\pi\)
0.903822 + 0.427908i \(0.140749\pi\)
\(294\) 0 0
\(295\) −1022.92 3148.24i −0.201888 0.621347i
\(296\) −8329.93 −1.63570
\(297\) 0 0
\(298\) −680.934 −0.132367
\(299\) 1497.79 + 4609.74i 0.289698 + 0.891598i
\(300\) 0 0
\(301\) 1033.78 751.086i 0.197961 0.143827i
\(302\) −337.274 + 1038.02i −0.0642648 + 0.197787i
\(303\) 0 0
\(304\) 2226.68 1617.78i 0.420095 0.305217i
\(305\) −3315.10 2408.56i −0.622368 0.452177i
\(306\) 0 0
\(307\) −598.905 −0.111340 −0.0556699 0.998449i \(-0.517729\pi\)
−0.0556699 + 0.998449i \(0.517729\pi\)
\(308\) 1653.89 + 8053.32i 0.305972 + 1.48987i
\(309\) 0 0
\(310\) 1609.25 + 4952.75i 0.294836 + 0.907411i
\(311\) 4151.19 + 3016.02i 0.756889 + 0.549912i 0.897954 0.440088i \(-0.145053\pi\)
−0.141066 + 0.990000i \(0.545053\pi\)
\(312\) 0 0
\(313\) −2948.47 + 9074.46i −0.532452 + 1.63872i 0.216640 + 0.976251i \(0.430490\pi\)
−0.749092 + 0.662466i \(0.769510\pi\)
\(314\) 4632.12 14256.2i 0.832502 2.56218i
\(315\) 0 0
\(316\) −7293.00 5298.67i −1.29830 0.943271i
\(317\) −2040.57 6280.22i −0.361545 1.11272i −0.952116 0.305736i \(-0.901098\pi\)
0.590572 0.806985i \(-0.298902\pi\)
\(318\) 0 0
\(319\) −719.000 + 1585.42i −0.126195 + 0.278265i
\(320\) −1454.36 −0.254066
\(321\) 0 0
\(322\) −8124.46 5902.76i −1.40608 1.02158i
\(323\) −2383.32 + 1731.59i −0.410563 + 0.298291i
\(324\) 0 0
\(325\) 925.308 2847.81i 0.157929 0.486055i
\(326\) −2625.44 + 1907.50i −0.446043 + 0.324069i
\(327\) 0 0
\(328\) 4649.98 + 14311.2i 0.782781 + 2.40915i
\(329\) −5728.82 −0.960000
\(330\) 0 0
\(331\) −6549.79 −1.08764 −0.543820 0.839202i \(-0.683023\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(332\) 1529.46 + 4707.18i 0.252831 + 0.778134i
\(333\) 0 0
\(334\) 6357.00 4618.63i 1.04144 0.756648i
\(335\) −863.954 + 2658.98i −0.140904 + 0.433658i
\(336\) 0 0
\(337\) 2176.56 1581.36i 0.351824 0.255615i −0.397810 0.917468i \(-0.630230\pi\)
0.749634 + 0.661853i \(0.230230\pi\)
\(338\) −5246.17 3811.56i −0.844242 0.613378i
\(339\) 0 0
\(340\) 36022.5 5.74587
\(341\) 1833.07 + 1673.51i 0.291103 + 0.265764i
\(342\) 0 0
\(343\) 2035.25 + 6263.87i 0.320389 + 0.986056i
\(344\) 4405.20 + 3200.56i 0.690443 + 0.501636i
\(345\) 0 0
\(346\) 5268.07 16213.5i 0.818535 2.51919i
\(347\) 240.519 740.240i 0.0372095 0.114519i −0.930726 0.365716i \(-0.880824\pi\)
0.967936 + 0.251197i \(0.0808241\pi\)
\(348\) 0 0
\(349\) 4381.68 + 3183.48i 0.672052 + 0.488274i 0.870711 0.491794i \(-0.163659\pi\)
−0.198660 + 0.980069i \(0.563659\pi\)
\(350\) 1917.14 + 5900.35i 0.292787 + 0.901105i
\(351\) 0 0
\(352\) −6712.49 + 3814.05i −1.01641 + 0.577528i
\(353\) 4504.51 0.679181 0.339591 0.940573i \(-0.389711\pi\)
0.339591 + 0.940573i \(0.389711\pi\)
\(354\) 0 0
\(355\) 5531.03 + 4018.53i 0.826920 + 0.600793i
\(356\) −1144.80 + 831.747i −0.170434 + 0.123827i
\(357\) 0 0
\(358\) 6748.28 20769.1i 0.996250 3.06614i
\(359\) 6948.18 5048.15i 1.02148 0.742147i 0.0548930 0.998492i \(-0.482518\pi\)
0.966585 + 0.256345i \(0.0825182\pi\)
\(360\) 0 0
\(361\) −1965.78 6050.06i −0.286599 0.882061i
\(362\) −3802.08 −0.552025
\(363\) 0 0
\(364\) −6878.16 −0.990422
\(365\) 1247.77 + 3840.23i 0.178935 + 0.550704i
\(366\) 0 0
\(367\) −1762.10 + 1280.24i −0.250629 + 0.182093i −0.706006 0.708206i \(-0.749505\pi\)
0.455376 + 0.890299i \(0.349505\pi\)
\(368\) 6054.78 18634.7i 0.857683 2.63968i
\(369\) 0 0
\(370\) −9809.58 + 7127.08i −1.37831 + 1.00140i
\(371\) 60.3836 + 43.8713i 0.00845003 + 0.00613931i
\(372\) 0 0
\(373\) −12814.7 −1.77888 −0.889440 0.457052i \(-0.848905\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(374\) 21467.4 12197.8i 2.96805 1.68646i
\(375\) 0 0
\(376\) −7543.69 23217.1i −1.03467 3.18439i
\(377\) −1178.26 856.058i −0.160965 0.116948i
\(378\) 0 0
\(379\) 2256.70 6945.39i 0.305854 0.941322i −0.673503 0.739184i \(-0.735211\pi\)
0.979357 0.202137i \(-0.0647888\pi\)
\(380\) 1880.21 5786.69i 0.253823 0.781186i
\(381\) 0 0
\(382\) −17131.4 12446.7i −2.29455 1.66709i
\(383\) −3496.23 10760.3i −0.466446 1.43557i −0.857154 0.515060i \(-0.827770\pi\)
0.390708 0.920515i \(-0.372230\pi\)
\(384\) 0 0
\(385\) 4966.25 + 4533.96i 0.657412 + 0.600187i
\(386\) −15792.8 −2.08247
\(387\) 0 0
\(388\) 18753.5 + 13625.2i 2.45378 + 1.78278i
\(389\) −2391.30 + 1737.38i −0.311681 + 0.226449i −0.732617 0.680641i \(-0.761701\pi\)
0.420937 + 0.907090i \(0.361701\pi\)
\(390\) 0 0
\(391\) −6480.73 + 19945.6i −0.838222 + 2.57978i
\(392\) −8113.53 + 5894.83i −1.04540 + 0.759525i
\(393\) 0 0
\(394\) 4845.50 + 14912.9i 0.619576 + 1.90686i
\(395\) −7373.45 −0.939236
\(396\) 0 0
\(397\) 12391.9 1.56658 0.783288 0.621659i \(-0.213541\pi\)
0.783288 + 0.621659i \(0.213541\pi\)
\(398\) 1539.13 + 4736.95i 0.193843 + 0.596587i
\(399\) 0 0
\(400\) −9792.84 + 7114.91i −1.22410 + 0.889364i
\(401\) −2346.26 + 7221.04i −0.292186 + 0.899255i 0.691967 + 0.721930i \(0.256745\pi\)
−0.984152 + 0.177326i \(0.943255\pi\)
\(402\) 0 0
\(403\) −1679.97 + 1220.57i −0.207656 + 0.150871i
\(404\) −18290.7 13289.0i −2.25247 1.63652i
\(405\) 0 0
\(406\) 3017.53 0.368861
\(407\) −2386.93 + 5263.27i −0.290702 + 0.641008i
\(408\) 0 0
\(409\) −2248.34 6919.67i −0.271817 0.836567i −0.990044 0.140758i \(-0.955046\pi\)
0.718227 0.695809i \(-0.244954\pi\)
\(410\) 17720.6 + 12874.7i 2.13453 + 1.55083i
\(411\) 0 0
\(412\) 5146.27 15838.6i 0.615384 1.89396i
\(413\) −845.112 + 2600.99i −0.100691 + 0.309894i
\(414\) 0 0
\(415\) 3275.18 + 2379.55i 0.387403 + 0.281464i
\(416\) −1995.95 6142.89i −0.235239 0.723990i
\(417\) 0 0
\(418\) −838.970 4085.21i −0.0981707 0.478024i
\(419\) −11095.7 −1.29370 −0.646851 0.762616i \(-0.723915\pi\)
−0.646851 + 0.762616i \(0.723915\pi\)
\(420\) 0 0
\(421\) 4128.85 + 2999.79i 0.477976 + 0.347270i 0.800542 0.599277i \(-0.204545\pi\)
−0.322565 + 0.946547i \(0.604545\pi\)
\(422\) 13794.0 10021.9i 1.59119 1.15606i
\(423\) 0 0
\(424\) −98.2835 + 302.485i −0.0112572 + 0.0346462i
\(425\) 10481.8 7615.44i 1.19633 0.869184i
\(426\) 0 0
\(427\) 1046.15 + 3219.71i 0.118563 + 0.364900i
\(428\) 28913.9 3.26544
\(429\) 0 0
\(430\) 7926.09 0.888906
\(431\) 4461.49 + 13731.1i 0.498613 + 1.53457i 0.811249 + 0.584701i \(0.198788\pi\)
−0.312635 + 0.949873i \(0.601212\pi\)
\(432\) 0 0
\(433\) −3427.67 + 2490.35i −0.380423 + 0.276394i −0.761520 0.648142i \(-0.775546\pi\)
0.381097 + 0.924535i \(0.375546\pi\)
\(434\) 1329.51 4091.83i 0.147048 0.452567i
\(435\) 0 0
\(436\) −4386.28 + 3186.82i −0.481800 + 0.350048i
\(437\) 2865.82 + 2082.14i 0.313709 + 0.227923i
\(438\) 0 0
\(439\) 1809.83 0.196761 0.0983807 0.995149i \(-0.468634\pi\)
0.0983807 + 0.995149i \(0.468634\pi\)
\(440\) −11835.2 + 26097.0i −1.28232 + 2.82756i
\(441\) 0 0
\(442\) 6383.28 + 19645.7i 0.686927 + 2.11414i
\(443\) 3881.15 + 2819.82i 0.416251 + 0.302424i 0.776127 0.630576i \(-0.217181\pi\)
−0.359877 + 0.933000i \(0.617181\pi\)
\(444\) 0 0
\(445\) −357.665 + 1100.78i −0.0381010 + 0.117263i
\(446\) −7783.34 + 23954.7i −0.826350 + 2.54324i
\(447\) 0 0
\(448\) 972.075 + 706.254i 0.102514 + 0.0744807i
\(449\) 2835.91 + 8728.03i 0.298073 + 0.917375i 0.982172 + 0.187985i \(0.0601958\pi\)
−0.684099 + 0.729390i \(0.739804\pi\)
\(450\) 0 0
\(451\) 10375.0 + 1162.76i 1.08323 + 0.121402i
\(452\) 1997.87 0.207902
\(453\) 0 0
\(454\) 4405.59 + 3200.85i 0.455428 + 0.330888i
\(455\) −4551.47 + 3306.84i −0.468959 + 0.340719i
\(456\) 0 0
\(457\) 1909.56 5877.02i 0.195461 0.601566i −0.804510 0.593939i \(-0.797572\pi\)
0.999971 0.00762708i \(-0.00242780\pi\)
\(458\) −17880.7 + 12991.1i −1.82425 + 1.32540i
\(459\) 0 0
\(460\) −13385.1 41195.2i −1.35671 4.17551i
\(461\) 16827.2 1.70004 0.850022 0.526747i \(-0.176589\pi\)
0.850022 + 0.526747i \(0.176589\pi\)
\(462\) 0 0
\(463\) −818.694 −0.0821770 −0.0410885 0.999156i \(-0.513083\pi\)
−0.0410885 + 0.999156i \(0.513083\pi\)
\(464\) 1819.34 + 5599.35i 0.182027 + 0.560223i
\(465\) 0 0
\(466\) −21370.3 + 15526.5i −2.12438 + 1.54345i
\(467\) 5188.30 15968.0i 0.514103 1.58225i −0.270805 0.962634i \(-0.587290\pi\)
0.784908 0.619612i \(-0.212710\pi\)
\(468\) 0 0
\(469\) 1868.69 1357.68i 0.183983 0.133671i
\(470\) −28748.2 20886.8i −2.82139 2.04986i
\(471\) 0 0
\(472\) −11653.8 −1.13646
\(473\) 3284.58 1866.30i 0.319292 0.181422i
\(474\) 0 0
\(475\) −676.252 2081.29i −0.0653233 0.201044i
\(476\) −24077.0 17493.0i −2.31842 1.68443i
\(477\) 0 0
\(478\) −196.828 + 605.774i −0.0188341 + 0.0579654i
\(479\) 1438.96 4428.65i 0.137260 0.422443i −0.858675 0.512521i \(-0.828712\pi\)
0.995935 + 0.0900778i \(0.0287116\pi\)
\(480\) 0 0
\(481\) −3911.59 2841.94i −0.370797 0.269400i
\(482\) 705.547 + 2171.45i 0.0666739 + 0.205201i
\(483\) 0 0
\(484\) 2207.41 + 24205.4i 0.207308 + 2.27323i
\(485\) 18960.4 1.77515
\(486\) 0 0
\(487\) −14260.7 10361.0i −1.32693 0.964072i −0.999818 0.0190875i \(-0.993924\pi\)
−0.327114 0.944985i \(-0.606076\pi\)
\(488\) −11670.9 + 8479.40i −1.08262 + 0.786566i
\(489\) 0 0
\(490\) −4511.14 + 13883.8i −0.415903 + 1.28002i
\(491\) −12098.6 + 8790.18i −1.11203 + 0.807934i −0.982981 0.183705i \(-0.941191\pi\)
−0.129044 + 0.991639i \(0.541191\pi\)
\(492\) 0 0
\(493\) −1947.33 5993.26i −0.177897 0.547511i
\(494\) 3489.09 0.317776
\(495\) 0 0
\(496\) 8394.41 0.759920
\(497\) −1745.43 5371.87i −0.157531 0.484831i
\(498\) 0 0
\(499\) 17373.4 12622.5i 1.55859 1.13239i 0.621445 0.783458i \(-0.286546\pi\)
0.937150 0.348928i \(-0.113454\pi\)
\(500\) 2266.99 6977.08i 0.202766 0.624049i
\(501\) 0 0
\(502\) −6098.99 + 4431.18i −0.542254 + 0.393971i
\(503\) 9572.63 + 6954.92i 0.848554 + 0.616510i 0.924747 0.380583i \(-0.124277\pi\)
−0.0761930 + 0.997093i \(0.524277\pi\)
\(504\) 0 0
\(505\) −18492.5 −1.62952
\(506\) −21926.1 20017.6i −1.92636 1.75868i
\(507\) 0 0
\(508\) 7829.02 + 24095.3i 0.683773 + 2.10444i
\(509\) −10979.7 7977.19i −0.956119 0.694661i −0.00387285 0.999993i \(-0.501233\pi\)
−0.952246 + 0.305331i \(0.901233\pi\)
\(510\) 0 0
\(511\) 1030.87 3172.69i 0.0892427 0.274661i
\(512\) 7971.14 24532.6i 0.688043 2.11758i
\(513\) 0 0
\(514\) −6065.45 4406.81i −0.520497 0.378163i
\(515\) −4209.34 12955.0i −0.360167 1.10848i
\(516\) 0 0
\(517\) −16831.3 1886.35i −1.43180 0.160467i
\(518\) 10017.6 0.849706
\(519\) 0 0
\(520\) −19394.9 14091.3i −1.63562 1.18835i
\(521\) −1718.71 + 1248.72i −0.144526 + 0.105004i −0.657699 0.753281i \(-0.728470\pi\)
0.513173 + 0.858285i \(0.328470\pi\)
\(522\) 0 0
\(523\) −1717.70 + 5286.52i −0.143613 + 0.441995i −0.996830 0.0795607i \(-0.974648\pi\)
0.853217 + 0.521556i \(0.174648\pi\)
\(524\) 22385.6 16264.1i 1.86626 1.35591i
\(525\) 0 0
\(526\) −1163.48 3580.84i −0.0964455 0.296829i
\(527\) −8984.95 −0.742677
\(528\) 0 0
\(529\) 13050.8 1.07264
\(530\) 143.064 + 440.307i 0.0117251 + 0.0360863i
\(531\) 0 0
\(532\) −4066.79 + 2954.70i −0.331424 + 0.240794i
\(533\) −2699.02 + 8306.72i −0.219339 + 0.675055i
\(534\) 0 0
\(535\) 19133.2 13901.1i 1.54617 1.12336i
\(536\) 7962.93 + 5785.41i 0.641691 + 0.466215i
\(537\) 0 0
\(538\) 17563.4 1.40746
\(539\) 1399.72 + 6815.69i 0.111856 + 0.544661i
\(540\) 0 0
\(541\) 4074.70 + 12540.6i 0.323817 + 0.996605i 0.971972 + 0.235097i \(0.0755408\pi\)
−0.648155 + 0.761508i \(0.724459\pi\)
\(542\) 7128.18 + 5178.93i 0.564911 + 0.410432i
\(543\) 0 0
\(544\) 8636.16 26579.4i 0.680648 2.09482i
\(545\) −1370.39 + 4217.62i −0.107708 + 0.331492i
\(546\) 0 0
\(547\) −16488.3 11979.4i −1.28883 0.936388i −0.289046 0.957315i \(-0.593338\pi\)
−0.999781 + 0.0209272i \(0.993338\pi\)
\(548\) 16760.4 + 51583.1i 1.30651 + 4.02103i
\(549\) 0 0
\(550\) 3689.75 + 17966.6i 0.286057 + 1.39290i
\(551\) −1064.40 −0.0822961
\(552\) 0 0
\(553\) 4928.32 + 3580.63i 0.378975 + 0.275342i
\(554\) 21376.4 15530.9i 1.63935 1.19105i
\(555\) 0 0
\(556\) −12144.3 + 37376.4i −0.926320 + 2.85092i
\(557\) −6895.70 + 5010.02i −0.524560 + 0.381115i −0.818319 0.574764i \(-0.805094\pi\)
0.293759 + 0.955880i \(0.405094\pi\)
\(558\) 0 0
\(559\) 976.663 + 3005.86i 0.0738970 + 0.227432i
\(560\) 22742.7 1.71616
\(561\) 0 0
\(562\) 25728.9 1.93115
\(563\) −7620.38 23453.1i −0.570445 1.75565i −0.651190 0.758915i \(-0.725730\pi\)
0.0807448 0.996735i \(-0.474270\pi\)
\(564\) 0 0
\(565\) 1322.04 960.522i 0.0984404 0.0715212i
\(566\) 2974.00 9153.05i 0.220860 0.679737i
\(567\) 0 0
\(568\) 19472.1 14147.3i 1.43844 1.04509i
\(569\) 5078.13 + 3689.48i 0.374141 + 0.271829i 0.758926 0.651177i \(-0.225724\pi\)
−0.384785 + 0.923006i \(0.625724\pi\)
\(570\) 0 0
\(571\) 13032.1 0.955127 0.477563 0.878597i \(-0.341520\pi\)
0.477563 + 0.878597i \(0.341520\pi\)
\(572\) −20208.1 2264.80i −1.47718 0.165552i
\(573\) 0 0
\(574\) −5592.07 17210.6i −0.406635 1.25149i
\(575\) −12603.8 9157.16i −0.914109 0.664139i
\(576\) 0 0
\(577\) 2386.86 7346.00i 0.172212 0.530014i −0.827283 0.561785i \(-0.810115\pi\)
0.999495 + 0.0317713i \(0.0101148\pi\)
\(578\) −19839.4 + 61059.4i −1.42770 + 4.39400i
\(579\) 0 0
\(580\) 10529.6 + 7650.22i 0.753825 + 0.547686i
\(581\) −1033.55 3180.93i −0.0738016 0.227138i
\(582\) 0 0
\(583\) 162.962 + 148.777i 0.0115767 + 0.0105690i
\(584\) 14215.4 1.00725
\(585\) 0 0
\(586\) −19948.4 14493.3i −1.40625 1.02170i
\(587\) 3121.98 2268.25i 0.219519 0.159490i −0.472591 0.881282i \(-0.656681\pi\)
0.692110 + 0.721792i \(0.256681\pi\)
\(588\) 0 0
\(589\) −468.973 + 1443.35i −0.0328076 + 0.100972i
\(590\) −13723.9 + 9970.98i −0.957633 + 0.695761i
\(591\) 0 0
\(592\) 6039.84 + 18588.7i 0.419317 + 1.29053i
\(593\) −26982.6 −1.86854 −0.934270 0.356567i \(-0.883947\pi\)
−0.934270 + 0.356567i \(0.883947\pi\)
\(594\) 0 0
\(595\) −24342.6 −1.67722
\(596\) 749.827 + 2307.73i 0.0515337 + 0.158605i
\(597\) 0 0
\(598\) 20094.9 14599.8i 1.37415 0.998377i
\(599\) 7080.31 21791.0i 0.482961 1.48640i −0.351951 0.936018i \(-0.614482\pi\)
0.834912 0.550383i \(-0.185518\pi\)
\(600\) 0 0
\(601\) −2501.39 + 1817.36i −0.169773 + 0.123348i −0.669427 0.742878i \(-0.733460\pi\)
0.499654 + 0.866225i \(0.333460\pi\)
\(602\) −5297.69 3849.00i −0.358668 0.260587i
\(603\) 0 0
\(604\) 3889.33 0.262011
\(605\) 13098.0 + 14956.1i 0.880182 + 1.00505i
\(606\) 0 0
\(607\) −4035.44 12419.8i −0.269841 0.830486i −0.990538 0.137236i \(-0.956178\pi\)
0.720697 0.693250i \(-0.243822\pi\)
\(608\) −3818.97 2774.64i −0.254736 0.185077i
\(609\) 0 0
\(610\) −6489.03 + 19971.2i −0.430710 + 1.32559i
\(611\) 4378.63 13476.0i 0.289919 0.892279i
\(612\) 0 0
\(613\) 21863.9 + 15885.0i 1.44058 + 1.04664i 0.987922 + 0.154953i \(0.0495227\pi\)
0.452654 + 0.891686i \(0.350477\pi\)
\(614\) 948.415 + 2918.92i 0.0623370 + 0.191854i
\(615\) 0 0
\(616\) 20583.5 11695.6i 1.34632 0.764981i
\(617\) −23885.0 −1.55847 −0.779235 0.626732i \(-0.784392\pi\)
−0.779235 + 0.626732i \(0.784392\pi\)
\(618\) 0 0
\(619\) 11607.5 + 8433.32i 0.753705 + 0.547599i 0.896973 0.442085i \(-0.145761\pi\)
−0.143268 + 0.989684i \(0.545761\pi\)
\(620\) 15013.1 10907.7i 0.972488 0.706554i
\(621\) 0 0
\(622\) 8125.60 25008.0i 0.523805 1.61211i
\(623\) 773.611 562.061i 0.0497497 0.0361453i
\(624\) 0 0
\(625\) −5643.76 17369.7i −0.361200 1.11166i
\(626\) 48895.9 3.12184
\(627\) 0 0
\(628\) −53416.0 −3.39415
\(629\) −6464.73 19896.4i −0.409803 1.26124i
\(630\) 0 0
\(631\) −3780.07 + 2746.38i −0.238482 + 0.173267i −0.700607 0.713548i \(-0.747087\pi\)
0.462125 + 0.886815i \(0.347087\pi\)
\(632\) −8021.58 + 24687.9i −0.504876 + 1.55385i
\(633\) 0 0
\(634\) −27376.9 + 19890.5i −1.71495 + 1.24598i
\(635\) 16765.0 + 12180.5i 1.04772 + 0.761211i
\(636\) 0 0
\(637\) −5821.13 −0.362074
\(638\) 8865.55 + 993.594i 0.550142 + 0.0616564i
\(639\) 0 0
\(640\) −5510.97 16961.0i −0.340375 1.04757i
\(641\) 815.075 + 592.187i 0.0502239 + 0.0364898i 0.612614 0.790382i \(-0.290118\pi\)
−0.562390 + 0.826872i \(0.690118\pi\)
\(642\) 0 0
\(643\) −73.7377 + 226.941i −0.00452244 + 0.0139187i −0.953292 0.302049i \(-0.902329\pi\)
0.948770 + 0.315968i \(0.102329\pi\)
\(644\) −11058.4 + 34034.3i −0.676650 + 2.08251i
\(645\) 0 0
\(646\) 12213.5 + 8873.65i 0.743862 + 0.540448i
\(647\) −2481.51 7637.29i −0.150785 0.464070i 0.846924 0.531714i \(-0.178452\pi\)
−0.997710 + 0.0676441i \(0.978452\pi\)
\(648\) 0 0
\(649\) −3339.39 + 7363.46i −0.201976 + 0.445364i
\(650\) −15344.8 −0.925960
\(651\) 0 0
\(652\) 9355.70 + 6797.32i 0.561960 + 0.408288i
\(653\) 236.274 171.663i 0.0141594 0.0102874i −0.580683 0.814130i \(-0.697214\pi\)
0.594842 + 0.803842i \(0.297214\pi\)
\(654\) 0 0
\(655\) 6993.83 21524.8i 0.417208 1.28403i
\(656\) 28564.6 20753.4i 1.70009 1.23519i
\(657\) 0 0
\(658\) 9072.05 + 27920.9i 0.537485 + 1.65421i
\(659\) 9034.21 0.534025 0.267013 0.963693i \(-0.413963\pi\)
0.267013 + 0.963693i \(0.413963\pi\)
\(660\) 0 0
\(661\) 11884.6 0.699332 0.349666 0.936874i \(-0.386295\pi\)
0.349666 + 0.936874i \(0.386295\pi\)
\(662\) 10372.1 + 31922.1i 0.608949 + 1.87415i
\(663\) 0 0
\(664\) 11530.3 8377.27i 0.673891 0.489610i
\(665\) −1270.57 + 3910.41i −0.0740911 + 0.228029i
\(666\) 0 0
\(667\) −6130.28 + 4453.91i −0.355870 + 0.258555i
\(668\) −22653.0 16458.4i −1.31208 0.953285i
\(669\) 0 0
\(670\) 14327.4 0.826141
\(671\) 2013.43 + 9804.01i 0.115838 + 0.564053i
\(672\) 0 0
\(673\) −2312.52 7117.22i −0.132454 0.407650i 0.862732 0.505662i \(-0.168752\pi\)
−0.995185 + 0.0980118i \(0.968752\pi\)
\(674\) −11154.0 8103.82i −0.637440 0.463127i
\(675\) 0 0
\(676\) −7140.70 + 21976.8i −0.406276 + 1.25039i
\(677\) 9795.40 30147.2i 0.556083 1.71145i −0.136984 0.990573i \(-0.543741\pi\)
0.693067 0.720873i \(-0.256259\pi\)
\(678\) 0 0
\(679\) −12672.9 9207.40i −0.716261 0.520394i
\(680\) −32054.2 98652.8i −1.80768 5.56347i
\(681\) 0 0
\(682\) 5253.46 11584.1i 0.294964 0.650406i
\(683\) 7905.89 0.442914 0.221457 0.975170i \(-0.428919\pi\)
0.221457 + 0.975170i \(0.428919\pi\)
\(684\) 0 0
\(685\) 35890.6 + 26076.1i 2.00191 + 1.45447i
\(686\) 27305.6 19838.7i 1.51973 1.10415i
\(687\) 0 0
\(688\) 3948.13 12151.1i 0.218781 0.673337i
\(689\) −149.352 + 108.510i −0.00825813 + 0.00599988i
\(690\) 0 0
\(691\) −2133.15 6565.17i −0.117437 0.361434i 0.875010 0.484104i \(-0.160854\pi\)
−0.992448 + 0.122670i \(0.960854\pi\)
\(692\) −60749.5 −3.33721
\(693\) 0 0
\(694\) −3988.64 −0.218165
\(695\) 9933.34 + 30571.7i 0.542148 + 1.66856i
\(696\) 0 0
\(697\) −30574.1 + 22213.4i −1.66151 + 1.20716i
\(698\) 8576.77 26396.6i 0.465094 1.43141i
\(699\) 0 0
\(700\) 17885.6 12994.6i 0.965730 0.701644i
\(701\) 16748.4 + 12168.4i 0.902393 + 0.655627i 0.939079 0.343700i \(-0.111680\pi\)
−0.0366868 + 0.999327i \(0.511680\pi\)
\(702\) 0 0
\(703\) −3533.61 −0.189577
\(704\) 2623.42 + 2395.06i 0.140446 + 0.128221i
\(705\) 0 0
\(706\) −7133.27 21953.9i −0.380261 1.17032i
\(707\) 12360.2 + 8980.18i 0.657498 + 0.477701i
\(708\) 0 0
\(709\) −1947.48 + 5993.72i −0.103158 + 0.317488i −0.989294 0.145938i \(-0.953380\pi\)
0.886136 + 0.463426i \(0.153380\pi\)
\(710\) 10826.5 33320.6i 0.572271 1.76127i
\(711\) 0 0
\(712\) 3296.55 + 2395.08i 0.173516 + 0.126067i
\(713\) 3338.60 + 10275.2i 0.175360 + 0.539702i
\(714\) 0 0
\(715\) −14461.2 + 8216.86i −0.756387 + 0.429781i
\(716\) −77818.7 −4.06176
\(717\) 0 0
\(718\) −35606.5 25869.6i −1.85073 1.34463i
\(719\) 1121.07 814.505i 0.0581486 0.0422474i −0.558331 0.829618i \(-0.688558\pi\)
0.616480 + 0.787371i \(0.288558\pi\)
\(720\) 0 0
\(721\) −3477.64 + 10703.1i −0.179631 + 0.552848i
\(722\) −26373.6 + 19161.5i −1.35945 + 0.987698i
\(723\) 0 0
\(724\) 4186.76 + 12885.5i 0.214916 + 0.661445i
\(725\) 4681.20 0.239801
\(726\) 0 0
\(727\) −11818.1 −0.602900 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(728\) 6120.46 + 18836.8i 0.311592 + 0.958982i
\(729\) 0 0
\(730\) 16740.5 12162.6i 0.848756 0.616657i
\(731\) −4225.88 + 13005.9i −0.213816 + 0.658059i
\(732\) 0 0
\(733\) 7716.12 5606.09i 0.388815 0.282491i −0.376155 0.926557i \(-0.622754\pi\)
0.764970 + 0.644066i \(0.222754\pi\)
\(734\) 9030.03 + 6560.70i 0.454093 + 0.329918i
\(735\) 0 0
\(736\) −33605.1 −1.68301
\(737\) 5937.27 3373.57i 0.296747 0.168612i
\(738\) 0 0
\(739\) −1054.22 3244.54i −0.0524763 0.161505i 0.921384 0.388654i \(-0.127060\pi\)
−0.973860 + 0.227148i \(0.927060\pi\)
\(740\) 34956.2 + 25397.2i 1.73651 + 1.26165i
\(741\) 0 0
\(742\) 118.196 363.769i 0.00584785 0.0179978i
\(743\) 757.991 2332.86i 0.0374266 0.115187i −0.930598 0.366044i \(-0.880712\pi\)
0.968024 + 0.250856i \(0.0807121\pi\)
\(744\) 0 0
\(745\) 1605.68 + 1166.59i 0.0789631 + 0.0573700i
\(746\) 20293.2 + 62456.0i 0.995961 + 3.06525i
\(747\) 0 0
\(748\) −64978.6 59322.5i −3.17627 2.89979i
\(749\) −19538.9 −0.953185
\(750\) 0 0
\(751\) 9349.05 + 6792.49i 0.454263 + 0.330042i 0.791277 0.611458i \(-0.209417\pi\)
−0.337013 + 0.941500i \(0.609417\pi\)
\(752\) −46340.5 + 33668.3i −2.24716 + 1.63266i
\(753\) 0 0
\(754\) −2306.35 + 7098.22i −0.111396 + 0.342841i
\(755\) 2573.68 1869.89i 0.124061 0.0901353i
\(756\) 0 0
\(757\) 7924.05 + 24387.7i 0.380455 + 1.17092i 0.939724 + 0.341934i \(0.111082\pi\)
−0.559269 + 0.828986i \(0.688918\pi\)
\(758\) −37423.9 −1.79327
\(759\) 0 0
\(760\) −17520.8 −0.836243
\(761\) 1870.80 + 5757.72i 0.0891147 + 0.274267i 0.985675 0.168654i \(-0.0539422\pi\)
−0.896561 + 0.442921i \(0.853942\pi\)
\(762\) 0 0
\(763\) 2964.07 2153.53i 0.140638 0.102179i
\(764\) −23318.0 + 71765.5i −1.10421 + 3.39841i
\(765\) 0 0
\(766\) −46906.5 + 34079.6i −2.21254 + 1.60750i
\(767\) −5472.43 3975.96i −0.257625 0.187175i
\(768\) 0 0
\(769\) 23509.7 1.10245 0.551224 0.834357i \(-0.314161\pi\)
0.551224 + 0.834357i \(0.314161\pi\)
\(770\) 14233.0 31384.3i 0.666132 1.46884i
\(771\) 0 0
\(772\) 17390.6 + 53522.9i 0.810755 + 2.49525i
\(773\) 4033.24 + 2930.32i 0.187666 + 0.136347i 0.677651 0.735384i \(-0.262998\pi\)
−0.489986 + 0.871731i \(0.662998\pi\)
\(774\) 0 0
\(775\) 2062.52 6347.79i 0.0955974 0.294219i
\(776\) 20627.1 63483.6i 0.954212 2.93676i
\(777\) 0 0
\(778\) 12254.4 + 8903.35i 0.564707 + 0.410284i
\(779\) 1972.55 + 6070.88i 0.0907239 + 0.279219i
\(780\) 0 0
\(781\) −3359.27 16357.4i −0.153911 0.749439i
\(782\) 107473. 4.91462
\(783\) 0 0
\(784\) 19037.6 + 13831.6i 0.867236 + 0.630084i
\(785\) −35346.9 + 25681.0i −1.60711 + 1.16764i
\(786\) 0 0
\(787\) 7136.30 21963.3i 0.323230 0.994798i −0.649004 0.760785i \(-0.724814\pi\)
0.972233 0.234013i \(-0.0751859\pi\)
\(788\) 45205.1 32843.4i 2.04361 1.48477i
\(789\) 0 0
\(790\) 11676.5 + 35936.4i 0.525860 + 1.61843i
\(791\) −1350.08 −0.0606868
\(792\) 0 0
\(793\) −8373.39 −0.374965
\(794\) −19623.6 60395.1i −0.877096 2.69942i
\(795\) 0 0
\(796\) 14359.0 10432.4i 0.639373 0.464531i
\(797\) −5369.64 + 16526.1i −0.238648 + 0.734483i 0.757969 + 0.652291i \(0.226192\pi\)
−0.996617 + 0.0821918i \(0.973808\pi\)
\(798\) 0 0
\(799\) 49600.5 36036.8i 2.19617 1.59561i
\(800\) 16795.6 + 12202.8i 0.742270 + 0.539291i
\(801\) 0 0
\(802\) 38909.1 1.71313
\(803\) 4073.40 8981.98i 0.179013 0.394729i
\(804\) 0 0
\(805\) 9045.13 + 27838.1i 0.396024 + 1.21884i
\(806\) 8609.14 + 6254.90i 0.376233 + 0.273349i
\(807\) 0 0
\(808\) −20118.0 + 61916.9i −0.875927 + 2.69583i
\(809\) −1030.68 + 3172.12i −0.0447922 + 0.137856i −0.970952 0.239276i \(-0.923090\pi\)
0.926159 + 0.377132i \(0.123090\pi\)
\(810\) 0 0
\(811\) −3942.93 2864.71i −0.170721 0.124036i 0.499144 0.866519i \(-0.333648\pi\)
−0.669865 + 0.742483i \(0.733648\pi\)
\(812\) −3322.83 10226.6i −0.143606 0.441975i
\(813\) 0 0
\(814\) 29431.8 + 3298.53i 1.26730 + 0.142031i
\(815\) 9458.91 0.406541
\(816\) 0 0
\(817\) 1868.71 + 1357.70i 0.0800219 + 0.0581393i
\(818\) −30164.4 + 21915.7i −1.28933 + 0.936755i
\(819\) 0 0
\(820\) 24119.9 74233.5i 1.02720 3.16140i
\(821\) 15080.4 10956.5i 0.641058 0.465756i −0.219155 0.975690i \(-0.570330\pi\)
0.860214 + 0.509934i \(0.170330\pi\)
\(822\) 0 0
\(823\) 5815.65 + 17898.7i 0.246319 + 0.758093i 0.995417 + 0.0956332i \(0.0304876\pi\)
−0.749097 + 0.662460i \(0.769512\pi\)
\(824\) −47955.6 −2.02744
\(825\) 0 0
\(826\) 14014.9 0.590364
\(827\) 10812.3 + 33276.8i 0.454632 + 1.39921i 0.871567 + 0.490277i \(0.163104\pi\)
−0.416935 + 0.908936i \(0.636896\pi\)
\(828\) 0 0
\(829\) −11513.8 + 8365.25i −0.482377 + 0.350467i −0.802245 0.596995i \(-0.796361\pi\)
0.319868 + 0.947462i \(0.396361\pi\)
\(830\) 6410.88 19730.7i 0.268102 0.825134i
\(831\) 0 0
\(832\) −2404.31 + 1746.83i −0.100186 + 0.0727892i
\(833\) −20376.8 14804.6i −0.847558 0.615787i
\(834\) 0 0
\(835\) −22902.9 −0.949207
\(836\) −12921.2 + 7341.85i −0.534556 + 0.303736i
\(837\) 0 0
\(838\) 17571.0 + 54077.9i 0.724319 + 2.22923i
\(839\) −20512.2 14903.0i −0.844054 0.613241i 0.0794461 0.996839i \(-0.474685\pi\)
−0.923500 + 0.383598i \(0.874685\pi\)
\(840\) 0 0
\(841\) −6833.02 + 21029.9i −0.280168 + 0.862269i
\(842\) 8081.88 24873.5i 0.330784 1.01805i
\(843\) 0 0
\(844\) −49154.5 35712.8i −2.00470 1.45650i
\(845\) 5840.67 + 17975.7i 0.237781 + 0.731816i
\(846\) 0 0
\(847\) −1491.68 16357.0i −0.0605133 0.663558i
\(848\) 746.276 0.0302208
\(849\) 0 0
\(850\) −53714.6 39025.9i −2.16752 1.57480i
\(851\) −20351.3 + 14786.1i −0.819781 + 0.595605i
\(852\) 0 0
\(853\) −2986.46 + 9191.39i −0.119876 + 0.368942i −0.992933 0.118678i \(-0.962135\pi\)
0.873056 + 0.487619i \(0.162135\pi\)
\(854\) 14035.4 10197.3i 0.562392 0.408602i
\(855\) 0 0
\(856\) −25728.7 79184.9i −1.02733 3.16178i
\(857\) 38619.7 1.53935 0.769676 0.638435i \(-0.220418\pi\)
0.769676 + 0.638435i \(0.220418\pi\)
\(858\) 0 0
\(859\) −30501.9 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(860\) −8728.00 26862.0i −0.346073 1.06510i
\(861\) 0 0
\(862\) 59856.8 43488.5i 2.36512 1.71836i
\(863\) 9135.64 28116.6i 0.360349 1.10904i −0.592494 0.805575i \(-0.701857\pi\)
0.952843 0.303464i \(-0.0981433\pi\)
\(864\) 0 0
\(865\) −40199.7 + 29206.8i −1.58015 + 1.14805i
\(866\) 17565.4 + 12762.0i 0.689255 + 0.500773i
\(867\) 0 0
\(868\) −15331.5 −0.599522
\(869\) 13300.5 + 12142.7i 0.519203 + 0.474009i
\(870\) 0 0
\(871\) 1765.44 + 5433.46i 0.0686792 + 0.211373i
\(872\) 12630.6 + 9176.70i 0.490513 + 0.356379i
\(873\) 0 0
\(874\) 5609.60 17264.6i 0.217103 0.668173i
\(875\) −1531.94 + 4714.84i −0.0591876 + 0.182161i
\(876\) 0 0
\(877\) 18613.5 + 13523.5i 0.716685 + 0.520702i 0.885323 0.464976i \(-0.153937\pi\)
−0.168638 + 0.985678i \(0.553937\pi\)
\(878\) −2866.01 8820.67i −0.110163 0.339047i
\(879\) 0 0
\(880\) 66818.2 + 7488.56i 2.55959 + 0.286863i
\(881\) −34057.4 −1.30241 −0.651205 0.758902i \(-0.725736\pi\)
−0.651205 + 0.758902i \(0.725736\pi\)
\(882\) 0 0
\(883\) −28035.4 20368.9i −1.06848 0.776295i −0.0928400 0.995681i \(-0.529595\pi\)
−0.975638 + 0.219386i \(0.929595\pi\)
\(884\) 59551.6 43266.7i 2.26576 1.64617i
\(885\) 0 0
\(886\) 7597.02 23381.2i 0.288067 0.886578i
\(887\) −4164.73 + 3025.86i −0.157653 + 0.114541i −0.663815 0.747897i \(-0.731064\pi\)
0.506162 + 0.862438i \(0.331064\pi\)
\(888\) 0 0
\(889\) −5290.54 16282.6i −0.199594 0.614287i
\(890\) 5931.34 0.223392
\(891\) 0 0
\(892\) 89754.8 3.36907
\(893\) −3200.08 9848.82i −0.119918 0.369069i
\(894\) 0 0
\(895\) −51494.9 + 37413.2i −1.92322 + 1.39730i
\(896\) −4553.01 + 14012.7i −0.169760 + 0.522469i
\(897\) 0 0
\(898\) 38047.5 27643.1i 1.41388 1.02724i
\(899\) −2626.36 1908.16i −0.0974350 0.0707907i
\(900\) 0 0
\(901\) −798.776 −0.0295351
\(902\) −10762.6 52406.4i −0.397289 1.93453i
\(903\) 0 0
\(904\) −1777.78 5471.44i −0.0654072 0.201303i
\(905\) 8965.51 + 6513.82i 0.329308 + 0.239256i
\(906\) 0 0
\(907\) 12572.1 38693.0i 0.460254 1.41652i −0.404601 0.914493i \(-0.632589\pi\)
0.864855 0.502022i \(-0.167411\pi\)
\(908\) 5996.56 18455.5i 0.219166 0.674524i
\(909\) 0 0
\(910\) 23324.4 + 16946.2i 0.849666 + 0.617318i
\(911\) −7794.32 23988.5i −0.283466 0.872418i −0.986854 0.161613i \(-0.948331\pi\)
0.703388 0.710806i \(-0.251669\pi\)
\(912\) 0 0
\(913\) −1989.18 9685.93i −0.0721053 0.351104i
\(914\) −31667.2 −1.14601
\(915\) 0 0
\(916\) 63717.3 + 46293.3i 2.29834 + 1.66984i
\(917\) −15127.3 + 10990.6i −0.544762 + 0.395793i
\(918\) 0 0
\(919\) −2842.41 + 8748.04i −0.102027 + 0.314006i −0.989021 0.147774i \(-0.952789\pi\)
0.886994 + 0.461780i \(0.152789\pi\)
\(920\) −100908. + 73314.1i −3.61614 + 2.62728i
\(921\) 0 0
\(922\) −26647.2 82011.7i −0.951822 2.92941i
\(923\) 13970.4 0.498205
\(924\) 0 0
\(925\) 15540.6 0.552403
\(926\) 1296.47 + 3990.12i 0.0460093 + 0.141602i
\(927\) 0 0
\(928\) 8169.16 5935.24i 0.288972 0.209950i
\(929\) 10339.7 31822.2i 0.365160 1.12385i −0.584721 0.811235i \(-0.698796\pi\)
0.949881 0.312612i \(-0.101204\pi\)
\(930\) 0 0
\(931\) −3441.81 + 2500.62i −0.121161 + 0.0880285i
\(932\) 76152.7 + 55328.1i 2.67646 + 1.94456i
\(933\) 0 0
\(934\) −86040.2 −3.01426
\(935\) −71518.8 8015.37i −2.50151 0.280354i
\(936\) 0 0
\(937\) −9594.58 29529.1i −0.334516 1.02953i −0.966960 0.254928i \(-0.917948\pi\)
0.632445 0.774606i \(-0.282052\pi\)
\(938\) −9576.23 6957.54i −0.333342 0.242187i
\(939\) 0 0
\(940\) −39129.9 + 120429.i −1.35774 + 4.17870i
\(941\) −6687.39 + 20581.7i −0.231671 + 0.713011i 0.765874 + 0.642991i \(0.222307\pi\)
−0.997546 + 0.0700208i \(0.977693\pi\)
\(942\) 0 0
\(943\) 36763.7 + 26710.4i 1.26956 + 0.922386i
\(944\) 8449.91 + 26006.1i 0.291336 + 0.896640i
\(945\) 0 0
\(946\) −14297.3 13052.8i −0.491381 0.448608i
\(947\) 31725.1 1.08862 0.544311 0.838883i \(-0.316791\pi\)
0.544311 + 0.838883i \(0.316791\pi\)
\(948\) 0 0
\(949\) 6675.30 + 4849.89i 0.228334 + 0.165895i
\(950\) −9072.81 + 6591.78i −0.309854 + 0.225122i
\(951\) 0 0
\(952\) −26482.3 + 81504.2i −0.901572 + 2.77475i
\(953\) 42127.7 30607.6i 1.43195 1.04037i 0.442303 0.896866i \(-0.354162\pi\)
0.989649 0.143508i \(-0.0458383\pi\)
\(954\) 0 0
\(955\) 19072.8 + 58700.0i 0.646262 + 1.98899i
\(956\) 2269.75 0.0767877
\(957\) 0 0
\(958\) −23862.9 −0.804777
\(959\) −11326.0 34857.8i −0.381372 1.17374i
\(960\) 0 0
\(961\) 20356.8 14790.0i 0.683319 0.496460i
\(962\) −7656.61 + 23564.6i −0.256610 + 0.789765i
\(963\) 0 0
\(964\) 6582.26 4782.29i 0.219917 0.159779i
\(965\) 37240.3 + 27056.6i 1.24229 + 0.902574i
\(966\) 0 0
\(967\) −4519.31 −0.150291 −0.0751454 0.997173i \(-0.523942\pi\)
−0.0751454 + 0.997173i \(0.523942\pi\)
\(968\) 64325.6 27584.2i 2.13585 0.915898i
\(969\) 0 0
\(970\) −30025.4 92408.6i −0.993873 3.05883i
\(971\) 20189.6 + 14668.6i 0.667265 + 0.484796i 0.869109 0.494621i \(-0.164693\pi\)
−0.201844 + 0.979418i \(0.564693\pi\)
\(972\) 0 0
\(973\) 8206.64 25257.5i 0.270394 0.832186i
\(974\) −27914.2 + 85911.0i −0.918304 + 2.82625i
\(975\) 0 0
\(976\) 27384.5 + 19896.0i 0.898112 + 0.652517i
\(977\) −17549.0 54010.4i −0.574661 1.76862i −0.637332 0.770589i \(-0.719962\pi\)
0.0626715 0.998034i \(-0.480038\pi\)
\(978\) 0 0
\(979\) 2457.95 1396.61i 0.0802416 0.0455935i
\(980\) 52020.8 1.69566
\(981\) 0 0
\(982\) 62000.5 + 45046.0i 2.01478 + 1.46382i
\(983\) −25471.5 + 18506.2i −0.826466 + 0.600463i −0.918557 0.395288i \(-0.870645\pi\)
0.0920914 + 0.995751i \(0.470645\pi\)
\(984\) 0 0
\(985\) 14123.2 43466.9i 0.456857 1.40606i
\(986\) −26126.0 + 18981.6i −0.843835 + 0.613082i
\(987\) 0 0
\(988\) −3842.09 11824.7i −0.123718 0.380764i
\(989\) 16443.7 0.528696
\(990\) 0 0
\(991\) 9490.27 0.304206 0.152103 0.988365i \(-0.451395\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(992\) −4448.99 13692.6i −0.142395 0.438246i
\(993\) 0 0
\(994\) −23417.2 + 17013.6i −0.747232 + 0.542896i
\(995\) 4486.12 13806.8i 0.142934 0.439906i
\(996\) 0 0
\(997\) −33078.7 + 24033.1i −1.05077 + 0.763427i −0.972358 0.233495i \(-0.924984\pi\)
−0.0784085 + 0.996921i \(0.524984\pi\)
\(998\) −89031.2 64685.0i −2.82388 2.05167i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.d.82.1 12
3.2 odd 2 33.4.e.c.16.3 12
11.3 even 5 1089.4.a.bi.1.1 6
11.8 odd 10 1089.4.a.bk.1.6 6
11.9 even 5 inner 99.4.f.d.64.1 12
33.8 even 10 363.4.a.u.1.1 6
33.14 odd 10 363.4.a.v.1.6 6
33.20 odd 10 33.4.e.c.31.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.3 12 3.2 odd 2
33.4.e.c.31.3 yes 12 33.20 odd 10
99.4.f.d.64.1 12 11.9 even 5 inner
99.4.f.d.82.1 12 1.1 even 1 trivial
363.4.a.u.1.1 6 33.8 even 10
363.4.a.v.1.6 6 33.14 odd 10
1089.4.a.bi.1.1 6 11.3 even 5
1089.4.a.bk.1.6 6 11.8 odd 10