Properties

Label 99.4.f.e.82.4
Level $99$
Weight $4$
Character 99.82
Analytic conductor $5.841$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.4
Character \(\chi\) \(=\) 99.82
Dual form 99.4.f.e.64.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0654439 + 0.201416i) q^{2} +(6.43585 - 4.67592i) q^{4} +(-5.73265 + 17.6433i) q^{5} +(-17.3440 + 12.6012i) q^{7} +(2.73367 + 1.98613i) q^{8} +O(q^{10})\) \(q+(0.0654439 + 0.201416i) q^{2} +(6.43585 - 4.67592i) q^{4} +(-5.73265 + 17.6433i) q^{5} +(-17.3440 + 12.6012i) q^{7} +(2.73367 + 1.98613i) q^{8} -3.92880 q^{10} +(29.4005 + 21.6012i) q^{11} +(1.29584 + 3.98820i) q^{13} +(-3.67313 - 2.66869i) q^{14} +(19.4451 - 59.8458i) q^{16} +(-26.8314 + 82.5787i) q^{17} +(85.7906 + 62.3305i) q^{19} +(45.6041 + 140.355i) q^{20} +(-2.42673 + 7.33539i) q^{22} -148.322 q^{23} +(-177.295 - 128.813i) q^{25} +(-0.718481 + 0.522007i) q^{26} +(-52.7014 + 162.198i) q^{28} +(211.201 - 153.447i) q^{29} +(14.4456 + 44.4590i) q^{31} +40.3584 q^{32} -18.3886 q^{34} +(-122.899 - 378.243i) q^{35} +(245.717 - 178.524i) q^{37} +(-6.93988 + 21.3587i) q^{38} +(-50.7129 + 36.8451i) q^{40} +(-116.323 - 84.5140i) q^{41} +174.897 q^{43} +(290.223 + 1.54754i) q^{44} +(-9.70676 - 29.8743i) q^{46} +(-300.564 - 218.373i) q^{47} +(36.0324 - 110.896i) q^{49} +(14.3420 - 44.1401i) q^{50} +(26.9884 + 19.6082i) q^{52} +(-44.9117 - 138.224i) q^{53} +(-549.659 + 394.890i) q^{55} -72.4402 q^{56} +(44.7284 + 32.4971i) q^{58} +(164.834 - 119.759i) q^{59} +(-56.4889 + 173.855i) q^{61} +(-8.00936 + 5.81914i) q^{62} +(-152.919 - 470.637i) q^{64} -77.7936 q^{65} -153.054 q^{67} +(213.448 + 656.925i) q^{68} +(68.1412 - 49.5075i) q^{70} +(48.7916 - 150.165i) q^{71} +(525.951 - 382.126i) q^{73} +(52.0381 + 37.8079i) q^{74} +843.588 q^{76} +(-782.122 - 4.17047i) q^{77} +(313.345 + 964.378i) q^{79} +(944.405 + 686.150i) q^{80} +(9.40977 - 28.9603i) q^{82} +(-94.2610 + 290.105i) q^{83} +(-1303.14 - 946.789i) q^{85} +(11.4459 + 35.2270i) q^{86} +(37.4685 + 117.443i) q^{88} +1345.51 q^{89} +(-72.7310 - 52.8422i) q^{91} +(-954.577 + 693.541i) q^{92} +(24.3136 - 74.8296i) q^{94} +(-1591.52 + 1156.31i) q^{95} +(320.534 + 986.501i) q^{97} +24.6944 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 28 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{4} - 28 q^{7} + 208 q^{10} + 20 q^{13} - 224 q^{16} - 40 q^{19} - 586 q^{22} + 362 q^{25} - 150 q^{28} + 670 q^{31} - 2520 q^{34} - 516 q^{37} + 2002 q^{40} + 4008 q^{43} + 2174 q^{46} + 342 q^{49} - 1894 q^{52} - 3300 q^{55} + 22 q^{58} - 2952 q^{61} - 3992 q^{64} - 1936 q^{67} - 1024 q^{70} + 2194 q^{73} + 15336 q^{76} + 1524 q^{79} + 2898 q^{82} - 7428 q^{85} - 3936 q^{88} - 6460 q^{91} - 16982 q^{94} - 1224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0654439 + 0.201416i 0.0231379 + 0.0712112i 0.961959 0.273195i \(-0.0880803\pi\)
−0.938821 + 0.344406i \(0.888080\pi\)
\(3\) 0 0
\(4\) 6.43585 4.67592i 0.804481 0.584490i
\(5\) −5.73265 + 17.6433i −0.512744 + 1.57806i 0.274605 + 0.961557i \(0.411453\pi\)
−0.787350 + 0.616507i \(0.788547\pi\)
\(6\) 0 0
\(7\) −17.3440 + 12.6012i −0.936488 + 0.680398i −0.947573 0.319540i \(-0.896472\pi\)
0.0110848 + 0.999939i \(0.496472\pi\)
\(8\) 2.73367 + 1.98613i 0.120812 + 0.0877752i
\(9\) 0 0
\(10\) −3.92880 −0.124240
\(11\) 29.4005 + 21.6012i 0.805871 + 0.592091i
\(12\) 0 0
\(13\) 1.29584 + 3.98820i 0.0276464 + 0.0850867i 0.963928 0.266164i \(-0.0857564\pi\)
−0.936281 + 0.351251i \(0.885756\pi\)
\(14\) −3.67313 2.66869i −0.0701204 0.0509454i
\(15\) 0 0
\(16\) 19.4451 59.8458i 0.303829 0.935090i
\(17\) −26.8314 + 82.5787i −0.382799 + 1.17813i 0.555266 + 0.831673i \(0.312616\pi\)
−0.938065 + 0.346460i \(0.887384\pi\)
\(18\) 0 0
\(19\) 85.7906 + 62.3305i 1.03588 + 0.752611i 0.969477 0.245182i \(-0.0788477\pi\)
0.0664031 + 0.997793i \(0.478848\pi\)
\(20\) 45.6041 + 140.355i 0.509869 + 1.56922i
\(21\) 0 0
\(22\) −2.42673 + 7.33539i −0.0235173 + 0.0710868i
\(23\) −148.322 −1.34466 −0.672331 0.740251i \(-0.734707\pi\)
−0.672331 + 0.740251i \(0.734707\pi\)
\(24\) 0 0
\(25\) −177.295 128.813i −1.41836 1.03050i
\(26\) −0.718481 + 0.522007i −0.00541945 + 0.00393746i
\(27\) 0 0
\(28\) −52.7014 + 162.198i −0.355701 + 1.09474i
\(29\) 211.201 153.447i 1.35238 0.982562i 0.353492 0.935438i \(-0.384994\pi\)
0.998889 0.0471249i \(-0.0150059\pi\)
\(30\) 0 0
\(31\) 14.4456 + 44.4590i 0.0836937 + 0.257583i 0.984143 0.177379i \(-0.0567619\pi\)
−0.900449 + 0.434962i \(0.856762\pi\)
\(32\) 40.3584 0.222951
\(33\) 0 0
\(34\) −18.3886 −0.0927535
\(35\) −122.899 378.243i −0.593533 1.82671i
\(36\) 0 0
\(37\) 245.717 178.524i 1.09177 0.793219i 0.112074 0.993700i \(-0.464251\pi\)
0.979698 + 0.200481i \(0.0642505\pi\)
\(38\) −6.93988 + 21.3587i −0.0296262 + 0.0911801i
\(39\) 0 0
\(40\) −50.7129 + 36.8451i −0.200461 + 0.145643i
\(41\) −116.323 84.5140i −0.443090 0.321923i 0.343772 0.939053i \(-0.388295\pi\)
−0.786861 + 0.617130i \(0.788295\pi\)
\(42\) 0 0
\(43\) 174.897 0.620268 0.310134 0.950693i \(-0.399626\pi\)
0.310134 + 0.950693i \(0.399626\pi\)
\(44\) 290.223 + 1.54754i 0.994379 + 0.00530228i
\(45\) 0 0
\(46\) −9.70676 29.8743i −0.0311127 0.0957550i
\(47\) −300.564 218.373i −0.932805 0.677722i 0.0138731 0.999904i \(-0.495584\pi\)
−0.946678 + 0.322181i \(0.895584\pi\)
\(48\) 0 0
\(49\) 36.0324 110.896i 0.105051 0.323313i
\(50\) 14.3420 44.1401i 0.0405652 0.124847i
\(51\) 0 0
\(52\) 26.9884 + 19.6082i 0.0719733 + 0.0522917i
\(53\) −44.9117 138.224i −0.116398 0.358237i 0.875838 0.482605i \(-0.160309\pi\)
−0.992236 + 0.124369i \(0.960309\pi\)
\(54\) 0 0
\(55\) −549.659 + 394.890i −1.34756 + 0.968125i
\(56\) −72.4402 −0.172861
\(57\) 0 0
\(58\) 44.7284 + 32.4971i 0.101261 + 0.0735702i
\(59\) 164.834 119.759i 0.363722 0.264259i −0.390881 0.920441i \(-0.627830\pi\)
0.754603 + 0.656182i \(0.227830\pi\)
\(60\) 0 0
\(61\) −56.4889 + 173.855i −0.118568 + 0.364915i −0.992675 0.120819i \(-0.961448\pi\)
0.874106 + 0.485735i \(0.161448\pi\)
\(62\) −8.00936 + 5.81914i −0.0164063 + 0.0119199i
\(63\) 0 0
\(64\) −152.919 470.637i −0.298671 0.919214i
\(65\) −77.7936 −0.148448
\(66\) 0 0
\(67\) −153.054 −0.279083 −0.139542 0.990216i \(-0.544563\pi\)
−0.139542 + 0.990216i \(0.544563\pi\)
\(68\) 213.448 + 656.925i 0.380653 + 1.17153i
\(69\) 0 0
\(70\) 68.1412 49.5075i 0.116349 0.0845325i
\(71\) 48.7916 150.165i 0.0815564 0.251005i −0.901961 0.431817i \(-0.857873\pi\)
0.983518 + 0.180812i \(0.0578726\pi\)
\(72\) 0 0
\(73\) 525.951 382.126i 0.843260 0.612664i −0.0800196 0.996793i \(-0.525498\pi\)
0.923279 + 0.384129i \(0.125498\pi\)
\(74\) 52.0381 + 37.8079i 0.0817474 + 0.0593930i
\(75\) 0 0
\(76\) 843.588 1.27324
\(77\) −782.122 4.17047i −1.15755 0.00617233i
\(78\) 0 0
\(79\) 313.345 + 964.378i 0.446255 + 1.37343i 0.881102 + 0.472926i \(0.156802\pi\)
−0.434847 + 0.900504i \(0.643198\pi\)
\(80\) 944.405 + 686.150i 1.31985 + 0.958924i
\(81\) 0 0
\(82\) 9.40977 28.9603i 0.0126724 0.0390016i
\(83\) −94.2610 + 290.105i −0.124656 + 0.383653i −0.993838 0.110839i \(-0.964646\pi\)
0.869182 + 0.494493i \(0.164646\pi\)
\(84\) 0 0
\(85\) −1303.14 946.789i −1.66289 1.20816i
\(86\) 11.4459 + 35.2270i 0.0143517 + 0.0441701i
\(87\) 0 0
\(88\) 37.4685 + 117.443i 0.0453882 + 0.142267i
\(89\) 1345.51 1.60252 0.801259 0.598318i \(-0.204164\pi\)
0.801259 + 0.598318i \(0.204164\pi\)
\(90\) 0 0
\(91\) −72.7310 52.8422i −0.0837833 0.0608722i
\(92\) −954.577 + 693.541i −1.08176 + 0.785941i
\(93\) 0 0
\(94\) 24.3136 74.8296i 0.0266783 0.0821073i
\(95\) −1591.52 + 1156.31i −1.71881 + 1.24879i
\(96\) 0 0
\(97\) 320.534 + 986.501i 0.335518 + 1.03262i 0.966466 + 0.256794i \(0.0826661\pi\)
−0.630948 + 0.775825i \(0.717334\pi\)
\(98\) 24.6944 0.0254542
\(99\) 0 0
\(100\) −1743.36 −1.74336
\(101\) 225.488 + 693.982i 0.222148 + 0.683701i 0.998569 + 0.0534860i \(0.0170333\pi\)
−0.776421 + 0.630215i \(0.782967\pi\)
\(102\) 0 0
\(103\) 137.058 99.5783i 0.131114 0.0952596i −0.520296 0.853986i \(-0.674178\pi\)
0.651409 + 0.758727i \(0.274178\pi\)
\(104\) −4.37866 + 13.4761i −0.00412849 + 0.0127062i
\(105\) 0 0
\(106\) 24.9013 18.0919i 0.0228173 0.0165777i
\(107\) 938.826 + 682.097i 0.848222 + 0.616269i 0.924655 0.380805i \(-0.124353\pi\)
−0.0764332 + 0.997075i \(0.524353\pi\)
\(108\) 0 0
\(109\) 963.937 0.847050 0.423525 0.905884i \(-0.360793\pi\)
0.423525 + 0.905884i \(0.360793\pi\)
\(110\) −115.509 84.8668i −0.100121 0.0735612i
\(111\) 0 0
\(112\) 416.871 + 1283.00i 0.351701 + 1.08243i
\(113\) −485.899 353.026i −0.404509 0.293893i 0.366866 0.930274i \(-0.380431\pi\)
−0.771375 + 0.636381i \(0.780431\pi\)
\(114\) 0 0
\(115\) 850.277 2616.88i 0.689467 2.12196i
\(116\) 641.755 1975.12i 0.513668 1.58091i
\(117\) 0 0
\(118\) 34.9087 + 25.3627i 0.0272340 + 0.0197866i
\(119\) −575.222 1770.35i −0.443114 1.36376i
\(120\) 0 0
\(121\) 397.779 + 1270.17i 0.298857 + 0.954298i
\(122\) −38.7139 −0.0287295
\(123\) 0 0
\(124\) 300.856 + 218.585i 0.217885 + 0.158302i
\(125\) 1413.01 1026.62i 1.01107 0.734586i
\(126\) 0 0
\(127\) 596.515 1835.88i 0.416789 1.28274i −0.493853 0.869546i \(-0.664412\pi\)
0.910641 0.413198i \(-0.135588\pi\)
\(128\) 345.991 251.377i 0.238919 0.173585i
\(129\) 0 0
\(130\) −5.09112 15.6689i −0.00343477 0.0105711i
\(131\) 50.4283 0.0336331 0.0168166 0.999859i \(-0.494647\pi\)
0.0168166 + 0.999859i \(0.494647\pi\)
\(132\) 0 0
\(133\) −2273.39 −1.48216
\(134\) −10.0165 30.8276i −0.00645741 0.0198739i
\(135\) 0 0
\(136\) −237.360 + 172.452i −0.149658 + 0.108733i
\(137\) 265.998 818.658i 0.165881 0.510531i −0.833219 0.552944i \(-0.813505\pi\)
0.999100 + 0.0424130i \(0.0135045\pi\)
\(138\) 0 0
\(139\) −991.138 + 720.104i −0.604800 + 0.439413i −0.847579 0.530669i \(-0.821941\pi\)
0.242779 + 0.970082i \(0.421941\pi\)
\(140\) −2559.59 1859.65i −1.54518 1.12264i
\(141\) 0 0
\(142\) 33.4388 0.0197614
\(143\) −48.0513 + 145.247i −0.0280997 + 0.0849381i
\(144\) 0 0
\(145\) 1496.56 + 4605.94i 0.857121 + 2.63795i
\(146\) 111.387 + 80.9271i 0.0631398 + 0.0458738i
\(147\) 0 0
\(148\) 746.634 2297.90i 0.414682 1.27626i
\(149\) −667.923 + 2055.66i −0.367237 + 1.13024i 0.581331 + 0.813667i \(0.302532\pi\)
−0.948568 + 0.316573i \(0.897468\pi\)
\(150\) 0 0
\(151\) −2079.02 1510.50i −1.12045 0.814057i −0.136176 0.990685i \(-0.543481\pi\)
−0.984278 + 0.176627i \(0.943481\pi\)
\(152\) 110.727 + 340.782i 0.0590863 + 0.181849i
\(153\) 0 0
\(154\) −50.3451 157.805i −0.0263437 0.0825731i
\(155\) −867.214 −0.449396
\(156\) 0 0
\(157\) −1889.81 1373.03i −0.960658 0.697959i −0.00735419 0.999973i \(-0.502341\pi\)
−0.953303 + 0.302014i \(0.902341\pi\)
\(158\) −173.734 + 126.225i −0.0874782 + 0.0635567i
\(159\) 0 0
\(160\) −231.361 + 712.055i −0.114317 + 0.351831i
\(161\) 2572.49 1869.03i 1.25926 0.914906i
\(162\) 0 0
\(163\) 477.263 + 1468.87i 0.229338 + 0.705831i 0.997822 + 0.0659615i \(0.0210115\pi\)
−0.768484 + 0.639869i \(0.778989\pi\)
\(164\) −1143.82 −0.544618
\(165\) 0 0
\(166\) −64.6006 −0.0302047
\(167\) −969.584 2984.07i −0.449274 1.38272i −0.877728 0.479159i \(-0.840942\pi\)
0.428455 0.903563i \(-0.359058\pi\)
\(168\) 0 0
\(169\) 1763.18 1281.03i 0.802542 0.583081i
\(170\) 105.415 324.435i 0.0475588 0.146371i
\(171\) 0 0
\(172\) 1125.61 817.804i 0.498994 0.362541i
\(173\) 2411.39 + 1751.98i 1.05974 + 0.769944i 0.974040 0.226377i \(-0.0726883\pi\)
0.0856971 + 0.996321i \(0.472688\pi\)
\(174\) 0 0
\(175\) 4698.20 2.02943
\(176\) 1864.43 1339.46i 0.798506 0.573668i
\(177\) 0 0
\(178\) 88.0557 + 271.007i 0.0370789 + 0.114117i
\(179\) −1045.40 759.528i −0.436519 0.317150i 0.347731 0.937594i \(-0.386952\pi\)
−0.784250 + 0.620445i \(0.786952\pi\)
\(180\) 0 0
\(181\) 357.508 1100.30i 0.146814 0.451847i −0.850426 0.526095i \(-0.823656\pi\)
0.997240 + 0.0742478i \(0.0236556\pi\)
\(182\) 5.88344 18.1074i 0.00239621 0.00737477i
\(183\) 0 0
\(184\) −405.462 294.586i −0.162451 0.118028i
\(185\) 1741.13 + 5358.66i 0.691950 + 2.12960i
\(186\) 0 0
\(187\) −2572.65 + 1848.26i −1.00605 + 0.722772i
\(188\) −2955.48 −1.14655
\(189\) 0 0
\(190\) −337.055 244.884i −0.128697 0.0935041i
\(191\) −1185.92 + 861.618i −0.449266 + 0.326411i −0.789306 0.614000i \(-0.789559\pi\)
0.340040 + 0.940411i \(0.389559\pi\)
\(192\) 0 0
\(193\) −800.582 + 2463.94i −0.298586 + 0.918955i 0.683407 + 0.730038i \(0.260498\pi\)
−0.981993 + 0.188917i \(0.939502\pi\)
\(194\) −177.720 + 129.121i −0.0657709 + 0.0477853i
\(195\) 0 0
\(196\) −286.643 882.197i −0.104462 0.321500i
\(197\) 2831.08 1.02389 0.511944 0.859019i \(-0.328926\pi\)
0.511944 + 0.859019i \(0.328926\pi\)
\(198\) 0 0
\(199\) −4220.54 −1.50345 −0.751724 0.659478i \(-0.770777\pi\)
−0.751724 + 0.659478i \(0.770777\pi\)
\(200\) −228.828 704.261i −0.0809030 0.248994i
\(201\) 0 0
\(202\) −125.022 + 90.8338i −0.0435471 + 0.0316388i
\(203\) −1729.47 + 5322.75i −0.597955 + 1.84032i
\(204\) 0 0
\(205\) 2157.95 1567.84i 0.735207 0.534159i
\(206\) 29.0262 + 21.0888i 0.00981725 + 0.00713265i
\(207\) 0 0
\(208\) 263.875 0.0879635
\(209\) 1175.88 + 3685.73i 0.389172 + 1.21984i
\(210\) 0 0
\(211\) −151.201 465.350i −0.0493324 0.151829i 0.923356 0.383946i \(-0.125435\pi\)
−0.972688 + 0.232116i \(0.925435\pi\)
\(212\) −935.370 679.586i −0.303026 0.220161i
\(213\) 0 0
\(214\) −75.9446 + 233.734i −0.0242592 + 0.0746621i
\(215\) −1002.62 + 3085.76i −0.318039 + 0.978823i
\(216\) 0 0
\(217\) −810.779 589.065i −0.253637 0.184278i
\(218\) 63.0838 + 194.152i 0.0195990 + 0.0603194i
\(219\) 0 0
\(220\) −1691.05 + 5111.61i −0.518229 + 1.56648i
\(221\) −364.109 −0.110826
\(222\) 0 0
\(223\) 1142.63 + 830.169i 0.343122 + 0.249292i 0.745978 0.665971i \(-0.231982\pi\)
−0.402856 + 0.915263i \(0.631982\pi\)
\(224\) −699.977 + 508.563i −0.208791 + 0.151695i
\(225\) 0 0
\(226\) 39.3059 120.971i 0.0115690 0.0356057i
\(227\) 1833.50 1332.11i 0.536095 0.389496i −0.286538 0.958069i \(-0.592504\pi\)
0.822633 + 0.568573i \(0.192504\pi\)
\(228\) 0 0
\(229\) −1068.63 3288.89i −0.308370 0.949066i −0.978398 0.206730i \(-0.933718\pi\)
0.670028 0.742336i \(-0.266282\pi\)
\(230\) 582.727 0.167060
\(231\) 0 0
\(232\) 882.117 0.249629
\(233\) 1012.89 + 3117.36i 0.284793 + 0.876503i 0.986461 + 0.163998i \(0.0524392\pi\)
−0.701668 + 0.712504i \(0.747561\pi\)
\(234\) 0 0
\(235\) 5575.85 4051.09i 1.54778 1.12453i
\(236\) 500.864 1541.50i 0.138150 0.425183i
\(237\) 0 0
\(238\) 318.932 231.717i 0.0868625 0.0631093i
\(239\) −2911.30 2115.19i −0.787935 0.572469i 0.119415 0.992844i \(-0.461898\pi\)
−0.907350 + 0.420376i \(0.861898\pi\)
\(240\) 0 0
\(241\) 3946.71 1.05490 0.527448 0.849587i \(-0.323149\pi\)
0.527448 + 0.849587i \(0.323149\pi\)
\(242\) −229.800 + 163.244i −0.0610418 + 0.0433625i
\(243\) 0 0
\(244\) 449.377 + 1383.04i 0.117903 + 0.362869i
\(245\) 1750.02 + 1271.46i 0.456344 + 0.331554i
\(246\) 0 0
\(247\) −137.415 + 422.921i −0.0353989 + 0.108947i
\(248\) −48.8116 + 150.227i −0.0124982 + 0.0384654i
\(249\) 0 0
\(250\) 299.250 + 217.418i 0.0757049 + 0.0550028i
\(251\) −1212.75 3732.47i −0.304973 0.938611i −0.979687 0.200532i \(-0.935733\pi\)
0.674714 0.738079i \(-0.264267\pi\)
\(252\) 0 0
\(253\) −4360.73 3203.92i −1.08362 0.796162i
\(254\) 408.814 0.100989
\(255\) 0 0
\(256\) −3129.51 2273.72i −0.764041 0.555108i
\(257\) 4477.03 3252.75i 1.08665 0.789498i 0.107820 0.994170i \(-0.465613\pi\)
0.978831 + 0.204672i \(0.0656129\pi\)
\(258\) 0 0
\(259\) −2012.11 + 6192.62i −0.482726 + 1.48568i
\(260\) −500.668 + 363.756i −0.119423 + 0.0867662i
\(261\) 0 0
\(262\) 3.30022 + 10.1570i 0.000778200 + 0.00239505i
\(263\) −6186.25 −1.45042 −0.725210 0.688528i \(-0.758257\pi\)
−0.725210 + 0.688528i \(0.758257\pi\)
\(264\) 0 0
\(265\) 2696.19 0.625003
\(266\) −148.780 457.896i −0.0342942 0.105547i
\(267\) 0 0
\(268\) −985.035 + 715.670i −0.224517 + 0.163121i
\(269\) 1464.92 4508.55i 0.332036 1.02190i −0.636128 0.771583i \(-0.719465\pi\)
0.968164 0.250317i \(-0.0805349\pi\)
\(270\) 0 0
\(271\) −4143.89 + 3010.71i −0.928868 + 0.674862i −0.945715 0.324996i \(-0.894637\pi\)
0.0168471 + 0.999858i \(0.494637\pi\)
\(272\) 4420.25 + 3211.50i 0.985356 + 0.715903i
\(273\) 0 0
\(274\) 182.299 0.0401936
\(275\) −2430.07 7616.94i −0.532868 1.67025i
\(276\) 0 0
\(277\) 341.958 + 1052.44i 0.0741742 + 0.228285i 0.981269 0.192641i \(-0.0617053\pi\)
−0.907095 + 0.420926i \(0.861705\pi\)
\(278\) −209.904 152.504i −0.0452850 0.0329014i
\(279\) 0 0
\(280\) 415.274 1278.08i 0.0886335 0.272786i
\(281\) 2718.17 8365.66i 0.577054 1.77599i −0.0520205 0.998646i \(-0.516566\pi\)
0.629075 0.777345i \(-0.283434\pi\)
\(282\) 0 0
\(283\) −166.756 121.155i −0.0350269 0.0254485i 0.570134 0.821552i \(-0.306891\pi\)
−0.605161 + 0.796103i \(0.706891\pi\)
\(284\) −388.145 1194.59i −0.0810991 0.249597i
\(285\) 0 0
\(286\) −32.3997 0.172763i −0.00669871 3.57192e-5i
\(287\) 3082.49 0.633984
\(288\) 0 0
\(289\) −2124.61 1543.62i −0.432446 0.314191i
\(290\) −829.767 + 602.861i −0.168019 + 0.122073i
\(291\) 0 0
\(292\) 1598.15 4918.61i 0.320291 0.985754i
\(293\) −6843.27 + 4971.93i −1.36447 + 0.991342i −0.366318 + 0.930490i \(0.619382\pi\)
−0.998147 + 0.0608524i \(0.980618\pi\)
\(294\) 0 0
\(295\) 1168.01 + 3594.75i 0.230522 + 0.709473i
\(296\) 1026.28 0.201524
\(297\) 0 0
\(298\) −457.753 −0.0889829
\(299\) −192.202 591.537i −0.0371750 0.114413i
\(300\) 0 0
\(301\) −3033.41 + 2203.90i −0.580874 + 0.422030i
\(302\) 168.179 517.601i 0.0320450 0.0986245i
\(303\) 0 0
\(304\) 5398.43 3922.19i 1.01849 0.739976i
\(305\) −2743.54 1993.30i −0.515064 0.374216i
\(306\) 0 0
\(307\) −847.003 −0.157463 −0.0787313 0.996896i \(-0.525087\pi\)
−0.0787313 + 0.996896i \(0.525087\pi\)
\(308\) −5053.12 + 3630.30i −0.934832 + 0.671609i
\(309\) 0 0
\(310\) −56.7539 174.671i −0.0103981 0.0320020i
\(311\) 1728.52 + 1255.85i 0.315163 + 0.228979i 0.734109 0.679032i \(-0.237600\pi\)
−0.418946 + 0.908011i \(0.637600\pi\)
\(312\) 0 0
\(313\) 1210.83 3726.56i 0.218659 0.672964i −0.780214 0.625512i \(-0.784890\pi\)
0.998874 0.0474516i \(-0.0151100\pi\)
\(314\) 152.873 470.494i 0.0274749 0.0845589i
\(315\) 0 0
\(316\) 6526.00 + 4741.41i 1.16176 + 0.844068i
\(317\) −2669.87 8217.02i −0.473044 1.45588i −0.848578 0.529071i \(-0.822540\pi\)
0.375533 0.926809i \(-0.377460\pi\)
\(318\) 0 0
\(319\) 9524.04 + 50.7846i 1.67161 + 0.00891345i
\(320\) 9180.23 1.60372
\(321\) 0 0
\(322\) 544.805 + 395.824i 0.0942882 + 0.0685044i
\(323\) −7449.06 + 5412.06i −1.28321 + 0.932306i
\(324\) 0 0
\(325\) 283.983 874.010i 0.0484694 0.149173i
\(326\) −264.619 + 192.257i −0.0449566 + 0.0326629i
\(327\) 0 0
\(328\) −150.134 462.066i −0.0252737 0.0777845i
\(329\) 7964.74 1.33468
\(330\) 0 0
\(331\) −3048.65 −0.506250 −0.253125 0.967434i \(-0.581458\pi\)
−0.253125 + 0.967434i \(0.581458\pi\)
\(332\) 749.860 + 2307.83i 0.123958 + 0.381502i
\(333\) 0 0
\(334\) 537.586 390.579i 0.0880701 0.0639866i
\(335\) 877.408 2700.38i 0.143098 0.440411i
\(336\) 0 0
\(337\) −6783.37 + 4928.41i −1.09648 + 0.796639i −0.980482 0.196610i \(-0.937007\pi\)
−0.115998 + 0.993249i \(0.537007\pi\)
\(338\) 373.409 + 271.297i 0.0600910 + 0.0436587i
\(339\) 0 0
\(340\) −12814.0 −2.04392
\(341\) −535.658 + 1619.16i −0.0850660 + 0.257133i
\(342\) 0 0
\(343\) −1499.84 4616.02i −0.236104 0.726652i
\(344\) 478.110 + 347.367i 0.0749360 + 0.0544442i
\(345\) 0 0
\(346\) −195.065 + 600.348i −0.0303085 + 0.0932800i
\(347\) 1998.22 6149.90i 0.309136 0.951423i −0.668965 0.743294i \(-0.733263\pi\)
0.978101 0.208129i \(-0.0667374\pi\)
\(348\) 0 0
\(349\) −3397.32 2468.30i −0.521072 0.378581i 0.295935 0.955208i \(-0.404369\pi\)
−0.817008 + 0.576627i \(0.804369\pi\)
\(350\) 307.468 + 946.291i 0.0469568 + 0.144518i
\(351\) 0 0
\(352\) 1186.56 + 871.789i 0.179670 + 0.132007i
\(353\) −6402.27 −0.965322 −0.482661 0.875807i \(-0.660330\pi\)
−0.482661 + 0.875807i \(0.660330\pi\)
\(354\) 0 0
\(355\) 2369.70 + 1721.69i 0.354284 + 0.257402i
\(356\) 8659.52 6291.51i 1.28920 0.936656i
\(357\) 0 0
\(358\) 84.5657 260.267i 0.0124845 0.0384232i
\(359\) −3771.89 + 2740.44i −0.554520 + 0.402882i −0.829449 0.558582i \(-0.811346\pi\)
0.274929 + 0.961464i \(0.411346\pi\)
\(360\) 0 0
\(361\) 1355.39 + 4171.46i 0.197607 + 0.608173i
\(362\) 245.014 0.0355736
\(363\) 0 0
\(364\) −715.172 −0.102981
\(365\) 3726.86 + 11470.1i 0.534447 + 1.64486i
\(366\) 0 0
\(367\) −444.555 + 322.988i −0.0632305 + 0.0459397i −0.618952 0.785429i \(-0.712442\pi\)
0.555721 + 0.831369i \(0.312442\pi\)
\(368\) −2884.13 + 8876.43i −0.408548 + 1.25738i
\(369\) 0 0
\(370\) −965.372 + 701.384i −0.135641 + 0.0985492i
\(371\) 2520.73 + 1831.42i 0.352749 + 0.256287i
\(372\) 0 0
\(373\) 2727.49 0.378616 0.189308 0.981918i \(-0.439375\pi\)
0.189308 + 0.981918i \(0.439375\pi\)
\(374\) −540.634 397.215i −0.0747474 0.0549185i
\(375\) 0 0
\(376\) −387.927 1193.92i −0.0532070 0.163754i
\(377\) 885.659 + 643.469i 0.120991 + 0.0879054i
\(378\) 0 0
\(379\) −3040.92 + 9358.98i −0.412141 + 1.26844i 0.502643 + 0.864494i \(0.332361\pi\)
−0.914783 + 0.403945i \(0.867639\pi\)
\(380\) −4836.00 + 14883.7i −0.652846 + 2.00925i
\(381\) 0 0
\(382\) −251.154 182.474i −0.0336392 0.0244403i
\(383\) 3173.50 + 9767.01i 0.423389 + 1.30306i 0.904528 + 0.426413i \(0.140223\pi\)
−0.481139 + 0.876644i \(0.659777\pi\)
\(384\) 0 0
\(385\) 4557.21 13775.3i 0.603265 1.82352i
\(386\) −548.669 −0.0723485
\(387\) 0 0
\(388\) 6675.71 + 4850.19i 0.873474 + 0.634616i
\(389\) −5019.79 + 3647.09i −0.654276 + 0.475360i −0.864725 0.502245i \(-0.832507\pi\)
0.210449 + 0.977605i \(0.432507\pi\)
\(390\) 0 0
\(391\) 3979.69 12248.2i 0.514735 1.58419i
\(392\) 318.755 231.589i 0.0410703 0.0298393i
\(393\) 0 0
\(394\) 185.277 + 570.223i 0.0236906 + 0.0729123i
\(395\) −18811.1 −2.39618
\(396\) 0 0
\(397\) 14388.1 1.81894 0.909471 0.415767i \(-0.136487\pi\)
0.909471 + 0.415767i \(0.136487\pi\)
\(398\) −276.209 850.083i −0.0347867 0.107062i
\(399\) 0 0
\(400\) −11156.4 + 8105.61i −1.39455 + 1.01320i
\(401\) 803.328 2472.39i 0.100041 0.307893i −0.888494 0.458888i \(-0.848248\pi\)
0.988535 + 0.150995i \(0.0482478\pi\)
\(402\) 0 0
\(403\) −158.592 + 115.224i −0.0196030 + 0.0142424i
\(404\) 4696.21 + 3412.00i 0.578330 + 0.420181i
\(405\) 0 0
\(406\) −1185.27 −0.144887
\(407\) 11080.5 + 59.0840i 1.34948 + 0.00719579i
\(408\) 0 0
\(409\) −1046.25 3220.02i −0.126488 0.389290i 0.867681 0.497121i \(-0.165609\pi\)
−0.994169 + 0.107831i \(0.965609\pi\)
\(410\) 457.012 + 332.039i 0.0550493 + 0.0399957i
\(411\) 0 0
\(412\) 416.463 1281.74i 0.0498002 0.153269i
\(413\) −1349.78 + 4154.20i −0.160819 + 0.494951i
\(414\) 0 0
\(415\) −4578.05 3326.15i −0.541512 0.393432i
\(416\) 52.2982 + 160.957i 0.00616378 + 0.0189702i
\(417\) 0 0
\(418\) −665.410 + 478.048i −0.0778618 + 0.0559380i
\(419\) 627.249 0.0731339 0.0365670 0.999331i \(-0.488358\pi\)
0.0365670 + 0.999331i \(0.488358\pi\)
\(420\) 0 0
\(421\) 6662.59 + 4840.66i 0.771294 + 0.560378i 0.902354 0.430997i \(-0.141838\pi\)
−0.131059 + 0.991375i \(0.541838\pi\)
\(422\) 83.8336 60.9087i 0.00967051 0.00702604i
\(423\) 0 0
\(424\) 151.757 467.059i 0.0173820 0.0534962i
\(425\) 15394.3 11184.6i 1.75701 1.27655i
\(426\) 0 0
\(427\) −1211.03 3727.16i −0.137250 0.422412i
\(428\) 9231.58 1.04258
\(429\) 0 0
\(430\) −687.136 −0.0770619
\(431\) −5310.74 16344.8i −0.593525 1.82668i −0.561933 0.827183i \(-0.689942\pi\)
−0.0315922 0.999501i \(-0.510058\pi\)
\(432\) 0 0
\(433\) −8105.23 + 5888.80i −0.899568 + 0.653574i −0.938355 0.345673i \(-0.887651\pi\)
0.0387874 + 0.999247i \(0.487651\pi\)
\(434\) 65.5864 201.854i 0.00725403 0.0223256i
\(435\) 0 0
\(436\) 6203.75 4507.29i 0.681436 0.495092i
\(437\) −12724.6 9244.98i −1.39291 1.01201i
\(438\) 0 0
\(439\) −13539.5 −1.47199 −0.735995 0.676987i \(-0.763285\pi\)
−0.735995 + 0.676987i \(0.763285\pi\)
\(440\) −2286.88 12.1942i −0.247779 0.00132122i
\(441\) 0 0
\(442\) −23.8288 73.3374i −0.00256429 0.00789209i
\(443\) −2196.39 1595.77i −0.235561 0.171145i 0.463742 0.885970i \(-0.346506\pi\)
−0.699304 + 0.714825i \(0.746506\pi\)
\(444\) 0 0
\(445\) −7713.36 + 23739.3i −0.821682 + 2.52888i
\(446\) −92.4309 + 284.473i −0.00981330 + 0.0302022i
\(447\) 0 0
\(448\) 8582.81 + 6235.78i 0.905133 + 0.657618i
\(449\) 1659.48 + 5107.34i 0.174422 + 0.536816i 0.999607 0.0280473i \(-0.00892891\pi\)
−0.825185 + 0.564863i \(0.808929\pi\)
\(450\) 0 0
\(451\) −1594.37 4997.48i −0.166465 0.521778i
\(452\) −4777.90 −0.497198
\(453\) 0 0
\(454\) 388.300 + 282.117i 0.0401406 + 0.0291639i
\(455\) 1349.25 980.289i 0.139020 0.101004i
\(456\) 0 0
\(457\) −1616.02 + 4973.61i −0.165415 + 0.509094i −0.999067 0.0431964i \(-0.986246\pi\)
0.833652 + 0.552290i \(0.186246\pi\)
\(458\) 592.500 430.476i 0.0604491 0.0439188i
\(459\) 0 0
\(460\) −6764.08 20817.7i −0.685602 2.11007i
\(461\) 14846.7 1.49995 0.749976 0.661465i \(-0.230065\pi\)
0.749976 + 0.661465i \(0.230065\pi\)
\(462\) 0 0
\(463\) 10918.5 1.09595 0.547977 0.836494i \(-0.315398\pi\)
0.547977 + 0.836494i \(0.315398\pi\)
\(464\) −5076.31 15623.3i −0.507892 1.56313i
\(465\) 0 0
\(466\) −561.598 + 408.025i −0.0558273 + 0.0405609i
\(467\) −2226.36 + 6852.03i −0.220607 + 0.678960i 0.778100 + 0.628140i \(0.216183\pi\)
−0.998708 + 0.0508198i \(0.983817\pi\)
\(468\) 0 0
\(469\) 2654.58 1928.66i 0.261358 0.189888i
\(470\) 1180.86 + 857.944i 0.115891 + 0.0842000i
\(471\) 0 0
\(472\) 688.458 0.0671374
\(473\) 5142.06 + 3777.98i 0.499857 + 0.367255i
\(474\) 0 0
\(475\) −7181.32 22101.8i −0.693687 2.13495i
\(476\) −11980.1 8704.02i −1.15358 0.838127i
\(477\) 0 0
\(478\) 235.505 724.808i 0.0225350 0.0693556i
\(479\) 2880.68 8865.82i 0.274784 0.845699i −0.714492 0.699643i \(-0.753342\pi\)
0.989276 0.146055i \(-0.0466578\pi\)
\(480\) 0 0
\(481\) 1030.40 + 748.628i 0.0976759 + 0.0709657i
\(482\) 258.288 + 794.930i 0.0244081 + 0.0751205i
\(483\) 0 0
\(484\) 8499.26 + 6314.65i 0.798202 + 0.593036i
\(485\) −19242.6 −1.80157
\(486\) 0 0
\(487\) 7916.06 + 5751.36i 0.736573 + 0.535152i 0.891636 0.452753i \(-0.149558\pi\)
−0.155063 + 0.987905i \(0.549558\pi\)
\(488\) −499.719 + 363.067i −0.0463550 + 0.0336789i
\(489\) 0 0
\(490\) −141.564 + 435.690i −0.0130515 + 0.0401683i
\(491\) 5451.28 3960.59i 0.501045 0.364030i −0.308371 0.951266i \(-0.599784\pi\)
0.809416 + 0.587236i \(0.199784\pi\)
\(492\) 0 0
\(493\) 7004.58 + 21557.9i 0.639900 + 1.96941i
\(494\) −94.1759 −0.00857728
\(495\) 0 0
\(496\) 2941.58 0.266292
\(497\) 1046.01 + 3219.30i 0.0944066 + 0.290554i
\(498\) 0 0
\(499\) 14846.8 10786.9i 1.33194 0.967708i 0.332237 0.943196i \(-0.392197\pi\)
0.999700 0.0245123i \(-0.00780328\pi\)
\(500\) 4293.58 13214.3i 0.384030 1.18192i
\(501\) 0 0
\(502\) 672.410 488.535i 0.0597832 0.0434350i
\(503\) 995.261 + 723.099i 0.0882236 + 0.0640982i 0.631023 0.775764i \(-0.282635\pi\)
−0.542799 + 0.839863i \(0.682635\pi\)
\(504\) 0 0
\(505\) −13536.8 −1.19283
\(506\) 359.937 1088.00i 0.0316228 0.0955877i
\(507\) 0 0
\(508\) −4745.37 14604.7i −0.414452 1.27555i
\(509\) −895.023 650.272i −0.0779395 0.0566263i 0.548133 0.836391i \(-0.315339\pi\)
−0.626073 + 0.779765i \(0.715339\pi\)
\(510\) 0 0
\(511\) −4306.87 + 13255.2i −0.372847 + 1.14750i
\(512\) 1310.41 4033.03i 0.113110 0.348118i
\(513\) 0 0
\(514\) 948.149 + 688.871i 0.0813640 + 0.0591144i
\(515\) 971.184 + 2989.00i 0.0830980 + 0.255749i
\(516\) 0 0
\(517\) −4119.64 12912.8i −0.350448 1.09846i
\(518\) −1378.97 −0.116966
\(519\) 0 0
\(520\) −212.662 154.508i −0.0179343 0.0130300i
\(521\) 4770.34 3465.85i 0.401137 0.291443i −0.368867 0.929482i \(-0.620254\pi\)
0.770004 + 0.638039i \(0.220254\pi\)
\(522\) 0 0
\(523\) −231.034 + 711.048i −0.0193162 + 0.0594493i −0.960250 0.279141i \(-0.909950\pi\)
0.940934 + 0.338591i \(0.109950\pi\)
\(524\) 324.549 235.798i 0.0270572 0.0196582i
\(525\) 0 0
\(526\) −404.853 1246.01i −0.0335597 0.103286i
\(527\) −4058.96 −0.335505
\(528\) 0 0
\(529\) 9832.34 0.808116
\(530\) 176.449 + 543.055i 0.0144613 + 0.0445072i
\(531\) 0 0
\(532\) −14631.2 + 10630.2i −1.19237 + 0.866310i
\(533\) 186.321 573.438i 0.0151416 0.0466011i
\(534\) 0 0
\(535\) −17416.4 + 12653.8i −1.40743 + 1.02256i
\(536\) −418.400 303.985i −0.0337166 0.0244966i
\(537\) 0 0
\(538\) 1003.96 0.0804534
\(539\) 3454.86 2482.07i 0.276088 0.198349i
\(540\) 0 0
\(541\) −3280.34 10095.9i −0.260690 0.802320i −0.992655 0.120978i \(-0.961397\pi\)
0.731966 0.681342i \(-0.238603\pi\)
\(542\) −877.597 637.612i −0.0695499 0.0505309i
\(543\) 0 0
\(544\) −1082.87 + 3332.74i −0.0853453 + 0.262666i
\(545\) −5525.92 + 17007.0i −0.434320 + 1.33670i
\(546\) 0 0
\(547\) 8538.55 + 6203.62i 0.667426 + 0.484913i 0.869162 0.494527i \(-0.164659\pi\)
−0.201737 + 0.979440i \(0.564659\pi\)
\(548\) −2116.05 6512.55i −0.164951 0.507668i
\(549\) 0 0
\(550\) 1375.14 987.936i 0.106611 0.0765923i
\(551\) 27683.5 2.14039
\(552\) 0 0
\(553\) −17586.9 12777.7i −1.35239 0.982570i
\(554\) −189.598 + 137.751i −0.0145402 + 0.0105641i
\(555\) 0 0
\(556\) −3011.67 + 9268.96i −0.229718 + 0.706999i
\(557\) −9481.81 + 6888.94i −0.721287 + 0.524046i −0.886795 0.462162i \(-0.847074\pi\)
0.165508 + 0.986208i \(0.447074\pi\)
\(558\) 0 0
\(559\) 226.639 + 697.524i 0.0171482 + 0.0527766i
\(560\) −25026.0 −1.88847
\(561\) 0 0
\(562\) 1862.86 0.139822
\(563\) 2079.55 + 6400.21i 0.155671 + 0.479106i 0.998228 0.0595008i \(-0.0189509\pi\)
−0.842557 + 0.538607i \(0.818951\pi\)
\(564\) 0 0
\(565\) 9014.04 6549.08i 0.671192 0.487650i
\(566\) 13.4894 41.5162i 0.00100177 0.00308314i
\(567\) 0 0
\(568\) 431.627 313.595i 0.0318850 0.0231658i
\(569\) −1059.77 769.965i −0.0780804 0.0567287i 0.548060 0.836439i \(-0.315366\pi\)
−0.626141 + 0.779710i \(0.715366\pi\)
\(570\) 0 0
\(571\) −3206.49 −0.235005 −0.117502 0.993073i \(-0.537489\pi\)
−0.117502 + 0.993073i \(0.537489\pi\)
\(572\) 369.911 + 1159.47i 0.0270398 + 0.0847551i
\(573\) 0 0
\(574\) 201.730 + 620.861i 0.0146691 + 0.0451468i
\(575\) 26296.7 + 19105.7i 1.90722 + 1.38567i
\(576\) 0 0
\(577\) 3560.42 10957.9i 0.256884 0.790609i −0.736568 0.676363i \(-0.763555\pi\)
0.993453 0.114246i \(-0.0364451\pi\)
\(578\) 171.866 528.950i 0.0123680 0.0380647i
\(579\) 0 0
\(580\) 31168.6 + 22645.3i 2.23139 + 1.62120i
\(581\) −2020.80 6219.39i −0.144298 0.444103i
\(582\) 0 0
\(583\) 1665.38 5034.01i 0.118307 0.357611i
\(584\) 2196.73 0.155653
\(585\) 0 0
\(586\) −1449.28 1052.96i −0.102166 0.0742276i
\(587\) −1818.93 + 1321.53i −0.127897 + 0.0929224i −0.649894 0.760024i \(-0.725187\pi\)
0.521998 + 0.852947i \(0.325187\pi\)
\(588\) 0 0
\(589\) −1531.85 + 4714.56i −0.107163 + 0.329814i
\(590\) −647.601 + 470.510i −0.0451886 + 0.0328315i
\(591\) 0 0
\(592\) −5905.90 18176.5i −0.410019 1.26191i
\(593\) 11998.0 0.830861 0.415431 0.909625i \(-0.363631\pi\)
0.415431 + 0.909625i \(0.363631\pi\)
\(594\) 0 0
\(595\) 34532.4 2.37931
\(596\) 5313.43 + 16353.0i 0.365179 + 1.12390i
\(597\) 0 0
\(598\) 106.566 77.4250i 0.00728733 0.00529455i
\(599\) −6683.63 + 20570.1i −0.455903 + 1.40312i 0.414169 + 0.910200i \(0.364072\pi\)
−0.870072 + 0.492924i \(0.835928\pi\)
\(600\) 0 0
\(601\) 2703.52 1964.22i 0.183492 0.133315i −0.492247 0.870455i \(-0.663824\pi\)
0.675739 + 0.737141i \(0.263824\pi\)
\(602\) −642.419 466.745i −0.0434935 0.0315998i
\(603\) 0 0
\(604\) −20443.3 −1.37719
\(605\) −24690.3 263.317i −1.65918 0.0176948i
\(606\) 0 0
\(607\) 1078.41 + 3318.99i 0.0721106 + 0.221934i 0.980616 0.195940i \(-0.0627756\pi\)
−0.908505 + 0.417873i \(0.862776\pi\)
\(608\) 3462.38 + 2515.56i 0.230950 + 0.167795i
\(609\) 0 0
\(610\) 221.934 683.041i 0.0147309 0.0453370i
\(611\) 481.430 1481.69i 0.0318765 0.0981059i
\(612\) 0 0
\(613\) 2552.59 + 1854.56i 0.168186 + 0.122194i 0.668694 0.743537i \(-0.266854\pi\)
−0.500508 + 0.865732i \(0.666854\pi\)
\(614\) −55.4312 170.600i −0.00364336 0.0112131i
\(615\) 0 0
\(616\) −2129.78 1564.79i −0.139304 0.102349i
\(617\) 204.683 0.0133553 0.00667767 0.999978i \(-0.497874\pi\)
0.00667767 + 0.999978i \(0.497874\pi\)
\(618\) 0 0
\(619\) −13999.8 10171.4i −0.909044 0.660459i 0.0317289 0.999497i \(-0.489899\pi\)
−0.940773 + 0.339037i \(0.889899\pi\)
\(620\) −5581.26 + 4055.02i −0.361530 + 0.262667i
\(621\) 0 0
\(622\) −139.826 + 430.339i −0.00901367 + 0.0277412i
\(623\) −23336.6 + 16955.0i −1.50074 + 1.09035i
\(624\) 0 0
\(625\) 1547.45 + 4762.57i 0.0990370 + 0.304805i
\(626\) 829.830 0.0529819
\(627\) 0 0
\(628\) −18582.7 −1.18078
\(629\) 8149.31 + 25081.0i 0.516588 + 1.58990i
\(630\) 0 0
\(631\) −2010.05 + 1460.38i −0.126813 + 0.0921347i −0.649383 0.760461i \(-0.724973\pi\)
0.522571 + 0.852596i \(0.324973\pi\)
\(632\) −1058.79 + 3258.63i −0.0666401 + 0.205097i
\(633\) 0 0
\(634\) 1480.31 1075.51i 0.0927297 0.0673721i
\(635\) 28971.4 + 21049.0i 1.81055 + 1.31544i
\(636\) 0 0
\(637\) 488.969 0.0304139
\(638\) 613.062 + 1921.62i 0.0380429 + 0.119244i
\(639\) 0 0
\(640\) 2451.68 + 7545.49i 0.151424 + 0.466034i
\(641\) −13255.1 9630.41i −0.816764 0.593414i 0.0990195 0.995085i \(-0.468429\pi\)
−0.915784 + 0.401671i \(0.868429\pi\)
\(642\) 0 0
\(643\) −3764.00 + 11584.4i −0.230852 + 0.710489i 0.766793 + 0.641895i \(0.221851\pi\)
−0.997645 + 0.0685945i \(0.978149\pi\)
\(644\) 7816.77 24057.5i 0.478298 1.47205i
\(645\) 0 0
\(646\) −1577.57 1146.17i −0.0960815 0.0698073i
\(647\) −2292.65 7056.06i −0.139310 0.428751i 0.856926 0.515440i \(-0.172371\pi\)
−0.996235 + 0.0866885i \(0.972371\pi\)
\(648\) 0 0
\(649\) 7433.14 + 39.6354i 0.449578 + 0.00239726i
\(650\) 194.624 0.0117443
\(651\) 0 0
\(652\) 9939.89 + 7221.75i 0.597049 + 0.433782i
\(653\) −9933.63 + 7217.21i −0.595303 + 0.432513i −0.844209 0.536015i \(-0.819929\pi\)
0.248905 + 0.968528i \(0.419929\pi\)
\(654\) 0 0
\(655\) −289.088 + 889.720i −0.0172452 + 0.0530752i
\(656\) −7319.72 + 5318.09i −0.435651 + 0.316519i
\(657\) 0 0
\(658\) 521.244 + 1604.22i 0.0308818 + 0.0950443i
\(659\) 17155.7 1.01410 0.507049 0.861917i \(-0.330736\pi\)
0.507049 + 0.861917i \(0.330736\pi\)
\(660\) 0 0
\(661\) −6971.48 −0.410226 −0.205113 0.978738i \(-0.565756\pi\)
−0.205113 + 0.978738i \(0.565756\pi\)
\(662\) −199.515 614.045i −0.0117136 0.0360507i
\(663\) 0 0
\(664\) −833.864 + 605.837i −0.0487352 + 0.0354082i
\(665\) 13032.6 40110.1i 0.759971 2.33895i
\(666\) 0 0
\(667\) −31325.7 + 22759.5i −1.81850 + 1.32121i
\(668\) −20193.4 14671.4i −1.16962 0.849778i
\(669\) 0 0
\(670\) 601.321 0.0346732
\(671\) −5416.27 + 3891.19i −0.311614 + 0.223872i
\(672\) 0 0
\(673\) −8621.49 26534.2i −0.493810 1.51979i −0.818804 0.574074i \(-0.805362\pi\)
0.324994 0.945716i \(-0.394638\pi\)
\(674\) −1436.59 1043.74i −0.0820999 0.0596491i
\(675\) 0 0
\(676\) 5357.60 16489.0i 0.304825 0.938155i
\(677\) 2336.86 7192.12i 0.132663 0.408295i −0.862556 0.505961i \(-0.831138\pi\)
0.995219 + 0.0976664i \(0.0311378\pi\)
\(678\) 0 0
\(679\) −17990.4 13070.8i −1.01680 0.738749i
\(680\) −1681.92 5176.41i −0.0948509 0.291921i
\(681\) 0 0
\(682\) −361.179 1.92590i −0.0202790 0.000108133i
\(683\) 28882.3 1.61809 0.809043 0.587750i \(-0.199986\pi\)
0.809043 + 0.587750i \(0.199986\pi\)
\(684\) 0 0
\(685\) 12918.9 + 9386.16i 0.720595 + 0.523543i
\(686\) 831.584 604.181i 0.0462829 0.0336265i
\(687\) 0 0
\(688\) 3400.89 10466.8i 0.188456 0.580007i
\(689\) 493.067 358.234i 0.0272632 0.0198079i
\(690\) 0 0
\(691\) 7893.89 + 24294.9i 0.434584 + 1.33751i 0.893512 + 0.449039i \(0.148234\pi\)
−0.458928 + 0.888474i \(0.651766\pi\)
\(692\) 23711.4 1.30256
\(693\) 0 0
\(694\) 1369.46 0.0749047
\(695\) −7023.15 21615.0i −0.383314 1.17972i
\(696\) 0 0
\(697\) 10100.2 7338.21i 0.548883 0.398787i
\(698\) 274.820 845.808i 0.0149027 0.0458658i
\(699\) 0 0
\(700\) 30236.9 21968.4i 1.63264 1.18618i
\(701\) −5340.41 3880.03i −0.287738 0.209054i 0.434547 0.900649i \(-0.356908\pi\)
−0.722285 + 0.691595i \(0.756908\pi\)
\(702\) 0 0
\(703\) 32207.7 1.72793
\(704\) 5670.41 17140.2i 0.303568 0.917608i
\(705\) 0 0
\(706\) −418.990 1289.52i −0.0223355 0.0687417i
\(707\) −12655.8 9195.01i −0.673228 0.489129i
\(708\) 0 0
\(709\) −5952.67 + 18320.4i −0.315314 + 0.970436i 0.660311 + 0.750992i \(0.270424\pi\)
−0.975625 + 0.219444i \(0.929576\pi\)
\(710\) −191.693 + 589.970i −0.0101325 + 0.0311847i
\(711\) 0 0
\(712\) 3678.18 + 2672.36i 0.193604 + 0.140661i
\(713\) −2142.60 6594.23i −0.112540 0.346362i
\(714\) 0 0
\(715\) −2287.17 1680.43i −0.119630 0.0878946i
\(716\) −10279.5 −0.536542
\(717\) 0 0
\(718\) −798.814 580.372i −0.0415202 0.0301662i
\(719\) 21731.1 15788.5i 1.12717 0.818933i 0.141885 0.989883i \(-0.454684\pi\)
0.985280 + 0.170950i \(0.0546835\pi\)
\(720\) 0 0
\(721\) −1122.33 + 3454.17i −0.0579718 + 0.178419i
\(722\) −751.495 + 545.993i −0.0387365 + 0.0281437i
\(723\) 0 0
\(724\) −2844.03 8753.02i −0.145991 0.449314i
\(725\) −57210.8 −2.93070
\(726\) 0 0
\(727\) −17670.1 −0.901442 −0.450721 0.892665i \(-0.648833\pi\)
−0.450721 + 0.892665i \(0.648833\pi\)
\(728\) −93.8712 288.906i −0.00477898 0.0147082i
\(729\) 0 0
\(730\) −2066.36 + 1501.30i −0.104766 + 0.0761172i
\(731\) −4692.74 + 14442.8i −0.237438 + 0.730759i
\(732\) 0 0
\(733\) 12711.4 9235.38i 0.640528 0.465371i −0.219504 0.975612i \(-0.570444\pi\)
0.860031 + 0.510241i \(0.170444\pi\)
\(734\) −94.1484 68.4028i −0.00473444 0.00343977i
\(735\) 0 0
\(736\) −5986.03 −0.299794
\(737\) −4499.88 3306.15i −0.224905 0.165243i
\(738\) 0 0
\(739\) 5653.11 + 17398.5i 0.281398 + 0.866053i 0.987455 + 0.157899i \(0.0504720\pi\)
−0.706058 + 0.708154i \(0.749528\pi\)
\(740\) 36262.4 + 26346.1i 1.80139 + 1.30879i
\(741\) 0 0
\(742\) −203.910 + 627.571i −0.0100886 + 0.0310496i
\(743\) −2963.38 + 9120.35i −0.146320 + 0.450327i −0.997178 0.0750681i \(-0.976083\pi\)
0.850858 + 0.525395i \(0.176083\pi\)
\(744\) 0 0
\(745\) −32439.6 23568.7i −1.59529 1.15905i
\(746\) 178.497 + 549.359i 0.00876040 + 0.0269617i
\(747\) 0 0
\(748\) −7914.88 + 23924.7i −0.386894 + 1.16948i
\(749\) −24878.2 −1.21366
\(750\) 0 0
\(751\) 15875.4 + 11534.2i 0.771375 + 0.560437i 0.902378 0.430945i \(-0.141820\pi\)
−0.131003 + 0.991382i \(0.541820\pi\)
\(752\) −18913.2 + 13741.2i −0.917145 + 0.666345i
\(753\) 0 0
\(754\) −71.6438 + 220.497i −0.00346036 + 0.0106499i
\(755\) 38568.5 28021.6i 1.85914 1.35074i
\(756\) 0 0
\(757\) −6612.31 20350.6i −0.317475 0.977088i −0.974724 0.223414i \(-0.928280\pi\)
0.657249 0.753674i \(-0.271720\pi\)
\(758\) −2084.05 −0.0998632
\(759\) 0 0
\(760\) −6647.27 −0.317266
\(761\) −5366.23 16515.6i −0.255618 0.786713i −0.993707 0.112009i \(-0.964271\pi\)
0.738089 0.674704i \(-0.235729\pi\)
\(762\) 0 0
\(763\) −16718.5 + 12146.7i −0.793252 + 0.576331i
\(764\) −3603.52 + 11090.5i −0.170642 + 0.525183i
\(765\) 0 0
\(766\) −1759.54 + 1278.38i −0.0829960 + 0.0603001i
\(767\) 691.222 + 502.202i 0.0325405 + 0.0236421i
\(768\) 0 0
\(769\) −7235.62 −0.339302 −0.169651 0.985504i \(-0.554264\pi\)
−0.169651 + 0.985504i \(0.554264\pi\)
\(770\) 3072.80 + 16.3850i 0.143813 + 0.000766848i
\(771\) 0 0
\(772\) 6368.75 + 19601.0i 0.296912 + 0.913803i
\(773\) −29115.2 21153.4i −1.35472 0.984263i −0.998761 0.0497615i \(-0.984154\pi\)
−0.355960 0.934501i \(-0.615846\pi\)
\(774\) 0 0
\(775\) 3165.74 9743.14i 0.146731 0.451592i
\(776\) −1083.08 + 3333.39i −0.0501036 + 0.154203i
\(777\) 0 0
\(778\) −1063.10 772.385i −0.0489895 0.0355930i
\(779\) −4711.66 14501.0i −0.216705 0.666948i
\(780\) 0 0
\(781\) 4678.24 3360.98i 0.214342 0.153989i
\(782\) 2727.43 0.124722
\(783\) 0 0
\(784\) −5936.03 4312.78i −0.270409 0.196464i
\(785\) 35058.3 25471.4i 1.59399 1.15810i
\(786\) 0 0
\(787\) 6781.01 20869.8i 0.307137 0.945271i −0.671734 0.740792i \(-0.734450\pi\)
0.978871 0.204478i \(-0.0655498\pi\)
\(788\) 18220.4 13237.9i 0.823698 0.598452i
\(789\) 0 0
\(790\) −1231.07 3788.85i −0.0554425 0.170635i
\(791\) 12876.0 0.578783
\(792\) 0 0
\(793\) −766.568 −0.0343274
\(794\) 941.617 + 2898.00i 0.0420865 + 0.129529i
\(795\) 0 0
\(796\) −27162.8 + 19734.9i −1.20950 + 0.878750i
\(797\) 435.879 1341.50i 0.0193722 0.0596214i −0.940903 0.338676i \(-0.890021\pi\)
0.960275 + 0.279054i \(0.0900210\pi\)
\(798\) 0 0
\(799\) 26097.5 18961.0i 1.15552 0.839537i
\(800\) −7155.36 5198.67i −0.316225 0.229751i
\(801\) 0 0
\(802\) 550.551 0.0242402
\(803\) 23717.6 + 126.468i 1.04231 + 0.00555787i
\(804\) 0 0
\(805\) 18228.5 + 56101.7i 0.798102 + 2.45630i
\(806\) −33.5868 24.4022i −0.00146780 0.00106642i
\(807\) 0 0
\(808\) −761.925 + 2344.96i −0.0331738 + 0.102098i
\(809\) −4078.19 + 12551.4i −0.177233 + 0.545467i −0.999728 0.0233046i \(-0.992581\pi\)
0.822495 + 0.568772i \(0.192581\pi\)
\(810\) 0 0
\(811\) −24529.0 17821.4i −1.06206 0.771631i −0.0875906 0.996157i \(-0.527917\pi\)
−0.974468 + 0.224526i \(0.927917\pi\)
\(812\) 13758.2 + 42343.3i 0.594602 + 1.83000i
\(813\) 0 0
\(814\) 713.252 + 2235.66i 0.0307119 + 0.0962650i
\(815\) −28651.6 −1.23144
\(816\) 0 0
\(817\) 15004.5 + 10901.4i 0.642524 + 0.466821i
\(818\) 580.092 421.461i 0.0247951 0.0180147i
\(819\) 0 0
\(820\) 6557.13 20180.8i 0.279250 0.859443i
\(821\) −18468.6 + 13418.3i −0.785092 + 0.570403i −0.906503 0.422200i \(-0.861258\pi\)
0.121411 + 0.992602i \(0.461258\pi\)
\(822\) 0 0
\(823\) 2612.94 + 8041.79i 0.110670 + 0.340607i 0.991019 0.133719i \(-0.0426919\pi\)
−0.880349 + 0.474326i \(0.842692\pi\)
\(824\) 572.445 0.0242015
\(825\) 0 0
\(826\) −925.056 −0.0389671
\(827\) −6279.59 19326.6i −0.264042 0.812637i −0.991913 0.126923i \(-0.959490\pi\)
0.727871 0.685714i \(-0.240510\pi\)
\(828\) 0 0
\(829\) 28127.5 20435.8i 1.17842 0.856171i 0.186426 0.982469i \(-0.440310\pi\)
0.991992 + 0.126298i \(0.0403096\pi\)
\(830\) 370.333 1139.77i 0.0154873 0.0476649i
\(831\) 0 0
\(832\) 1678.84 1219.75i 0.0699557 0.0508258i
\(833\) 8190.87 + 5951.02i 0.340693 + 0.247528i
\(834\) 0 0
\(835\) 58207.2 2.41239
\(836\) 24801.9 + 18222.5i 1.02607 + 0.753873i
\(837\) 0 0
\(838\) 41.0496 + 126.338i 0.00169217 + 0.00520795i
\(839\) −20046.1 14564.3i −0.824872 0.599305i 0.0932319 0.995644i \(-0.470280\pi\)
−0.918104 + 0.396340i \(0.870280\pi\)
\(840\) 0 0
\(841\) 13523.4 41620.8i 0.554489 1.70654i
\(842\) −538.958 + 1658.74i −0.0220590 + 0.0678908i
\(843\) 0 0
\(844\) −3149.05 2287.92i −0.128430 0.0933097i
\(845\) 12493.8 + 38452.1i 0.508640 + 1.56543i
\(846\) 0 0
\(847\) −22904.7 17017.4i −0.929179 0.690346i
\(848\) −9145.44 −0.370349
\(849\) 0 0
\(850\) 3260.21 + 2368.68i 0.131558 + 0.0955825i
\(851\) −36445.1 + 26478.9i −1.46806 + 1.06661i
\(852\) 0 0
\(853\) −4036.24 + 12422.3i −0.162014 + 0.498628i −0.998804 0.0488960i \(-0.984430\pi\)
0.836790 + 0.547524i \(0.184430\pi\)
\(854\) 671.455 487.840i 0.0269048 0.0195475i
\(855\) 0 0
\(856\) 1211.71 + 3729.25i 0.0483824 + 0.148906i
\(857\) 40272.1 1.60521 0.802607 0.596508i \(-0.203446\pi\)
0.802607 + 0.596508i \(0.203446\pi\)
\(858\) 0 0
\(859\) −44537.4 −1.76903 −0.884515 0.466512i \(-0.845510\pi\)
−0.884515 + 0.466512i \(0.845510\pi\)
\(860\) 7976.02 + 24547.7i 0.316256 + 0.973335i
\(861\) 0 0
\(862\) 2944.54 2139.33i 0.116347 0.0845313i
\(863\) −4560.22 + 14034.9i −0.179874 + 0.553597i −0.999822 0.0188413i \(-0.994002\pi\)
0.819948 + 0.572438i \(0.194002\pi\)
\(864\) 0 0
\(865\) −44734.3 + 32501.4i −1.75839 + 1.27755i
\(866\) −1716.53 1247.14i −0.0673559 0.0489369i
\(867\) 0 0
\(868\) −7972.47 −0.311755
\(869\) −11619.2 + 35121.8i −0.453572 + 1.37103i
\(870\) 0 0
\(871\) −198.335 610.412i −0.00771563 0.0237463i
\(872\) 2635.08 + 1914.50i 0.102334 + 0.0743499i
\(873\) 0 0
\(874\) 1029.33 3167.97i 0.0398373 0.122606i
\(875\) −11570.8 + 35611.2i −0.447045 + 1.37586i
\(876\) 0 0
\(877\) −11771.8 8552.74i −0.453258 0.329311i 0.337623 0.941281i \(-0.390377\pi\)
−0.790881 + 0.611971i \(0.790377\pi\)
\(878\) −886.076 2727.06i −0.0340588 0.104822i
\(879\) 0 0
\(880\) 12944.3 + 40573.4i 0.495856 + 1.55424i
\(881\) −13139.5 −0.502476 −0.251238 0.967925i \(-0.580838\pi\)
−0.251238 + 0.967925i \(0.580838\pi\)
\(882\) 0 0
\(883\) −25815.2 18755.8i −0.983861 0.714817i −0.0252930 0.999680i \(-0.508052\pi\)
−0.958568 + 0.284863i \(0.908052\pi\)
\(884\) −2343.35 + 1702.55i −0.0891578 + 0.0647770i
\(885\) 0 0
\(886\) 177.673 546.821i 0.00673707 0.0207346i
\(887\) 6871.20 4992.22i 0.260104 0.188977i −0.450089 0.892984i \(-0.648608\pi\)
0.710193 + 0.704007i \(0.248608\pi\)
\(888\) 0 0
\(889\) 12788.3 + 39358.4i 0.482459 + 1.48486i
\(890\) −5286.26 −0.199096
\(891\) 0 0
\(892\) 11235.6 0.421744
\(893\) −12174.3 37468.7i −0.456213 1.40408i
\(894\) 0 0
\(895\) 19393.5 14090.2i 0.724305 0.526238i
\(896\) −2833.23 + 8719.78i −0.105638 + 0.325120i
\(897\) 0 0
\(898\) −920.096 + 668.489i −0.0341916 + 0.0248416i
\(899\) 9873.00 + 7173.15i 0.366277 + 0.266116i
\(900\) 0 0
\(901\) 12619.4 0.466608
\(902\) 902.228 648.185i 0.0333048 0.0239271i
\(903\) 0 0
\(904\) −627.132 1930.11i −0.0230731 0.0710117i
\(905\) 17363.4 + 12615.2i 0.637766 + 0.463364i
\(906\) 0 0
\(907\) 4266.48 13130.9i 0.156192 0.480710i −0.842088 0.539341i \(-0.818674\pi\)
0.998280 + 0.0586309i \(0.0186735\pi\)
\(908\) 5571.26 17146.6i 0.203622 0.626684i
\(909\) 0 0
\(910\) 285.746 + 207.607i 0.0104092 + 0.00756274i
\(911\) 6457.15 + 19873.1i 0.234835 + 0.722748i 0.997143 + 0.0755340i \(0.0240661\pi\)
−0.762308 + 0.647214i \(0.775934\pi\)
\(912\) 0 0
\(913\) −9037.94 + 6493.10i −0.327615 + 0.235367i
\(914\) −1107.52 −0.0400805
\(915\) 0 0
\(916\) −22256.1 16170.0i −0.802798 0.583267i
\(917\) −874.628 + 635.454i −0.0314970 + 0.0228839i
\(918\) 0 0
\(919\) −3616.18 + 11129.4i −0.129800 + 0.399485i −0.994745 0.102383i \(-0.967353\pi\)
0.864945 + 0.501867i \(0.167353\pi\)
\(920\) 7521.83 5464.93i 0.269552 0.195841i
\(921\) 0 0
\(922\) 971.624 + 2990.35i 0.0347058 + 0.106813i
\(923\) 662.115 0.0236119
\(924\) 0 0
\(925\) −66560.5 −2.36594
\(926\) 714.550 + 2199.16i 0.0253581 + 0.0780441i
\(927\) 0 0
\(928\) 8523.74 6192.86i 0.301515 0.219063i
\(929\) −9323.94 + 28696.1i −0.329288 + 1.01344i 0.640180 + 0.768225i \(0.278860\pi\)
−0.969468 + 0.245219i \(0.921140\pi\)
\(930\) 0 0
\(931\) 10003.5 7267.95i 0.352149 0.255851i
\(932\) 21095.4 + 15326.7i 0.741418 + 0.538671i
\(933\) 0 0
\(934\) −1525.81 −0.0534539
\(935\) −17861.3 55985.5i −0.624736 1.95821i
\(936\) 0 0
\(937\) 16674.1 + 51317.7i 0.581345 + 1.78919i 0.613479 + 0.789711i \(0.289770\pi\)
−0.0321342 + 0.999484i \(0.510230\pi\)
\(938\) 562.189 + 408.454i 0.0195694 + 0.0142180i
\(939\) 0 0
\(940\) 16942.8 52144.4i 0.587885 1.80932i
\(941\) 2538.21 7811.81i 0.0879313 0.270625i −0.897416 0.441186i \(-0.854558\pi\)
0.985347 + 0.170561i \(0.0545580\pi\)
\(942\) 0 0
\(943\) 17253.3 + 12535.3i 0.595806 + 0.432878i
\(944\) −3961.86 12193.3i −0.136597 0.420402i
\(945\) 0 0
\(946\) −424.428 + 1282.94i −0.0145870 + 0.0440929i
\(947\) 16429.1 0.563752 0.281876 0.959451i \(-0.409043\pi\)
0.281876 + 0.959451i \(0.409043\pi\)
\(948\) 0 0
\(949\) 2205.55 + 1602.42i 0.0754426 + 0.0548123i
\(950\) 3981.68 2892.86i 0.135982 0.0987966i
\(951\) 0 0
\(952\) 1943.67 5982.01i 0.0661710 0.203654i
\(953\) 9432.80 6853.33i 0.320628 0.232950i −0.415816 0.909449i \(-0.636504\pi\)
0.736443 + 0.676499i \(0.236504\pi\)
\(954\) 0 0
\(955\) −8403.34 25862.8i −0.284739 0.876336i
\(956\) −28627.2 −0.968482
\(957\) 0 0
\(958\) 1974.24 0.0665812
\(959\) 5702.56 + 17550.7i 0.192018 + 0.590971i
\(960\) 0 0
\(961\) 22333.5 16226.2i 0.749673 0.544669i
\(962\) −83.3521 + 256.531i −0.00279353 + 0.00859762i
\(963\) 0 0
\(964\) 25400.4 18454.5i 0.848644 0.616576i
\(965\) −38882.5 28249.8i −1.29707 0.942377i
\(966\) 0 0
\(967\) 15270.1 0.507809 0.253905 0.967229i \(-0.418285\pi\)
0.253905 + 0.967229i \(0.418285\pi\)
\(968\) −1435.32 + 4262.26i −0.0476581 + 0.141523i
\(969\) 0 0
\(970\) −1259.31 3875.77i −0.0416847 0.128292i
\(971\) 24556.6 + 17841.4i 0.811594 + 0.589658i 0.914292 0.405055i \(-0.132748\pi\)
−0.102698 + 0.994713i \(0.532748\pi\)
\(972\) 0 0
\(973\) 8116.16 24979.0i 0.267412 0.823010i
\(974\) −640.355 + 1970.81i −0.0210660 + 0.0648346i
\(975\) 0 0
\(976\) 9306.05 + 6761.24i 0.305204 + 0.221744i
\(977\) −16241.9 49987.4i −0.531857 1.63689i −0.750344 0.661047i \(-0.770112\pi\)
0.218488 0.975840i \(-0.429888\pi\)
\(978\) 0 0
\(979\) 39558.8 + 29064.7i 1.29142 + 0.948836i
\(980\) 17208.1 0.560910
\(981\) 0 0
\(982\) 1154.48 + 838.778i 0.0375162 + 0.0272571i
\(983\) 27337.5 19861.9i 0.887012 0.644452i −0.0480855 0.998843i \(-0.515312\pi\)
0.935097 + 0.354392i \(0.115312\pi\)
\(984\) 0 0
\(985\) −16229.6 + 49949.5i −0.524992 + 1.61576i
\(986\) −3883.69 + 2821.67i −0.125438 + 0.0911361i
\(987\) 0 0
\(988\) 1093.16 + 3364.40i 0.0352004 + 0.108336i
\(989\) −25941.0 −0.834051
\(990\) 0 0
\(991\) 5221.81 0.167383 0.0836914 0.996492i \(-0.473329\pi\)
0.0836914 + 0.996492i \(0.473329\pi\)
\(992\) 583.001 + 1794.29i 0.0186596 + 0.0574283i
\(993\) 0 0
\(994\) −579.962 + 421.367i −0.0185063 + 0.0134456i
\(995\) 24194.9 74464.2i 0.770884 2.37254i
\(996\) 0 0
\(997\) −11623.6 + 8445.03i −0.369230 + 0.268262i −0.756892 0.653540i \(-0.773283\pi\)
0.387661 + 0.921802i \(0.373283\pi\)
\(998\) 3144.28 + 2284.45i 0.0997299 + 0.0724580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.e.82.4 yes 24
3.2 odd 2 inner 99.4.f.e.82.3 yes 24
11.3 even 5 1089.4.a.bm.1.7 12
11.8 odd 10 1089.4.a.bl.1.6 12
11.9 even 5 inner 99.4.f.e.64.4 yes 24
33.8 even 10 1089.4.a.bl.1.7 12
33.14 odd 10 1089.4.a.bm.1.6 12
33.20 odd 10 inner 99.4.f.e.64.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.f.e.64.3 24 33.20 odd 10 inner
99.4.f.e.64.4 yes 24 11.9 even 5 inner
99.4.f.e.82.3 yes 24 3.2 odd 2 inner
99.4.f.e.82.4 yes 24 1.1 even 1 trivial
1089.4.a.bl.1.6 12 11.8 odd 10
1089.4.a.bl.1.7 12 33.8 even 10
1089.4.a.bm.1.6 12 33.14 odd 10
1089.4.a.bm.1.7 12 11.3 even 5