Properties

Label 990.2.bh.c.73.1
Level $990$
Weight $2$
Character 990.73
Analytic conductor $7.905$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(73,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 15, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 990.73
Dual form 990.2.bh.c.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.156434 - 0.987688i) q^{2} +(-0.951057 + 0.309017i) q^{4} +(-2.14909 - 0.617590i) q^{5} +(-0.00697389 + 0.0136870i) q^{7} +(0.453990 + 0.891007i) q^{8} +(-0.273795 + 2.21924i) q^{10} +(-2.43343 + 2.25353i) q^{11} +(-2.31203 + 0.366190i) q^{13} +(0.0146095 + 0.00474691i) q^{14} +(0.809017 - 0.587785i) q^{16} +(3.88580 + 0.615451i) q^{17} +(1.78456 - 5.49230i) q^{19} +(2.23475 - 0.0767418i) q^{20} +(2.60646 + 2.05094i) q^{22} +(4.75841 + 4.75841i) q^{23} +(4.23716 + 2.65451i) q^{25} +(0.723362 + 2.22628i) q^{26} +(0.00240304 - 0.0151722i) q^{28} +(1.28099 + 3.94247i) q^{29} +(4.70277 + 3.41676i) q^{31} +(-0.707107 - 0.707107i) q^{32} -3.93424i q^{34} +(0.0234405 - 0.0251076i) q^{35} +(-1.00521 - 0.512178i) q^{37} +(-5.70385 - 0.903401i) q^{38} +(-0.425389 - 2.19523i) q^{40} +(4.46390 + 1.45041i) q^{41} +(-5.68946 + 5.68946i) q^{43} +(1.61795 - 2.89521i) q^{44} +(3.95544 - 5.44420i) q^{46} +(0.703097 + 1.37991i) q^{47} +(4.11436 + 5.66293i) q^{49} +(1.95899 - 4.60026i) q^{50} +(2.08571 - 1.06272i) q^{52} +(-2.19559 - 13.8624i) q^{53} +(6.62142 - 3.34018i) q^{55} -0.0153613 q^{56} +(3.69354 - 1.88195i) q^{58} +(-1.86696 + 0.606613i) q^{59} +(4.84534 + 6.66904i) q^{61} +(2.63902 - 5.17937i) q^{62} +(-0.587785 + 0.809017i) q^{64} +(5.19491 + 0.640913i) q^{65} +(3.67640 - 3.67640i) q^{67} +(-3.88580 + 0.615451i) q^{68} +(-0.0284654 - 0.0192242i) q^{70} +(5.20051 - 3.77839i) q^{71} +(4.10721 + 2.09273i) q^{73} +(-0.348623 + 1.07295i) q^{74} +5.77495i q^{76} +(-0.0138737 - 0.0490224i) q^{77} +(3.84472 + 2.79336i) q^{79} +(-2.10166 + 0.763562i) q^{80} +(0.734244 - 4.63584i) q^{82} +(-2.08413 + 13.1587i) q^{83} +(-7.97084 - 3.72249i) q^{85} +(6.50944 + 4.72938i) q^{86} +(-3.11267 - 1.14512i) q^{88} +9.48232i q^{89} +(0.0111118 - 0.0341986i) q^{91} +(-5.99594 - 3.05509i) q^{92} +(1.25293 - 0.910306i) q^{94} +(-7.22716 + 10.7013i) q^{95} +(4.39615 - 0.696283i) q^{97} +(4.94958 - 4.94958i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 8 q^{5} - 20 q^{7} - 12 q^{11} + 12 q^{16} + 20 q^{17} + 4 q^{20} - 4 q^{22} + 8 q^{23} - 20 q^{25} - 8 q^{26} - 20 q^{28} + 16 q^{31} + 20 q^{37} + 36 q^{38} + 20 q^{41} + 40 q^{46} - 40 q^{47}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156434 0.987688i −0.110616 0.698401i
\(3\) 0 0
\(4\) −0.951057 + 0.309017i −0.475528 + 0.154508i
\(5\) −2.14909 0.617590i −0.961102 0.276195i
\(6\) 0 0
\(7\) −0.00697389 + 0.0136870i −0.00263588 + 0.00517321i −0.892321 0.451402i \(-0.850924\pi\)
0.889685 + 0.456575i \(0.150924\pi\)
\(8\) 0.453990 + 0.891007i 0.160510 + 0.315018i
\(9\) 0 0
\(10\) −0.273795 + 2.21924i −0.0865816 + 0.701786i
\(11\) −2.43343 + 2.25353i −0.733708 + 0.679465i
\(12\) 0 0
\(13\) −2.31203 + 0.366190i −0.641242 + 0.101563i −0.468584 0.883419i \(-0.655236\pi\)
−0.172658 + 0.984982i \(0.555236\pi\)
\(14\) 0.0146095 + 0.00474691i 0.00390455 + 0.00126866i
\(15\) 0 0
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) 3.88580 + 0.615451i 0.942446 + 0.149269i 0.608705 0.793396i \(-0.291689\pi\)
0.333740 + 0.942665i \(0.391689\pi\)
\(18\) 0 0
\(19\) 1.78456 5.49230i 0.409406 1.26002i −0.507755 0.861502i \(-0.669524\pi\)
0.917160 0.398519i \(-0.130476\pi\)
\(20\) 2.23475 0.0767418i 0.499705 0.0171600i
\(21\) 0 0
\(22\) 2.60646 + 2.05094i 0.555699 + 0.437263i
\(23\) 4.75841 + 4.75841i 0.992196 + 0.992196i 0.999970 0.00777340i \(-0.00247437\pi\)
−0.00777340 + 0.999970i \(0.502474\pi\)
\(24\) 0 0
\(25\) 4.23716 + 2.65451i 0.847433 + 0.530902i
\(26\) 0.723362 + 2.22628i 0.141863 + 0.436609i
\(27\) 0 0
\(28\) 0.00240304 0.0151722i 0.000454132 0.00286728i
\(29\) 1.28099 + 3.94247i 0.237873 + 0.732099i 0.996727 + 0.0808379i \(0.0257596\pi\)
−0.758854 + 0.651261i \(0.774240\pi\)
\(30\) 0 0
\(31\) 4.70277 + 3.41676i 0.844642 + 0.613668i 0.923663 0.383205i \(-0.125180\pi\)
−0.0790218 + 0.996873i \(0.525180\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 3.93424i 0.674716i
\(35\) 0.0234405 0.0251076i 0.00396217 0.00424397i
\(36\) 0 0
\(37\) −1.00521 0.512178i −0.165255 0.0842015i 0.369407 0.929268i \(-0.379561\pi\)
−0.534662 + 0.845066i \(0.679561\pi\)
\(38\) −5.70385 0.903401i −0.925287 0.146551i
\(39\) 0 0
\(40\) −0.425389 2.19523i −0.0672599 0.347097i
\(41\) 4.46390 + 1.45041i 0.697144 + 0.226516i 0.636086 0.771618i \(-0.280552\pi\)
0.0610584 + 0.998134i \(0.480552\pi\)
\(42\) 0 0
\(43\) −5.68946 + 5.68946i −0.867634 + 0.867634i −0.992210 0.124576i \(-0.960243\pi\)
0.124576 + 0.992210i \(0.460243\pi\)
\(44\) 1.61795 2.89521i 0.243915 0.436469i
\(45\) 0 0
\(46\) 3.95544 5.44420i 0.583198 0.802704i
\(47\) 0.703097 + 1.37991i 0.102557 + 0.201280i 0.936583 0.350445i \(-0.113970\pi\)
−0.834026 + 0.551725i \(0.813970\pi\)
\(48\) 0 0
\(49\) 4.11436 + 5.66293i 0.587765 + 0.808990i
\(50\) 1.95899 4.60026i 0.277043 0.650574i
\(51\) 0 0
\(52\) 2.08571 1.06272i 0.289236 0.147373i
\(53\) −2.19559 13.8624i −0.301587 1.90415i −0.413635 0.910443i \(-0.635741\pi\)
0.112048 0.993703i \(-0.464259\pi\)
\(54\) 0 0
\(55\) 6.62142 3.34018i 0.892832 0.450389i
\(56\) −0.0153613 −0.00205274
\(57\) 0 0
\(58\) 3.69354 1.88195i 0.484986 0.247113i
\(59\) −1.86696 + 0.606613i −0.243058 + 0.0789743i −0.428013 0.903773i \(-0.640786\pi\)
0.184955 + 0.982747i \(0.440786\pi\)
\(60\) 0 0
\(61\) 4.84534 + 6.66904i 0.620382 + 0.853883i 0.997381 0.0723312i \(-0.0230439\pi\)
−0.376999 + 0.926214i \(0.623044\pi\)
\(62\) 2.63902 5.17937i 0.335156 0.657780i
\(63\) 0 0
\(64\) −0.587785 + 0.809017i −0.0734732 + 0.101127i
\(65\) 5.19491 + 0.640913i 0.644350 + 0.0794955i
\(66\) 0 0
\(67\) 3.67640 3.67640i 0.449143 0.449143i −0.445926 0.895070i \(-0.647126\pi\)
0.895070 + 0.445926i \(0.147126\pi\)
\(68\) −3.88580 + 0.615451i −0.471223 + 0.0746344i
\(69\) 0 0
\(70\) −0.0284654 0.0192242i −0.00340227 0.00229773i
\(71\) 5.20051 3.77839i 0.617187 0.448413i −0.234751 0.972056i \(-0.575427\pi\)
0.851938 + 0.523643i \(0.175427\pi\)
\(72\) 0 0
\(73\) 4.10721 + 2.09273i 0.480713 + 0.244935i 0.677517 0.735508i \(-0.263056\pi\)
−0.196804 + 0.980443i \(0.563056\pi\)
\(74\) −0.348623 + 1.07295i −0.0405266 + 0.124728i
\(75\) 0 0
\(76\) 5.77495i 0.662432i
\(77\) −0.0138737 0.0490224i −0.00158105 0.00558662i
\(78\) 0 0
\(79\) 3.84472 + 2.79336i 0.432565 + 0.314277i 0.782674 0.622432i \(-0.213855\pi\)
−0.350109 + 0.936709i \(0.613855\pi\)
\(80\) −2.10166 + 0.763562i −0.234973 + 0.0853688i
\(81\) 0 0
\(82\) 0.734244 4.63584i 0.0810837 0.511943i
\(83\) −2.08413 + 13.1587i −0.228763 + 1.44436i 0.559405 + 0.828895i \(0.311030\pi\)
−0.788168 + 0.615460i \(0.788970\pi\)
\(84\) 0 0
\(85\) −7.97084 3.72249i −0.864559 0.403761i
\(86\) 6.50944 + 4.72938i 0.701931 + 0.509983i
\(87\) 0 0
\(88\) −3.11267 1.14512i −0.331811 0.122070i
\(89\) 9.48232i 1.00512i 0.864541 + 0.502562i \(0.167609\pi\)
−0.864541 + 0.502562i \(0.832391\pi\)
\(90\) 0 0
\(91\) 0.0111118 0.0341986i 0.00116483 0.00358499i
\(92\) −5.99594 3.05509i −0.625120 0.318515i
\(93\) 0 0
\(94\) 1.25293 0.910306i 0.129230 0.0938909i
\(95\) −7.22716 + 10.7013i −0.741491 + 1.09793i
\(96\) 0 0
\(97\) 4.39615 0.696283i 0.446362 0.0706968i 0.0707925 0.997491i \(-0.477447\pi\)
0.375569 + 0.926794i \(0.377447\pi\)
\(98\) 4.94958 4.94958i 0.499983 0.499983i
\(99\) 0 0
\(100\) −4.85007 1.21523i −0.485007 0.121523i
\(101\) 10.2067 14.0483i 1.01561 1.39786i 0.100365 0.994951i \(-0.467999\pi\)
0.915240 0.402910i \(-0.132001\pi\)
\(102\) 0 0
\(103\) −0.155063 + 0.304328i −0.0152788 + 0.0299864i −0.898520 0.438933i \(-0.855357\pi\)
0.883241 + 0.468919i \(0.155357\pi\)
\(104\) −1.37592 1.89379i −0.134920 0.185701i
\(105\) 0 0
\(106\) −13.3483 + 4.33711i −1.29650 + 0.421257i
\(107\) 2.04336 1.04115i 0.197539 0.100651i −0.352423 0.935841i \(-0.614642\pi\)
0.549962 + 0.835190i \(0.314642\pi\)
\(108\) 0 0
\(109\) −2.42843 −0.232602 −0.116301 0.993214i \(-0.537104\pi\)
−0.116301 + 0.993214i \(0.537104\pi\)
\(110\) −4.33487 6.01738i −0.413314 0.573735i
\(111\) 0 0
\(112\) 0.00240304 + 0.0151722i 0.000227066 + 0.00143364i
\(113\) −9.70357 + 4.94421i −0.912835 + 0.465113i −0.846321 0.532673i \(-0.821188\pi\)
−0.0665137 + 0.997786i \(0.521188\pi\)
\(114\) 0 0
\(115\) −7.28749 13.1650i −0.679562 1.22764i
\(116\) −2.43658 3.35367i −0.226231 0.311380i
\(117\) 0 0
\(118\) 0.891202 + 1.74908i 0.0820418 + 0.161016i
\(119\) −0.0355229 + 0.0488930i −0.00325638 + 0.00448202i
\(120\) 0 0
\(121\) 0.843188 10.9676i 0.0766535 0.997058i
\(122\) 5.82895 5.82895i 0.527728 0.527728i
\(123\) 0 0
\(124\) −5.52843 1.79630i −0.496468 0.161312i
\(125\) −7.46664 8.32161i −0.667837 0.744308i
\(126\) 0 0
\(127\) −17.3079 2.74131i −1.53583 0.243252i −0.669535 0.742781i \(-0.733506\pi\)
−0.866297 + 0.499529i \(0.833506\pi\)
\(128\) 0.891007 + 0.453990i 0.0787546 + 0.0401275i
\(129\) 0 0
\(130\) −0.179641 5.23122i −0.0157556 0.458808i
\(131\) 3.65271i 0.319138i 0.987187 + 0.159569i \(0.0510105\pi\)
−0.987187 + 0.159569i \(0.948989\pi\)
\(132\) 0 0
\(133\) 0.0627280 + 0.0627280i 0.00543921 + 0.00543921i
\(134\) −4.20625 3.05602i −0.363364 0.264000i
\(135\) 0 0
\(136\) 1.21575 + 3.74168i 0.104249 + 0.320847i
\(137\) −2.63360 + 16.6279i −0.225004 + 1.42062i 0.573784 + 0.819006i \(0.305475\pi\)
−0.798788 + 0.601612i \(0.794525\pi\)
\(138\) 0 0
\(139\) 6.84479 + 21.0661i 0.580567 + 1.78680i 0.616386 + 0.787444i \(0.288596\pi\)
−0.0358190 + 0.999358i \(0.511404\pi\)
\(140\) −0.0145345 + 0.0311223i −0.00122839 + 0.00263031i
\(141\) 0 0
\(142\) −4.54541 4.54541i −0.381443 0.381443i
\(143\) 4.80095 6.10133i 0.401476 0.510219i
\(144\) 0 0
\(145\) −0.318123 9.26385i −0.0264186 0.769321i
\(146\) 1.42445 4.38402i 0.117889 0.362824i
\(147\) 0 0
\(148\) 1.11428 + 0.176484i 0.0915932 + 0.0145069i
\(149\) −11.4310 + 8.30508i −0.936461 + 0.680379i −0.947566 0.319560i \(-0.896465\pi\)
0.0111054 + 0.999938i \(0.496465\pi\)
\(150\) 0 0
\(151\) 3.14883 + 1.02312i 0.256248 + 0.0832600i 0.434324 0.900757i \(-0.356987\pi\)
−0.178076 + 0.984017i \(0.556987\pi\)
\(152\) 5.70385 0.903401i 0.462643 0.0732755i
\(153\) 0 0
\(154\) −0.0462485 + 0.0213716i −0.00372681 + 0.00172218i
\(155\) −7.99650 10.2473i −0.642295 0.823083i
\(156\) 0 0
\(157\) 5.84266 + 11.4669i 0.466295 + 0.915155i 0.997683 + 0.0680269i \(0.0216704\pi\)
−0.531389 + 0.847128i \(0.678330\pi\)
\(158\) 2.15752 4.23437i 0.171643 0.336868i
\(159\) 0 0
\(160\) 1.08293 + 1.95634i 0.0856134 + 0.154662i
\(161\) −0.0983131 + 0.0319439i −0.00774816 + 0.00251753i
\(162\) 0 0
\(163\) −0.263165 1.66156i −0.0206127 0.130143i 0.975236 0.221166i \(-0.0709864\pi\)
−0.995849 + 0.0910229i \(0.970986\pi\)
\(164\) −4.69362 −0.366510
\(165\) 0 0
\(166\) 13.3227 1.03404
\(167\) −2.54594 16.0744i −0.197011 1.24388i −0.865787 0.500413i \(-0.833182\pi\)
0.668776 0.743464i \(-0.266818\pi\)
\(168\) 0 0
\(169\) −7.15235 + 2.32394i −0.550181 + 0.178764i
\(170\) −2.42975 + 8.45503i −0.186353 + 0.648471i
\(171\) 0 0
\(172\) 3.65286 7.16914i 0.278528 0.546642i
\(173\) −6.86850 13.4802i −0.522202 1.02488i −0.990003 0.141046i \(-0.954954\pi\)
0.467801 0.883834i \(-0.345046\pi\)
\(174\) 0 0
\(175\) −0.0658819 + 0.0394819i −0.00498021 + 0.00298455i
\(176\) −0.644096 + 3.25348i −0.0485505 + 0.245240i
\(177\) 0 0
\(178\) 9.36557 1.48336i 0.701979 0.111183i
\(179\) 22.4795 + 7.30404i 1.68020 + 0.545930i 0.984950 0.172839i \(-0.0552939\pi\)
0.695249 + 0.718769i \(0.255294\pi\)
\(180\) 0 0
\(181\) −15.4698 + 11.2395i −1.14986 + 0.835423i −0.988462 0.151466i \(-0.951601\pi\)
−0.161399 + 0.986889i \(0.551601\pi\)
\(182\) −0.0355158 0.00562515i −0.00263261 0.000416964i
\(183\) 0 0
\(184\) −2.07950 + 6.40004i −0.153303 + 0.471817i
\(185\) 1.84396 + 1.72152i 0.135571 + 0.126569i
\(186\) 0 0
\(187\) −10.8428 + 7.25912i −0.792902 + 0.530840i
\(188\) −1.09510 1.09510i −0.0798683 0.0798683i
\(189\) 0 0
\(190\) 11.7001 + 5.46413i 0.848818 + 0.396410i
\(191\) 3.70271 + 11.3958i 0.267919 + 0.824569i 0.991007 + 0.133813i \(0.0427222\pi\)
−0.723088 + 0.690756i \(0.757278\pi\)
\(192\) 0 0
\(193\) 2.50920 15.8424i 0.180616 1.14036i −0.716179 0.697917i \(-0.754110\pi\)
0.896795 0.442447i \(-0.145890\pi\)
\(194\) −1.37542 4.23311i −0.0987494 0.303919i
\(195\) 0 0
\(196\) −5.66293 4.11436i −0.404495 0.293883i
\(197\) −5.90309 5.90309i −0.420578 0.420578i 0.464825 0.885403i \(-0.346117\pi\)
−0.885403 + 0.464825i \(0.846117\pi\)
\(198\) 0 0
\(199\) 8.46646i 0.600171i 0.953912 + 0.300086i \(0.0970153\pi\)
−0.953912 + 0.300086i \(0.902985\pi\)
\(200\) −0.441555 + 4.98046i −0.0312226 + 0.352172i
\(201\) 0 0
\(202\) −15.4720 7.88340i −1.08861 0.554674i
\(203\) −0.0628942 0.00996146i −0.00441431 0.000699158i
\(204\) 0 0
\(205\) −8.69756 5.87392i −0.607464 0.410252i
\(206\) 0.324839 + 0.105546i 0.0226326 + 0.00735377i
\(207\) 0 0
\(208\) −1.65523 + 1.65523i −0.114770 + 0.114770i
\(209\) 8.03448 + 17.3867i 0.555757 + 1.20266i
\(210\) 0 0
\(211\) 4.11272 5.66067i 0.283131 0.389697i −0.643637 0.765331i \(-0.722575\pi\)
0.926768 + 0.375635i \(0.122575\pi\)
\(212\) 6.37184 + 12.5054i 0.437620 + 0.858877i
\(213\) 0 0
\(214\) −1.34798 1.85533i −0.0921460 0.126828i
\(215\) 15.7409 8.71340i 1.07352 0.594249i
\(216\) 0 0
\(217\) −0.0795619 + 0.0405388i −0.00540101 + 0.00275195i
\(218\) 0.379891 + 2.39853i 0.0257294 + 0.162449i
\(219\) 0 0
\(220\) −5.26518 + 5.22283i −0.354978 + 0.352123i
\(221\) −9.20946 −0.619496
\(222\) 0 0
\(223\) −16.6612 + 8.48928i −1.11571 + 0.568484i −0.911854 0.410516i \(-0.865349\pi\)
−0.203860 + 0.979000i \(0.565349\pi\)
\(224\) 0.0146095 0.00474691i 0.000976137 0.000317166i
\(225\) 0 0
\(226\) 6.40132 + 8.81066i 0.425809 + 0.586076i
\(227\) 4.59950 9.02703i 0.305280 0.599145i −0.686496 0.727134i \(-0.740852\pi\)
0.991776 + 0.127989i \(0.0408521\pi\)
\(228\) 0 0
\(229\) 6.38012 8.78149i 0.421610 0.580297i −0.544392 0.838831i \(-0.683239\pi\)
0.966002 + 0.258534i \(0.0832395\pi\)
\(230\) −11.8629 + 9.25723i −0.782215 + 0.610404i
\(231\) 0 0
\(232\) −2.93121 + 2.93121i −0.192444 + 0.192444i
\(233\) 4.69333 0.743350i 0.307470 0.0486985i −0.000792791 1.00000i \(-0.500252\pi\)
0.308263 + 0.951301i \(0.400252\pi\)
\(234\) 0 0
\(235\) −0.658802 3.39977i −0.0429755 0.221776i
\(236\) 1.58813 1.15385i 0.103379 0.0751091i
\(237\) 0 0
\(238\) 0.0538481 + 0.0274370i 0.00349045 + 0.00177847i
\(239\) −4.17166 + 12.8391i −0.269842 + 0.830490i 0.720696 + 0.693252i \(0.243823\pi\)
−0.990538 + 0.137238i \(0.956177\pi\)
\(240\) 0 0
\(241\) 21.5441i 1.38778i −0.720081 0.693890i \(-0.755895\pi\)
0.720081 0.693890i \(-0.244105\pi\)
\(242\) −10.9645 + 0.882909i −0.704825 + 0.0567555i
\(243\) 0 0
\(244\) −6.66904 4.84534i −0.426941 0.310191i
\(245\) −5.34475 14.7111i −0.341464 0.939859i
\(246\) 0 0
\(247\) −2.11473 + 13.3519i −0.134557 + 0.849558i
\(248\) −0.909344 + 5.74137i −0.0577434 + 0.364577i
\(249\) 0 0
\(250\) −7.05112 + 8.67650i −0.445952 + 0.548750i
\(251\) 15.8467 + 11.5133i 1.00023 + 0.726713i 0.962138 0.272561i \(-0.0878707\pi\)
0.0380961 + 0.999274i \(0.487871\pi\)
\(252\) 0 0
\(253\) −22.3025 0.856041i −1.40215 0.0538188i
\(254\) 17.5237i 1.09953i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −17.5999 8.96760i −1.09785 0.559384i −0.191323 0.981527i \(-0.561278\pi\)
−0.906529 + 0.422143i \(0.861278\pi\)
\(258\) 0 0
\(259\) 0.0140204 0.0101864i 0.000871185 0.000632953i
\(260\) −5.13871 + 0.995772i −0.318689 + 0.0617551i
\(261\) 0 0
\(262\) 3.60774 0.571409i 0.222887 0.0353018i
\(263\) −20.0880 + 20.0880i −1.23868 + 1.23868i −0.278140 + 0.960541i \(0.589718\pi\)
−0.960541 + 0.278140i \(0.910282\pi\)
\(264\) 0 0
\(265\) −3.84276 + 31.1475i −0.236059 + 1.91337i
\(266\) 0.0521429 0.0717686i 0.00319709 0.00440041i
\(267\) 0 0
\(268\) −2.36039 + 4.63253i −0.144184 + 0.282977i
\(269\) 5.50591 + 7.57823i 0.335701 + 0.462053i 0.943180 0.332283i \(-0.107819\pi\)
−0.607479 + 0.794336i \(0.707819\pi\)
\(270\) 0 0
\(271\) 5.85356 1.90194i 0.355578 0.115534i −0.125780 0.992058i \(-0.540143\pi\)
0.481359 + 0.876524i \(0.340143\pi\)
\(272\) 3.50543 1.78611i 0.212548 0.108299i
\(273\) 0 0
\(274\) 16.8352 1.01705
\(275\) −16.2929 + 3.08901i −0.982498 + 0.186274i
\(276\) 0 0
\(277\) −4.66256 29.4382i −0.280146 1.76877i −0.579834 0.814734i \(-0.696883\pi\)
0.299688 0.954037i \(-0.403117\pi\)
\(278\) 19.7360 10.0560i 1.18368 0.603117i
\(279\) 0 0
\(280\) 0.0330128 + 0.00948700i 0.00197289 + 0.000566957i
\(281\) −3.35941 4.62383i −0.200406 0.275835i 0.696972 0.717099i \(-0.254530\pi\)
−0.897377 + 0.441264i \(0.854530\pi\)
\(282\) 0 0
\(283\) −1.97387 3.87395i −0.117335 0.230282i 0.824868 0.565325i \(-0.191249\pi\)
−0.942203 + 0.335043i \(0.891249\pi\)
\(284\) −3.77839 + 5.20051i −0.224206 + 0.308594i
\(285\) 0 0
\(286\) −6.77725 3.78738i −0.400747 0.223953i
\(287\) −0.0509826 + 0.0509826i −0.00300941 + 0.00300941i
\(288\) 0 0
\(289\) −1.44728 0.470250i −0.0851341 0.0276618i
\(290\) −9.10003 + 1.76339i −0.534372 + 0.103550i
\(291\) 0 0
\(292\) −4.55288 0.721105i −0.266437 0.0421995i
\(293\) −12.1120 6.17139i −0.707593 0.360537i 0.0628696 0.998022i \(-0.479975\pi\)
−0.770463 + 0.637485i \(0.779975\pi\)
\(294\) 0 0
\(295\) 4.38691 0.150647i 0.255416 0.00877103i
\(296\) 1.12817i 0.0655735i
\(297\) 0 0
\(298\) 9.99102 + 9.99102i 0.578765 + 0.578765i
\(299\) −12.7441 9.25910i −0.737008 0.535468i
\(300\) 0 0
\(301\) −0.0381941 0.117549i −0.00220147 0.00677544i
\(302\) 0.517934 3.27011i 0.0298038 0.188174i
\(303\) 0 0
\(304\) −1.78456 5.49230i −0.102351 0.315005i
\(305\) −6.29433 17.3248i −0.360412 0.992014i
\(306\) 0 0
\(307\) 16.8816 + 16.8816i 0.963484 + 0.963484i 0.999356 0.0358726i \(-0.0114211\pi\)
−0.0358726 + 0.999356i \(0.511421\pi\)
\(308\) 0.0283434 + 0.0423358i 0.00161501 + 0.00241231i
\(309\) 0 0
\(310\) −8.87021 + 9.50108i −0.503794 + 0.539625i
\(311\) −8.96103 + 27.5792i −0.508133 + 1.56387i 0.287305 + 0.957839i \(0.407241\pi\)
−0.795439 + 0.606034i \(0.792759\pi\)
\(312\) 0 0
\(313\) 17.0901 + 2.70681i 0.965990 + 0.152998i 0.619449 0.785037i \(-0.287356\pi\)
0.346541 + 0.938035i \(0.387356\pi\)
\(314\) 10.4117 7.56454i 0.587566 0.426891i
\(315\) 0 0
\(316\) −4.51974 1.46855i −0.254255 0.0826126i
\(317\) 20.4927 3.24572i 1.15098 0.182298i 0.448355 0.893855i \(-0.352010\pi\)
0.702628 + 0.711558i \(0.252010\pi\)
\(318\) 0 0
\(319\) −12.0017 6.70700i −0.671965 0.375520i
\(320\) 1.76284 1.37564i 0.0985460 0.0769006i
\(321\) 0 0
\(322\) 0.0469301 + 0.0921056i 0.00261531 + 0.00513284i
\(323\) 10.3147 20.2437i 0.573924 1.12639i
\(324\) 0 0
\(325\) −10.7685 4.58571i −0.597329 0.254369i
\(326\) −1.59994 + 0.519851i −0.0886122 + 0.0287919i
\(327\) 0 0
\(328\) 0.734244 + 4.63584i 0.0405419 + 0.255971i
\(329\) −0.0237901 −0.00131159
\(330\) 0 0
\(331\) 27.7235 1.52382 0.761912 0.647681i \(-0.224261\pi\)
0.761912 + 0.647681i \(0.224261\pi\)
\(332\) −2.08413 13.1587i −0.114382 0.722178i
\(333\) 0 0
\(334\) −15.4782 + 5.02919i −0.846932 + 0.275185i
\(335\) −10.1714 + 5.63039i −0.555723 + 0.307621i
\(336\) 0 0
\(337\) 3.19123 6.26314i 0.173837 0.341175i −0.787606 0.616180i \(-0.788680\pi\)
0.961443 + 0.275005i \(0.0886795\pi\)
\(338\) 3.41420 + 6.70075i 0.185708 + 0.364473i
\(339\) 0 0
\(340\) 8.73103 + 1.07718i 0.473507 + 0.0584180i
\(341\) −19.1436 + 2.28338i −1.03669 + 0.123652i
\(342\) 0 0
\(343\) −0.212407 + 0.0336420i −0.0114689 + 0.00181650i
\(344\) −7.65230 2.48638i −0.412585 0.134057i
\(345\) 0 0
\(346\) −12.2398 + 8.89270i −0.658013 + 0.478075i
\(347\) 21.4415 + 3.39601i 1.15104 + 0.182307i 0.702654 0.711532i \(-0.251998\pi\)
0.448388 + 0.893839i \(0.351998\pi\)
\(348\) 0 0
\(349\) −3.67193 + 11.3010i −0.196554 + 0.604930i 0.803401 + 0.595438i \(0.203021\pi\)
−0.999955 + 0.00949216i \(0.996979\pi\)
\(350\) 0.0493021 + 0.0588945i 0.00263531 + 0.00314804i
\(351\) 0 0
\(352\) 3.31418 + 0.127209i 0.176647 + 0.00678026i
\(353\) −0.766521 0.766521i −0.0407978 0.0407978i 0.686414 0.727211i \(-0.259184\pi\)
−0.727211 + 0.686414i \(0.759184\pi\)
\(354\) 0 0
\(355\) −13.5099 + 4.90832i −0.717029 + 0.260506i
\(356\) −2.93020 9.01822i −0.155300 0.477965i
\(357\) 0 0
\(358\) 3.69755 23.3454i 0.195421 1.23384i
\(359\) −2.56417 7.89171i −0.135332 0.416508i 0.860310 0.509772i \(-0.170270\pi\)
−0.995641 + 0.0932633i \(0.970270\pi\)
\(360\) 0 0
\(361\) −11.6094 8.43474i −0.611022 0.443934i
\(362\) 13.5211 + 13.5211i 0.710653 + 0.710653i
\(363\) 0 0
\(364\) 0.0359585i 0.00188474i
\(365\) −7.53431 7.03403i −0.394364 0.368178i
\(366\) 0 0
\(367\) 13.4231 + 6.83943i 0.700683 + 0.357016i 0.767765 0.640732i \(-0.221369\pi\)
−0.0670822 + 0.997747i \(0.521369\pi\)
\(368\) 6.64655 + 1.05271i 0.346476 + 0.0548763i
\(369\) 0 0
\(370\) 1.41187 2.09056i 0.0733995 0.108683i
\(371\) 0.205047 + 0.0666237i 0.0106455 + 0.00345893i
\(372\) 0 0
\(373\) −5.33739 + 5.33739i −0.276360 + 0.276360i −0.831654 0.555294i \(-0.812606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(374\) 8.86593 + 9.57371i 0.458447 + 0.495045i
\(375\) 0 0
\(376\) −0.910306 + 1.25293i −0.0469454 + 0.0646149i
\(377\) −4.40537 8.64603i −0.226888 0.445293i
\(378\) 0 0
\(379\) 5.86042 + 8.06617i 0.301029 + 0.414331i 0.932557 0.361022i \(-0.117572\pi\)
−0.631528 + 0.775353i \(0.717572\pi\)
\(380\) 3.56655 12.4109i 0.182960 0.636665i
\(381\) 0 0
\(382\) 10.6762 5.43982i 0.546244 0.278325i
\(383\) 3.72711 + 23.5321i 0.190447 + 1.20243i 0.878848 + 0.477103i \(0.158313\pi\)
−0.688401 + 0.725330i \(0.741687\pi\)
\(384\) 0 0
\(385\) −0.000459977 0.113922i −2.34426e−5 0.00580598i
\(386\) −16.0399 −0.816410
\(387\) 0 0
\(388\) −3.96583 + 2.02069i −0.201334 + 0.102585i
\(389\) 4.97947 1.61793i 0.252469 0.0820322i −0.180048 0.983658i \(-0.557625\pi\)
0.432517 + 0.901626i \(0.357625\pi\)
\(390\) 0 0
\(391\) 15.5617 + 21.4188i 0.786987 + 1.08319i
\(392\) −3.17783 + 6.23684i −0.160504 + 0.315008i
\(393\) 0 0
\(394\) −4.90697 + 6.75386i −0.247209 + 0.340255i
\(395\) −6.53750 8.37763i −0.328938 0.421524i
\(396\) 0 0
\(397\) 1.68624 1.68624i 0.0846300 0.0846300i −0.663525 0.748155i \(-0.730940\pi\)
0.748155 + 0.663525i \(0.230940\pi\)
\(398\) 8.36222 1.32445i 0.419160 0.0663885i
\(399\) 0 0
\(400\) 4.98822 0.342998i 0.249411 0.0171499i
\(401\) 12.7078 9.23274i 0.634596 0.461061i −0.223393 0.974728i \(-0.571713\pi\)
0.857989 + 0.513667i \(0.171713\pi\)
\(402\) 0 0
\(403\) −12.1241 6.17755i −0.603945 0.307725i
\(404\) −5.36598 + 16.5148i −0.266968 + 0.821642i
\(405\) 0 0
\(406\) 0.0636782i 0.00316030i
\(407\) 3.60031 1.01891i 0.178461 0.0505056i
\(408\) 0 0
\(409\) 1.39836 + 1.01597i 0.0691444 + 0.0502363i 0.621820 0.783160i \(-0.286393\pi\)
−0.552676 + 0.833396i \(0.686393\pi\)
\(410\) −4.44100 + 9.50936i −0.219326 + 0.469634i
\(411\) 0 0
\(412\) 0.0534311 0.337350i 0.00263236 0.0166201i
\(413\) 0.00471727 0.0297837i 0.000232122 0.00146556i
\(414\) 0 0
\(415\) 12.6057 26.9921i 0.618788 1.32499i
\(416\) 1.89379 + 1.37592i 0.0928506 + 0.0674599i
\(417\) 0 0
\(418\) 15.9158 10.6554i 0.778466 0.521175i
\(419\) 16.7994i 0.820703i 0.911927 + 0.410351i \(0.134594\pi\)
−0.911927 + 0.410351i \(0.865406\pi\)
\(420\) 0 0
\(421\) 3.47207 10.6859i 0.169219 0.520801i −0.830104 0.557609i \(-0.811719\pi\)
0.999322 + 0.0368077i \(0.0117189\pi\)
\(422\) −6.23435 3.17656i −0.303483 0.154632i
\(423\) 0 0
\(424\) 11.3547 8.24968i 0.551433 0.400640i
\(425\) 14.8311 + 12.9227i 0.719412 + 0.626842i
\(426\) 0 0
\(427\) −0.125070 + 0.0198092i −0.00605257 + 0.000958633i
\(428\) −1.62162 + 1.62162i −0.0783840 + 0.0783840i
\(429\) 0 0
\(430\) −11.0685 14.1840i −0.533772 0.684015i
\(431\) 22.5280 31.0071i 1.08513 1.49356i 0.231392 0.972861i \(-0.425672\pi\)
0.853741 0.520697i \(-0.174328\pi\)
\(432\) 0 0
\(433\) 8.91179 17.4904i 0.428273 0.840533i −0.571528 0.820583i \(-0.693649\pi\)
0.999801 0.0199507i \(-0.00635091\pi\)
\(434\) 0.0524859 + 0.0722407i 0.00251940 + 0.00346766i
\(435\) 0 0
\(436\) 2.30958 0.750427i 0.110609 0.0359389i
\(437\) 34.6263 17.6430i 1.65640 0.843977i
\(438\) 0 0
\(439\) 1.05214 0.0502158 0.0251079 0.999685i \(-0.492007\pi\)
0.0251079 + 0.999685i \(0.492007\pi\)
\(440\) 5.98218 + 4.38332i 0.285189 + 0.208967i
\(441\) 0 0
\(442\) 1.44068 + 9.09608i 0.0685260 + 0.432656i
\(443\) 0.280755 0.143052i 0.0133391 0.00679659i −0.447308 0.894380i \(-0.647617\pi\)
0.460647 + 0.887583i \(0.347617\pi\)
\(444\) 0 0
\(445\) 5.85619 20.3783i 0.277610 0.966026i
\(446\) 10.9911 + 15.1280i 0.520446 + 0.716332i
\(447\) 0 0
\(448\) −0.00697389 0.0136870i −0.000329485 0.000646652i
\(449\) 19.7505 27.1842i 0.932084 1.28290i −0.0269576 0.999637i \(-0.508582\pi\)
0.959041 0.283266i \(-0.0914181\pi\)
\(450\) 0 0
\(451\) −14.1311 + 6.53007i −0.665410 + 0.307489i
\(452\) 7.70080 7.70080i 0.362215 0.362215i
\(453\) 0 0
\(454\) −9.63541 3.13074i −0.452212 0.146933i
\(455\) −0.0450010 + 0.0666333i −0.00210968 + 0.00312382i
\(456\) 0 0
\(457\) 29.5629 + 4.68231i 1.38290 + 0.219029i 0.803154 0.595771i \(-0.203153\pi\)
0.579742 + 0.814800i \(0.303153\pi\)
\(458\) −9.67144 4.92785i −0.451917 0.230263i
\(459\) 0 0
\(460\) 10.9990 + 10.2687i 0.512832 + 0.478780i
\(461\) 27.6150i 1.28616i −0.765800 0.643079i \(-0.777657\pi\)
0.765800 0.643079i \(-0.222343\pi\)
\(462\) 0 0
\(463\) −26.6620 26.6620i −1.23909 1.23909i −0.960373 0.278717i \(-0.910091\pi\)
−0.278717 0.960373i \(-0.589909\pi\)
\(464\) 3.35367 + 2.43658i 0.155690 + 0.113115i
\(465\) 0 0
\(466\) −1.46840 4.51926i −0.0680221 0.209351i
\(467\) −4.66728 + 29.4680i −0.215976 + 1.36362i 0.606620 + 0.794992i \(0.292525\pi\)
−0.822596 + 0.568626i \(0.807475\pi\)
\(468\) 0 0
\(469\) 0.0246802 + 0.0759577i 0.00113962 + 0.00350740i
\(470\) −3.25485 + 1.18253i −0.150135 + 0.0545461i
\(471\) 0 0
\(472\) −1.38808 1.38808i −0.0638916 0.0638916i
\(473\) 1.02354 26.6663i 0.0470623 1.22612i
\(474\) 0 0
\(475\) 22.1408 18.5347i 1.01589 0.850429i
\(476\) 0.0186755 0.0574772i 0.000855989 0.00263446i
\(477\) 0 0
\(478\) 13.3336 + 2.11183i 0.609864 + 0.0965929i
\(479\) 5.27658 3.83366i 0.241093 0.175165i −0.460677 0.887568i \(-0.652393\pi\)
0.701770 + 0.712403i \(0.252393\pi\)
\(480\) 0 0
\(481\) 2.51162 + 0.816075i 0.114520 + 0.0372098i
\(482\) −21.2789 + 3.37025i −0.969227 + 0.153510i
\(483\) 0 0
\(484\) 2.58727 + 10.6914i 0.117603 + 0.485973i
\(485\) −9.87774 1.21865i −0.448525 0.0553360i
\(486\) 0 0
\(487\) 3.88945 + 7.63347i 0.176248 + 0.345906i 0.962183 0.272403i \(-0.0878183\pi\)
−0.785936 + 0.618308i \(0.787818\pi\)
\(488\) −3.74242 + 7.34491i −0.169411 + 0.332488i
\(489\) 0 0
\(490\) −13.6939 + 7.58028i −0.618627 + 0.342442i
\(491\) 24.6223 8.00027i 1.11119 0.361047i 0.304790 0.952419i \(-0.401414\pi\)
0.806399 + 0.591372i \(0.201414\pi\)
\(492\) 0 0
\(493\) 2.55126 + 16.1081i 0.114903 + 0.725470i
\(494\) 13.5183 0.608217
\(495\) 0 0
\(496\) 5.81294 0.261009
\(497\) 0.0154472 + 0.0975297i 0.000692901 + 0.00437480i
\(498\) 0 0
\(499\) 15.9071 5.16853i 0.712099 0.231375i 0.0695049 0.997582i \(-0.477858\pi\)
0.642594 + 0.766207i \(0.277858\pi\)
\(500\) 9.67272 + 5.60700i 0.432577 + 0.250753i
\(501\) 0 0
\(502\) 8.89258 17.4527i 0.396895 0.778951i
\(503\) −6.24553 12.2575i −0.278475 0.546537i 0.708829 0.705380i \(-0.249224\pi\)
−0.987304 + 0.158843i \(0.949224\pi\)
\(504\) 0 0
\(505\) −30.6112 + 23.8875i −1.36218 + 1.06298i
\(506\) 2.64338 + 22.1618i 0.117512 + 0.985213i
\(507\) 0 0
\(508\) 17.3079 2.74131i 0.767916 0.121626i
\(509\) −32.6519 10.6092i −1.44727 0.470246i −0.523113 0.852263i \(-0.675229\pi\)
−0.924155 + 0.382017i \(0.875229\pi\)
\(510\) 0 0
\(511\) −0.0572865 + 0.0416211i −0.00253421 + 0.00184121i
\(512\) −0.987688 0.156434i −0.0436501 0.00691349i
\(513\) 0 0
\(514\) −6.10397 + 18.7861i −0.269234 + 0.828618i
\(515\) 0.521194 0.558263i 0.0229666 0.0246000i
\(516\) 0 0
\(517\) −4.82060 1.77346i −0.212010 0.0779965i
\(518\) −0.0122543 0.0122543i −0.000538422 0.000538422i
\(519\) 0 0
\(520\) 1.78738 + 4.91967i 0.0783819 + 0.215742i
\(521\) −1.49330 4.59591i −0.0654227 0.201351i 0.913002 0.407956i \(-0.133758\pi\)
−0.978424 + 0.206606i \(0.933758\pi\)
\(522\) 0 0
\(523\) −2.62342 + 16.5636i −0.114714 + 0.724276i 0.861547 + 0.507678i \(0.169496\pi\)
−0.976261 + 0.216598i \(0.930504\pi\)
\(524\) −1.12875 3.47393i −0.0493096 0.151759i
\(525\) 0 0
\(526\) 22.9832 + 16.6982i 1.00211 + 0.728078i
\(527\) 16.1712 + 16.1712i 0.704427 + 0.704427i
\(528\) 0 0
\(529\) 22.2849i 0.968907i
\(530\) 31.3651 1.07709i 1.36241 0.0467856i
\(531\) 0 0
\(532\) −0.0790419 0.0402739i −0.00342690 0.00174609i
\(533\) −10.8518 1.71876i −0.470044 0.0744476i
\(534\) 0 0
\(535\) −5.03437 + 0.975553i −0.217655 + 0.0421768i
\(536\) 4.94474 + 1.60664i 0.213580 + 0.0693964i
\(537\) 0 0
\(538\) 6.62361 6.62361i 0.285564 0.285564i
\(539\) −22.7736 4.50852i −0.980928 0.194196i
\(540\) 0 0
\(541\) 6.42200 8.83913i 0.276103 0.380024i −0.648335 0.761355i \(-0.724534\pi\)
0.924438 + 0.381331i \(0.124534\pi\)
\(542\) −2.79422 5.48397i −0.120022 0.235556i
\(543\) 0 0
\(544\) −2.31249 3.18287i −0.0991471 0.136464i
\(545\) 5.21892 + 1.49978i 0.223554 + 0.0642433i
\(546\) 0 0
\(547\) 31.3306 15.9637i 1.33960 0.682559i 0.370407 0.928870i \(-0.379218\pi\)
0.969191 + 0.246310i \(0.0792182\pi\)
\(548\) −2.63360 16.6279i −0.112502 0.710309i
\(549\) 0 0
\(550\) 5.59975 + 15.6091i 0.238774 + 0.665573i
\(551\) 23.9392 1.01985
\(552\) 0 0
\(553\) −0.0650454 + 0.0331423i −0.00276601 + 0.00140935i
\(554\) −28.3464 + 9.21031i −1.20432 + 0.391308i
\(555\) 0 0
\(556\) −13.0196 17.9199i −0.552152 0.759972i
\(557\) 1.38133 2.71100i 0.0585286 0.114869i −0.859889 0.510481i \(-0.829467\pi\)
0.918418 + 0.395612i \(0.129467\pi\)
\(558\) 0 0
\(559\) 11.0708 15.2376i 0.468244 0.644483i
\(560\) 0.00420585 0.0340905i 0.000177730 0.00144059i
\(561\) 0 0
\(562\) −4.04138 + 4.04138i −0.170475 + 0.170475i
\(563\) −36.3351 + 5.75492i −1.53134 + 0.242541i −0.864490 0.502649i \(-0.832359\pi\)
−0.666852 + 0.745190i \(0.732359\pi\)
\(564\) 0 0
\(565\) 23.9073 4.63273i 1.00579 0.194900i
\(566\) −3.51747 + 2.55559i −0.147850 + 0.107419i
\(567\) 0 0
\(568\) 5.72756 + 2.91834i 0.240323 + 0.122451i
\(569\) 5.11991 15.7575i 0.214638 0.660587i −0.784541 0.620077i \(-0.787102\pi\)
0.999179 0.0405107i \(-0.0128985\pi\)
\(570\) 0 0
\(571\) 10.4437i 0.437057i 0.975831 + 0.218529i \(0.0701257\pi\)
−0.975831 + 0.218529i \(0.929874\pi\)
\(572\) −2.68056 + 7.28629i −0.112080 + 0.304655i
\(573\) 0 0
\(574\) 0.0583303 + 0.0423795i 0.00243466 + 0.00176888i
\(575\) 7.53091 + 32.7934i 0.314061 + 1.36758i
\(576\) 0 0
\(577\) −0.310767 + 1.96210i −0.0129374 + 0.0816834i −0.993312 0.115459i \(-0.963166\pi\)
0.980375 + 0.197142i \(0.0631661\pi\)
\(578\) −0.238056 + 1.50302i −0.00990181 + 0.0625176i
\(579\) 0 0
\(580\) 3.16524 + 8.71214i 0.131429 + 0.361752i
\(581\) −0.165569 0.120293i −0.00686896 0.00499059i
\(582\) 0 0
\(583\) 36.5822 + 28.7854i 1.51508 + 1.19217i
\(584\) 4.60963i 0.190748i
\(585\) 0 0
\(586\) −4.20067 + 12.9283i −0.173528 + 0.534065i
\(587\) −12.4878 6.36284i −0.515426 0.262623i 0.176873 0.984234i \(-0.443402\pi\)
−0.692299 + 0.721611i \(0.743402\pi\)
\(588\) 0 0
\(589\) 27.1582 19.7316i 1.11904 0.813027i
\(590\) −0.835057 4.30933i −0.0343787 0.177412i
\(591\) 0 0
\(592\) −1.11428 + 0.176484i −0.0457966 + 0.00725347i
\(593\) 24.8101 24.8101i 1.01883 1.01883i 0.0190108 0.999819i \(-0.493948\pi\)
0.999819 0.0190108i \(-0.00605170\pi\)
\(594\) 0 0
\(595\) 0.106538 0.0831369i 0.00436762 0.00340828i
\(596\) 8.30508 11.4310i 0.340189 0.468230i
\(597\) 0 0
\(598\) −7.15150 + 14.0356i −0.292446 + 0.573958i
\(599\) −6.95362 9.57083i −0.284117 0.391054i 0.642975 0.765887i \(-0.277700\pi\)
−0.927092 + 0.374833i \(0.877700\pi\)
\(600\) 0 0
\(601\) −18.9484 + 6.15671i −0.772922 + 0.251138i −0.668815 0.743429i \(-0.733198\pi\)
−0.104107 + 0.994566i \(0.533198\pi\)
\(602\) −0.110127 + 0.0561127i −0.00448846 + 0.00228698i
\(603\) 0 0
\(604\) −3.31087 −0.134717
\(605\) −8.58559 + 23.0497i −0.349054 + 0.937103i
\(606\) 0 0
\(607\) −3.67280 23.1891i −0.149074 0.941218i −0.942901 0.333074i \(-0.891914\pi\)
0.793827 0.608144i \(-0.208086\pi\)
\(608\) −5.14552 + 2.62177i −0.208678 + 0.106327i
\(609\) 0 0
\(610\) −16.1268 + 8.92703i −0.652957 + 0.361445i
\(611\) −2.13089 2.93292i −0.0862065 0.118653i
\(612\) 0 0
\(613\) −11.3849 22.3442i −0.459833 0.902473i −0.998212 0.0597703i \(-0.980963\pi\)
0.538379 0.842703i \(-0.319037\pi\)
\(614\) 14.0329 19.3146i 0.566322 0.779475i
\(615\) 0 0
\(616\) 0.0373807 0.0346172i 0.00150611 0.00139477i
\(617\) −25.6695 + 25.6695i −1.03341 + 1.03341i −0.0339923 + 0.999422i \(0.510822\pi\)
−0.999422 + 0.0339923i \(0.989178\pi\)
\(618\) 0 0
\(619\) −15.3896 5.00040i −0.618562 0.200983i −0.0170601 0.999854i \(-0.505431\pi\)
−0.601502 + 0.798872i \(0.705431\pi\)
\(620\) 10.7717 + 7.27471i 0.432603 + 0.292159i
\(621\) 0 0
\(622\) 28.6415 + 4.53636i 1.14842 + 0.181892i
\(623\) −0.129785 0.0661287i −0.00519972 0.00264939i
\(624\) 0 0
\(625\) 10.9071 + 22.4952i 0.436285 + 0.899808i
\(626\) 17.3031i 0.691573i
\(627\) 0 0
\(628\) −9.10015 9.10015i −0.363136 0.363136i
\(629\) −3.59081 2.60888i −0.143175 0.104023i
\(630\) 0 0
\(631\) −4.71355 14.5068i −0.187644 0.577508i 0.812340 0.583184i \(-0.198193\pi\)
−0.999984 + 0.00567610i \(0.998193\pi\)
\(632\) −0.743430 + 4.69383i −0.0295720 + 0.186711i
\(633\) 0 0
\(634\) −6.41152 19.7326i −0.254634 0.783683i
\(635\) 35.5033 + 16.5805i 1.40891 + 0.657978i
\(636\) 0 0
\(637\) −11.5862 11.5862i −0.459063 0.459063i
\(638\) −4.74694 + 12.9031i −0.187933 + 0.510840i
\(639\) 0 0
\(640\) −1.63447 1.52594i −0.0646082 0.0603182i
\(641\) −3.02959 + 9.32412i −0.119662 + 0.368280i −0.992891 0.119029i \(-0.962022\pi\)
0.873229 + 0.487310i \(0.162022\pi\)
\(642\) 0 0
\(643\) 4.86380 + 0.770351i 0.191810 + 0.0303797i 0.251600 0.967831i \(-0.419043\pi\)
−0.0597904 + 0.998211i \(0.519043\pi\)
\(644\) 0.0836301 0.0607608i 0.00329549 0.00239431i
\(645\) 0 0
\(646\) −21.6080 7.02088i −0.850157 0.276233i
\(647\) 8.21829 1.30165i 0.323094 0.0511731i 0.00721944 0.999974i \(-0.497702\pi\)
0.315875 + 0.948801i \(0.397702\pi\)
\(648\) 0 0
\(649\) 3.17611 5.68342i 0.124673 0.223094i
\(650\) −2.84468 + 11.3533i −0.111578 + 0.445313i
\(651\) 0 0
\(652\) 0.763736 + 1.49892i 0.0299102 + 0.0587021i
\(653\) −10.2557 + 20.1279i −0.401335 + 0.787665i −0.999910 0.0134022i \(-0.995734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(654\) 0 0
\(655\) 2.25588 7.84999i 0.0881444 0.306725i
\(656\) 4.46390 1.45041i 0.174286 0.0566290i
\(657\) 0 0
\(658\) 0.00372160 + 0.0234972i 0.000145083 + 0.000916018i
\(659\) 25.7362 1.00254 0.501270 0.865291i \(-0.332866\pi\)
0.501270 + 0.865291i \(0.332866\pi\)
\(660\) 0 0
\(661\) −14.3297 −0.557360 −0.278680 0.960384i \(-0.589897\pi\)
−0.278680 + 0.960384i \(0.589897\pi\)
\(662\) −4.33692 27.3822i −0.168559 1.06424i
\(663\) 0 0
\(664\) −12.6707 + 4.11695i −0.491717 + 0.159769i
\(665\) −0.0960679 0.173548i −0.00372535 0.00672991i
\(666\) 0 0
\(667\) −12.6644 + 24.8553i −0.490369 + 0.962403i
\(668\) 7.38860 + 14.5009i 0.285874 + 0.561058i
\(669\) 0 0
\(670\) 7.15223 + 9.16539i 0.276315 + 0.354090i
\(671\) −26.8197 5.30953i −1.03536 0.204972i
\(672\) 0 0
\(673\) −36.8427 + 5.83531i −1.42018 + 0.224935i −0.818824 0.574045i \(-0.805373\pi\)
−0.601358 + 0.798980i \(0.705373\pi\)
\(674\) −6.68524 2.17217i −0.257506 0.0836688i
\(675\) 0 0
\(676\) 6.08415 4.42039i 0.234006 0.170015i
\(677\) 10.9011 + 1.72656i 0.418963 + 0.0663572i 0.362357 0.932039i \(-0.381972\pi\)
0.0566060 + 0.998397i \(0.481972\pi\)
\(678\) 0 0
\(679\) −0.0211283 + 0.0650261i −0.000810828 + 0.00249547i
\(680\) −0.301921 8.79204i −0.0115781 0.337160i
\(681\) 0 0
\(682\) 5.24999 + 18.5507i 0.201033 + 0.710345i
\(683\) 4.64732 + 4.64732i 0.177825 + 0.177825i 0.790407 0.612582i \(-0.209869\pi\)
−0.612582 + 0.790407i \(0.709869\pi\)
\(684\) 0 0
\(685\) 15.9291 34.1084i 0.608619 1.30321i
\(686\) 0.0664556 + 0.204529i 0.00253729 + 0.00780896i
\(687\) 0 0
\(688\) −1.25869 + 7.94705i −0.0479871 + 0.302978i
\(689\) 10.1525 + 31.2463i 0.386780 + 1.19039i
\(690\) 0 0
\(691\) −1.72951 1.25656i −0.0657935 0.0478018i 0.554402 0.832249i \(-0.312947\pi\)
−0.620196 + 0.784447i \(0.712947\pi\)
\(692\) 10.6979 + 10.6979i 0.406674 + 0.406674i
\(693\) 0 0
\(694\) 21.7088i 0.824055i
\(695\) −1.69985 49.5002i −0.0644789 1.87765i
\(696\) 0 0
\(697\) 16.4532 + 8.38331i 0.623209 + 0.317541i
\(698\) 11.7363 + 1.85885i 0.444226 + 0.0703585i
\(699\) 0 0
\(700\) 0.0504568 0.0579082i 0.00190709 0.00218872i
\(701\) −16.0121 5.20265i −0.604769 0.196501i −0.00940286 0.999956i \(-0.502993\pi\)
−0.595366 + 0.803454i \(0.702993\pi\)
\(702\) 0 0
\(703\) −4.60688 + 4.60688i −0.173752 + 0.173752i
\(704\) −0.392810 3.29328i −0.0148046 0.124120i
\(705\) 0 0
\(706\) −0.637174 + 0.876995i −0.0239804 + 0.0330061i
\(707\) 0.121099 + 0.237671i 0.00455441 + 0.00893854i
\(708\) 0 0
\(709\) 10.9910 + 15.1277i 0.412774 + 0.568134i 0.963892 0.266293i \(-0.0857988\pi\)
−0.551118 + 0.834427i \(0.685799\pi\)
\(710\) 6.96130 + 12.5757i 0.261253 + 0.471958i
\(711\) 0 0
\(712\) −8.44881 + 4.30488i −0.316632 + 0.161332i
\(713\) 6.11934 + 38.6360i 0.229171 + 1.44693i
\(714\) 0 0
\(715\) −14.0858 + 10.1473i −0.526779 + 0.379487i
\(716\) −23.6364 −0.883333
\(717\) 0 0
\(718\) −7.39342 + 3.76714i −0.275920 + 0.140588i
\(719\) −16.7305 + 5.43605i −0.623941 + 0.202731i −0.603889 0.797068i \(-0.706383\pi\)
−0.0200516 + 0.999799i \(0.506383\pi\)
\(720\) 0 0
\(721\) −0.00308396 0.00424470i −0.000114853 0.000158081i
\(722\) −6.51478 + 12.7860i −0.242455 + 0.475845i
\(723\) 0 0
\(724\) 11.2395 15.4698i 0.417712 0.574931i
\(725\) −5.03759 + 20.1053i −0.187091 + 0.746692i
\(726\) 0 0
\(727\) −3.51865 + 3.51865i −0.130500 + 0.130500i −0.769340 0.638840i \(-0.779415\pi\)
0.638840 + 0.769340i \(0.279415\pi\)
\(728\) 0.0355158 0.00562515i 0.00131630 0.000208482i
\(729\) 0 0
\(730\) −5.76881 + 8.54192i −0.213513 + 0.316151i
\(731\) −25.6097 + 18.6065i −0.947209 + 0.688187i
\(732\) 0 0
\(733\) −8.32881 4.24374i −0.307631 0.156746i 0.293359 0.956002i \(-0.405227\pi\)
−0.600990 + 0.799256i \(0.705227\pi\)
\(734\) 4.65539 14.3278i 0.171833 0.528849i
\(735\) 0 0
\(736\) 6.72940i 0.248049i
\(737\) −0.661386 + 17.2311i −0.0243625 + 0.634717i
\(738\) 0 0
\(739\) −22.0128 15.9932i −0.809754 0.588321i 0.104005 0.994577i \(-0.466834\pi\)
−0.913759 + 0.406256i \(0.866834\pi\)
\(740\) −2.28569 1.06745i −0.0840236 0.0392402i
\(741\) 0 0
\(742\) 0.0337271 0.212945i 0.00123816 0.00781744i
\(743\) 3.73190 23.5623i 0.136910 0.864417i −0.819646 0.572870i \(-0.805830\pi\)
0.956557 0.291547i \(-0.0941700\pi\)
\(744\) 0 0
\(745\) 29.6953 10.7887i 1.08795 0.395267i
\(746\) 6.10663 + 4.43673i 0.223580 + 0.162440i
\(747\) 0 0
\(748\) 8.06890 10.2544i 0.295028 0.374939i
\(749\) 0.0352284i 0.00128722i
\(750\) 0 0
\(751\) 5.95219 18.3190i 0.217199 0.668469i −0.781792 0.623540i \(-0.785694\pi\)
0.998990 0.0449289i \(-0.0143061\pi\)
\(752\) 1.37991 + 0.703097i 0.0503200 + 0.0256393i
\(753\) 0 0
\(754\) −7.85043 + 5.70367i −0.285896 + 0.207715i
\(755\) −6.13524 4.14345i −0.223284 0.150796i
\(756\) 0 0
\(757\) −10.6845 + 1.69226i −0.388336 + 0.0615063i −0.347550 0.937662i \(-0.612986\pi\)
−0.0407860 + 0.999168i \(0.512986\pi\)
\(758\) 7.05009 7.05009i 0.256071 0.256071i
\(759\) 0 0
\(760\) −12.8160 1.58115i −0.464886 0.0573544i
\(761\) −13.9786 + 19.2399i −0.506723 + 0.697444i −0.983362 0.181655i \(-0.941855\pi\)
0.476640 + 0.879099i \(0.341855\pi\)
\(762\) 0 0
\(763\) 0.0169356 0.0332380i 0.000613111 0.00120330i
\(764\) −7.04298 9.69383i −0.254806 0.350710i
\(765\) 0 0
\(766\) 22.6593 7.36246i 0.818714 0.266016i
\(767\) 4.09434 2.08617i 0.147838 0.0753273i
\(768\) 0 0
\(769\) 5.84739 0.210862 0.105431 0.994427i \(-0.466378\pi\)
0.105431 + 0.994427i \(0.466378\pi\)
\(770\) 0.112591 0.0173670i 0.00405750 0.000625862i
\(771\) 0 0
\(772\) 2.50920 + 15.8424i 0.0903080 + 0.570182i
\(773\) 8.04258 4.09790i 0.289272 0.147391i −0.303333 0.952885i \(-0.598100\pi\)
0.592605 + 0.805493i \(0.298100\pi\)
\(774\) 0 0
\(775\) 10.8566 + 26.9609i 0.389979 + 0.968465i
\(776\) 2.61620 + 3.60090i 0.0939163 + 0.129265i
\(777\) 0 0
\(778\) −2.37697 4.66507i −0.0852185 0.167251i
\(779\) 15.9322 21.9288i 0.570829 0.785679i
\(780\) 0 0
\(781\) −4.14037 + 20.9140i −0.148154 + 0.748361i
\(782\) 18.7207 18.7207i 0.669451 0.669451i
\(783\) 0 0
\(784\) 6.65717 + 2.16305i 0.237756 + 0.0772516i
\(785\) −5.47457 28.2517i −0.195396 1.00835i
\(786\) 0 0
\(787\) −46.5577 7.37402i −1.65960 0.262855i −0.744957 0.667112i \(-0.767530\pi\)
−0.914646 + 0.404257i \(0.867530\pi\)
\(788\) 7.43833 + 3.79002i 0.264979 + 0.135014i
\(789\) 0 0
\(790\) −7.25180 + 7.76757i −0.258007 + 0.276358i
\(791\) 0.167293i 0.00594827i
\(792\) 0 0
\(793\) −13.6447 13.6447i −0.484537 0.484537i
\(794\) −1.92927 1.40169i −0.0684671 0.0497443i
\(795\) 0 0
\(796\) −2.61628 8.05208i −0.0927316 0.285398i
\(797\) −0.195418 + 1.23382i −0.00692208 + 0.0437043i −0.990908 0.134544i \(-0.957043\pi\)
0.983986 + 0.178248i \(0.0570430\pi\)
\(798\) 0 0
\(799\) 1.88283 + 5.79476i 0.0666098 + 0.205004i
\(800\) −1.11910 4.87315i −0.0395663 0.172292i
\(801\) 0 0
\(802\) −11.1070 11.1070i −0.392202 0.392202i
\(803\) −14.7107 + 4.16322i −0.519128 + 0.146917i
\(804\) 0 0
\(805\) 0.231012 0.00793300i 0.00814209 0.000279601i
\(806\) −4.20486 + 12.9412i −0.148110 + 0.455835i
\(807\) 0 0
\(808\) 17.1509 + 2.71643i 0.603366 + 0.0955638i
\(809\) 16.9646 12.3255i 0.596442 0.433341i −0.248172 0.968716i \(-0.579830\pi\)
0.844614 + 0.535375i \(0.179830\pi\)
\(810\) 0 0
\(811\) 2.18611 + 0.710312i 0.0767649 + 0.0249424i 0.347148 0.937810i \(-0.387150\pi\)
−0.270383 + 0.962753i \(0.587150\pi\)
\(812\) 0.0628942 0.00996146i 0.00220715 0.000349579i
\(813\) 0 0
\(814\) −1.56958 3.39659i −0.0550138 0.119050i
\(815\) −0.460598 + 3.73337i −0.0161340 + 0.130774i
\(816\) 0 0
\(817\) 21.0951 + 41.4014i 0.738023 + 1.44845i
\(818\) 0.784707 1.54007i 0.0274366 0.0538474i
\(819\) 0 0
\(820\) 10.0870 + 2.89874i 0.352254 + 0.101228i
\(821\) −28.7277 + 9.33418i −1.00260 + 0.325765i −0.763905 0.645329i \(-0.776720\pi\)
−0.238697 + 0.971094i \(0.576720\pi\)
\(822\) 0 0
\(823\) 0.511401 + 3.22886i 0.0178263 + 0.112551i 0.994997 0.0999048i \(-0.0318538\pi\)
−0.977171 + 0.212456i \(0.931854\pi\)
\(824\) −0.341556 −0.0118987
\(825\) 0 0
\(826\) −0.0301549 −0.00104922
\(827\) 1.84276 + 11.6347i 0.0640791 + 0.404579i 0.998790 + 0.0491714i \(0.0156580\pi\)
−0.934711 + 0.355408i \(0.884342\pi\)
\(828\) 0 0
\(829\) −19.4970 + 6.33497i −0.677160 + 0.220023i −0.627351 0.778736i \(-0.715861\pi\)
−0.0498083 + 0.998759i \(0.515861\pi\)
\(830\) −28.6317 8.22798i −0.993821 0.285597i
\(831\) 0 0
\(832\) 1.06272 2.08571i 0.0368433 0.0723091i
\(833\) 12.5023 + 24.5372i 0.433180 + 0.850164i
\(834\) 0 0
\(835\) −4.45596 + 36.1177i −0.154205 + 1.24990i
\(836\) −13.0140 14.0529i −0.450100 0.486031i
\(837\) 0 0
\(838\) 16.5925 2.62800i 0.573180 0.0907828i
\(839\) 15.2019 + 4.93940i 0.524828 + 0.170527i 0.559435 0.828874i \(-0.311018\pi\)
−0.0346074 + 0.999401i \(0.511018\pi\)
\(840\) 0 0
\(841\) 9.55933 6.94526i 0.329632 0.239492i
\(842\) −11.0975 1.75768i −0.382446 0.0605736i
\(843\) 0 0
\(844\) −2.16218 + 6.65452i −0.0744254 + 0.229058i
\(845\) 16.8063 0.577131i 0.578153 0.0198539i
\(846\) 0 0
\(847\) 0.144234 + 0.0880279i 0.00495594 + 0.00302467i
\(848\) −9.92438 9.92438i −0.340804 0.340804i
\(849\) 0 0
\(850\) 10.4435 16.6700i 0.358209 0.571777i
\(851\) −2.34603 7.22033i −0.0804208 0.247510i
\(852\) 0 0
\(853\) −6.04382 + 38.1592i −0.206936 + 1.30655i 0.637317 + 0.770601i \(0.280044\pi\)
−0.844254 + 0.535944i \(0.819956\pi\)
\(854\) 0.0391306 + 0.120432i 0.00133902 + 0.00412108i
\(855\) 0 0
\(856\) 1.85533 + 1.34798i 0.0634140 + 0.0460730i
\(857\) −26.7350 26.7350i −0.913251 0.913251i 0.0832758 0.996527i \(-0.473462\pi\)
−0.996527 + 0.0832758i \(0.973462\pi\)
\(858\) 0 0
\(859\) 35.7867i 1.22103i 0.792005 + 0.610514i \(0.209037\pi\)
−0.792005 + 0.610514i \(0.790963\pi\)
\(860\) −12.2779 + 13.1511i −0.418673 + 0.448450i
\(861\) 0 0
\(862\) −34.1495 17.4000i −1.16314 0.592647i
\(863\) 38.2576 + 6.05941i 1.30230 + 0.206265i 0.768776 0.639518i \(-0.220866\pi\)
0.533528 + 0.845782i \(0.320866\pi\)
\(864\) 0 0
\(865\) 6.43578 + 33.2120i 0.218823 + 1.12924i
\(866\) −18.6691 6.06597i −0.634403 0.206130i
\(867\) 0 0
\(868\) 0.0631407 0.0631407i 0.00214313 0.00214313i
\(869\) −15.6508 + 1.86677i −0.530917 + 0.0633257i
\(870\) 0 0
\(871\) −7.15368 + 9.84619i −0.242393 + 0.333626i
\(872\) −1.10249 2.16375i −0.0373349 0.0732738i
\(873\) 0 0
\(874\) −22.8425 31.4400i −0.772659 1.06347i
\(875\) 0.165970 0.0441622i 0.00561080 0.00149295i
\(876\) 0 0
\(877\) −9.96725 + 5.07857i −0.336570 + 0.171491i −0.614105 0.789225i \(-0.710483\pi\)
0.277534 + 0.960716i \(0.410483\pi\)
\(878\) −0.164590 1.03918i −0.00555466 0.0350707i
\(879\) 0 0
\(880\) 3.39354 6.59423i 0.114396 0.222292i
\(881\) 2.54074 0.0855998 0.0427999 0.999084i \(-0.486372\pi\)
0.0427999 + 0.999084i \(0.486372\pi\)
\(882\) 0 0
\(883\) 13.9170 7.09109i 0.468346 0.238634i −0.203858 0.979001i \(-0.565348\pi\)
0.672203 + 0.740366i \(0.265348\pi\)
\(884\) 8.75872 2.84588i 0.294588 0.0957173i
\(885\) 0 0
\(886\) −0.185210 0.254920i −0.00622226 0.00856421i
\(887\) 1.38930 2.72665i 0.0466480 0.0915519i −0.866506 0.499167i \(-0.833639\pi\)
0.913154 + 0.407615i \(0.133639\pi\)
\(888\) 0 0
\(889\) 0.158224 0.217777i 0.00530667 0.00730400i
\(890\) −21.0436 2.59621i −0.705382 0.0870252i
\(891\) 0 0
\(892\) 13.2224 13.2224i 0.442718 0.442718i
\(893\) 8.83358 1.39910i 0.295604 0.0468191i
\(894\) 0 0
\(895\) −43.7996 29.5802i −1.46406 0.988756i
\(896\) −0.0124276 + 0.00902916i −0.000415176 + 0.000301643i
\(897\) 0 0
\(898\) −29.9392 15.2548i −0.999084 0.509059i
\(899\) −7.44630 + 22.9173i −0.248348 + 0.764336i
\(900\) 0 0
\(901\) 55.2178i 1.83957i
\(902\) 8.66027 + 12.9356i 0.288356 + 0.430710i
\(903\) 0 0
\(904\) −8.81066 6.40132i −0.293038 0.212905i
\(905\) 40.1874 14.6006i 1.33587 0.485341i
\(906\) 0 0
\(907\) −8.26589 + 52.1888i −0.274464 + 1.73290i 0.336892 + 0.941543i \(0.390624\pi\)
−0.611356 + 0.791356i \(0.709376\pi\)
\(908\) −1.58488 + 10.0065i −0.0525961 + 0.332079i
\(909\) 0 0
\(910\) 0.0728526 + 0.0340232i 0.00241504 + 0.00112786i
\(911\) −9.97151 7.24473i −0.330371 0.240029i 0.410217 0.911988i \(-0.365453\pi\)
−0.740588 + 0.671959i \(0.765453\pi\)
\(912\) 0 0
\(913\) −24.5820 36.7175i −0.813544 1.21517i
\(914\) 29.9314i 0.990044i
\(915\) 0 0
\(916\) −3.35423 + 10.3233i −0.110827 + 0.341090i
\(917\) −0.0499947 0.0254736i −0.00165097 0.000841212i
\(918\) 0 0
\(919\) 0.0894366 0.0649795i 0.00295024 0.00214348i −0.586309 0.810087i \(-0.699420\pi\)
0.589259 + 0.807944i \(0.299420\pi\)
\(920\) 8.42163 12.4700i 0.277653 0.411123i
\(921\) 0 0
\(922\) −27.2750 + 4.31993i −0.898254 + 0.142269i
\(923\) −10.6401 + 10.6401i −0.350224 + 0.350224i
\(924\) 0 0
\(925\) −2.89964 4.83851i −0.0953396 0.159089i
\(926\) −22.1629 + 30.5047i −0.728319 + 1.00245i
\(927\) 0 0
\(928\) 1.88195 3.69354i 0.0617782 0.121247i
\(929\) 6.25774 + 8.61305i 0.205310 + 0.282585i 0.899238 0.437459i \(-0.144122\pi\)
−0.693928 + 0.720044i \(0.744122\pi\)
\(930\) 0 0
\(931\) 38.4448 12.4915i 1.25998 0.409392i
\(932\) −4.23391 + 2.15729i −0.138686 + 0.0706643i
\(933\) 0 0
\(934\) 29.8354 0.976243
\(935\) 27.7852 8.90411i 0.908675 0.291195i
\(936\) 0 0
\(937\) 4.09535 + 25.8570i 0.133789 + 0.844712i 0.959724 + 0.280946i \(0.0906482\pi\)
−0.825934 + 0.563766i \(0.809352\pi\)
\(938\) 0.0711617 0.0362587i 0.00232351 0.00118389i
\(939\) 0 0
\(940\) 1.67714 + 3.02979i 0.0547024 + 0.0988208i
\(941\) 19.4803 + 26.8123i 0.635038 + 0.874055i 0.998339 0.0576167i \(-0.0183501\pi\)
−0.363300 + 0.931672i \(0.618350\pi\)
\(942\) 0 0
\(943\) 14.3394 + 28.1427i 0.466956 + 0.916452i
\(944\) −1.15385 + 1.58813i −0.0375545 + 0.0516894i
\(945\) 0 0
\(946\) −26.4981 + 3.16059i −0.861528 + 0.102760i
\(947\) −31.2894 + 31.2894i −1.01677 + 1.01677i −0.0169134 + 0.999857i \(0.505384\pi\)
−0.999857 + 0.0169134i \(0.994616\pi\)
\(948\) 0 0
\(949\) −10.2623 3.33443i −0.333129 0.108240i
\(950\) −21.7701 18.9688i −0.706314 0.615429i
\(951\) 0 0
\(952\) −0.0596910 0.00945413i −0.00193460 0.000306410i
\(953\) 17.3932 + 8.86229i 0.563421 + 0.287078i 0.712412 0.701761i \(-0.247603\pi\)
−0.148991 + 0.988839i \(0.547603\pi\)
\(954\) 0 0
\(955\) −0.919538 26.7773i −0.0297556 0.866493i
\(956\) 13.4998i 0.436614i
\(957\) 0 0
\(958\) −4.61190 4.61190i −0.149004 0.149004i
\(959\) −0.209220 0.152007i −0.00675608 0.00490858i
\(960\) 0 0
\(961\) 0.862234 + 2.65368i 0.0278140 + 0.0856027i
\(962\) 0.413124 2.60836i 0.0133196 0.0840969i
\(963\) 0 0
\(964\) 6.65750 + 20.4897i 0.214424 + 0.659929i
\(965\) −15.1766 + 32.4972i −0.488553 + 1.04612i
\(966\) 0 0
\(967\) −25.7251 25.7251i −0.827262 0.827262i 0.159875 0.987137i \(-0.448891\pi\)
−0.987137 + 0.159875i \(0.948891\pi\)
\(968\) 10.1550 4.22792i 0.326395 0.135890i
\(969\) 0 0
\(970\) 0.341574 + 9.94677i 0.0109673 + 0.319372i
\(971\) 12.5009 38.4738i 0.401173 1.23468i −0.522876 0.852409i \(-0.675141\pi\)
0.924049 0.382274i \(-0.124859\pi\)
\(972\) 0 0
\(973\) −0.336067 0.0532278i −0.0107738 0.00170640i
\(974\) 6.93105 5.03570i 0.222085 0.161354i
\(975\) 0 0
\(976\) 7.83992 + 2.54735i 0.250950 + 0.0815385i
\(977\) −37.1310 + 5.88097i −1.18792 + 0.188149i −0.718949 0.695063i \(-0.755377\pi\)
−0.468975 + 0.883211i \(0.655377\pi\)
\(978\) 0 0
\(979\) −21.3687 23.0746i −0.682947 0.737467i
\(980\) 9.62915 + 12.3395i 0.307592 + 0.394171i
\(981\) 0 0
\(982\) −11.7536 23.0676i −0.375071 0.736118i
\(983\) −6.95538 + 13.6507i −0.221842 + 0.435390i −0.974924 0.222537i \(-0.928566\pi\)
0.753082 + 0.657927i \(0.228566\pi\)
\(984\) 0 0
\(985\) 9.04058 + 16.3320i 0.288057 + 0.520379i
\(986\) 15.5106 5.03971i 0.493959 0.160497i
\(987\) 0 0
\(988\) −2.11473 13.3519i −0.0672784 0.424779i
\(989\) −54.1455 −1.72173
\(990\) 0 0
\(991\) −42.6744 −1.35560 −0.677798 0.735248i \(-0.737066\pi\)
−0.677798 + 0.735248i \(0.737066\pi\)
\(992\) −0.909344 5.74137i −0.0288717 0.182289i
\(993\) 0 0
\(994\) 0.0939125 0.0305140i 0.00297872 0.000967846i
\(995\) 5.22880 18.1952i 0.165764 0.576826i
\(996\) 0 0
\(997\) 7.94283 15.5887i 0.251552 0.493698i −0.730354 0.683069i \(-0.760645\pi\)
0.981906 + 0.189371i \(0.0606448\pi\)
\(998\) −7.59331 14.9027i −0.240362 0.471737i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.bh.c.73.1 48
3.2 odd 2 110.2.k.a.73.5 yes 48
5.2 odd 4 inner 990.2.bh.c.667.5 48
11.8 odd 10 inner 990.2.bh.c.613.5 48
12.11 even 2 880.2.cm.c.513.4 48
15.2 even 4 110.2.k.a.7.2 48
15.8 even 4 550.2.bh.b.7.5 48
15.14 odd 2 550.2.bh.b.293.2 48
33.8 even 10 110.2.k.a.63.2 yes 48
55.52 even 20 inner 990.2.bh.c.217.1 48
60.47 odd 4 880.2.cm.c.337.3 48
132.107 odd 10 880.2.cm.c.833.3 48
165.8 odd 20 550.2.bh.b.107.2 48
165.74 even 10 550.2.bh.b.393.5 48
165.107 odd 20 110.2.k.a.107.5 yes 48
660.107 even 20 880.2.cm.c.657.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.k.a.7.2 48 15.2 even 4
110.2.k.a.63.2 yes 48 33.8 even 10
110.2.k.a.73.5 yes 48 3.2 odd 2
110.2.k.a.107.5 yes 48 165.107 odd 20
550.2.bh.b.7.5 48 15.8 even 4
550.2.bh.b.107.2 48 165.8 odd 20
550.2.bh.b.293.2 48 15.14 odd 2
550.2.bh.b.393.5 48 165.74 even 10
880.2.cm.c.337.3 48 60.47 odd 4
880.2.cm.c.513.4 48 12.11 even 2
880.2.cm.c.657.4 48 660.107 even 20
880.2.cm.c.833.3 48 132.107 odd 10
990.2.bh.c.73.1 48 1.1 even 1 trivial
990.2.bh.c.217.1 48 55.52 even 20 inner
990.2.bh.c.613.5 48 11.8 odd 10 inner
990.2.bh.c.667.5 48 5.2 odd 4 inner