Properties

Label 990.2.m.d.307.1
Level $990$
Weight $2$
Character 990.307
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(307,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 990.307
Dual form 990.2.m.d.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.707107 - 2.12132i) q^{5} +(-2.12132 + 2.12132i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.00000 + 2.00000i) q^{10} +(1.41421 - 3.00000i) q^{11} +(-3.00000 - 3.00000i) q^{13} -3.00000i q^{14} -1.00000 q^{16} +(-5.12132 + 5.12132i) q^{17} +3.00000 q^{19} +(-2.12132 - 0.707107i) q^{20} +(1.12132 + 3.12132i) q^{22} +(0.171573 - 0.171573i) q^{23} +(-4.00000 - 3.00000i) q^{25} +4.24264 q^{26} +(2.12132 + 2.12132i) q^{28} -1.24264 q^{29} -7.24264 q^{31} +(0.707107 - 0.707107i) q^{32} -7.24264i q^{34} +(3.00000 + 6.00000i) q^{35} +(0.121320 + 0.121320i) q^{37} +(-2.12132 + 2.12132i) q^{38} +(2.00000 - 1.00000i) q^{40} -1.75736i q^{41} +(-1.24264 - 1.24264i) q^{43} +(-3.00000 - 1.41421i) q^{44} +0.242641i q^{46} +(-4.41421 - 4.41421i) q^{47} -2.00000i q^{49} +(4.94975 - 0.707107i) q^{50} +(-3.00000 + 3.00000i) q^{52} +(-9.53553 + 9.53553i) q^{53} +(-5.36396 - 5.12132i) q^{55} -3.00000 q^{56} +(0.878680 - 0.878680i) q^{58} -1.41421i q^{59} +7.24264i q^{61} +(5.12132 - 5.12132i) q^{62} +1.00000i q^{64} +(-8.48528 + 4.24264i) q^{65} +(-4.00000 - 4.00000i) q^{67} +(5.12132 + 5.12132i) q^{68} +(-6.36396 - 2.12132i) q^{70} +1.24264 q^{71} +(-6.00000 - 6.00000i) q^{73} -0.171573 q^{74} -3.00000i q^{76} +(3.36396 + 9.36396i) q^{77} -10.2426 q^{79} +(-0.707107 + 2.12132i) q^{80} +(1.24264 + 1.24264i) q^{82} +(-7.24264 - 7.24264i) q^{83} +(7.24264 + 14.4853i) q^{85} +1.75736 q^{86} +(3.12132 - 1.12132i) q^{88} -5.48528i q^{89} +12.7279 q^{91} +(-0.171573 - 0.171573i) q^{92} +6.24264 q^{94} +(2.12132 - 6.36396i) q^{95} +(-2.24264 - 2.24264i) q^{97} +(1.41421 + 1.41421i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{10} - 12 q^{13} - 4 q^{16} - 12 q^{17} + 12 q^{19} - 4 q^{22} + 12 q^{23} - 16 q^{25} + 12 q^{29} - 12 q^{31} + 12 q^{35} - 8 q^{37} + 8 q^{40} + 12 q^{43} - 12 q^{44} - 12 q^{47} - 12 q^{52}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 2.12132i 0.316228 0.948683i
\(6\) 0 0
\(7\) −2.12132 + 2.12132i −0.801784 + 0.801784i −0.983374 0.181591i \(-0.941875\pi\)
0.181591 + 0.983374i \(0.441875\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 1.41421 3.00000i 0.426401 0.904534i
\(12\) 0 0
\(13\) −3.00000 3.00000i −0.832050 0.832050i 0.155747 0.987797i \(-0.450222\pi\)
−0.987797 + 0.155747i \(0.950222\pi\)
\(14\) 3.00000i 0.801784i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −5.12132 + 5.12132i −1.24210 + 1.24210i −0.282975 + 0.959127i \(0.591322\pi\)
−0.959127 + 0.282975i \(0.908678\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −2.12132 0.707107i −0.474342 0.158114i
\(21\) 0 0
\(22\) 1.12132 + 3.12132i 0.239066 + 0.665468i
\(23\) 0.171573 0.171573i 0.0357754 0.0357754i −0.688993 0.724768i \(-0.741947\pi\)
0.724768 + 0.688993i \(0.241947\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 4.24264 0.832050
\(27\) 0 0
\(28\) 2.12132 + 2.12132i 0.400892 + 0.400892i
\(29\) −1.24264 −0.230753 −0.115376 0.993322i \(-0.536807\pi\)
−0.115376 + 0.993322i \(0.536807\pi\)
\(30\) 0 0
\(31\) −7.24264 −1.30082 −0.650408 0.759585i \(-0.725402\pi\)
−0.650408 + 0.759585i \(0.725402\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 7.24264i 1.24210i
\(35\) 3.00000 + 6.00000i 0.507093 + 1.01419i
\(36\) 0 0
\(37\) 0.121320 + 0.121320i 0.0199449 + 0.0199449i 0.717009 0.697064i \(-0.245511\pi\)
−0.697064 + 0.717009i \(0.745511\pi\)
\(38\) −2.12132 + 2.12132i −0.344124 + 0.344124i
\(39\) 0 0
\(40\) 2.00000 1.00000i 0.316228 0.158114i
\(41\) 1.75736i 0.274453i −0.990540 0.137227i \(-0.956181\pi\)
0.990540 0.137227i \(-0.0438189\pi\)
\(42\) 0 0
\(43\) −1.24264 1.24264i −0.189501 0.189501i 0.605979 0.795480i \(-0.292781\pi\)
−0.795480 + 0.605979i \(0.792781\pi\)
\(44\) −3.00000 1.41421i −0.452267 0.213201i
\(45\) 0 0
\(46\) 0.242641i 0.0357754i
\(47\) −4.41421 4.41421i −0.643879 0.643879i 0.307628 0.951507i \(-0.400465\pi\)
−0.951507 + 0.307628i \(0.900465\pi\)
\(48\) 0 0
\(49\) 2.00000i 0.285714i
\(50\) 4.94975 0.707107i 0.700000 0.100000i
\(51\) 0 0
\(52\) −3.00000 + 3.00000i −0.416025 + 0.416025i
\(53\) −9.53553 + 9.53553i −1.30981 + 1.30981i −0.388254 + 0.921552i \(0.626922\pi\)
−0.921552 + 0.388254i \(0.873078\pi\)
\(54\) 0 0
\(55\) −5.36396 5.12132i −0.723276 0.690559i
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) 0.878680 0.878680i 0.115376 0.115376i
\(59\) 1.41421i 0.184115i −0.995754 0.0920575i \(-0.970656\pi\)
0.995754 0.0920575i \(-0.0293443\pi\)
\(60\) 0 0
\(61\) 7.24264i 0.927325i 0.886012 + 0.463663i \(0.153465\pi\)
−0.886012 + 0.463663i \(0.846535\pi\)
\(62\) 5.12132 5.12132i 0.650408 0.650408i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.48528 + 4.24264i −1.05247 + 0.526235i
\(66\) 0 0
\(67\) −4.00000 4.00000i −0.488678 0.488678i 0.419211 0.907889i \(-0.362307\pi\)
−0.907889 + 0.419211i \(0.862307\pi\)
\(68\) 5.12132 + 5.12132i 0.621051 + 0.621051i
\(69\) 0 0
\(70\) −6.36396 2.12132i −0.760639 0.253546i
\(71\) 1.24264 0.147474 0.0737372 0.997278i \(-0.476507\pi\)
0.0737372 + 0.997278i \(0.476507\pi\)
\(72\) 0 0
\(73\) −6.00000 6.00000i −0.702247 0.702247i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(74\) −0.171573 −0.0199449
\(75\) 0 0
\(76\) 3.00000i 0.344124i
\(77\) 3.36396 + 9.36396i 0.383359 + 1.06712i
\(78\) 0 0
\(79\) −10.2426 −1.15239 −0.576194 0.817313i \(-0.695463\pi\)
−0.576194 + 0.817313i \(0.695463\pi\)
\(80\) −0.707107 + 2.12132i −0.0790569 + 0.237171i
\(81\) 0 0
\(82\) 1.24264 + 1.24264i 0.137227 + 0.137227i
\(83\) −7.24264 7.24264i −0.794983 0.794983i 0.187317 0.982300i \(-0.440021\pi\)
−0.982300 + 0.187317i \(0.940021\pi\)
\(84\) 0 0
\(85\) 7.24264 + 14.4853i 0.785575 + 1.57115i
\(86\) 1.75736 0.189501
\(87\) 0 0
\(88\) 3.12132 1.12132i 0.332734 0.119533i
\(89\) 5.48528i 0.581439i −0.956808 0.290719i \(-0.906105\pi\)
0.956808 0.290719i \(-0.0938946\pi\)
\(90\) 0 0
\(91\) 12.7279 1.33425
\(92\) −0.171573 0.171573i −0.0178877 0.0178877i
\(93\) 0 0
\(94\) 6.24264 0.643879
\(95\) 2.12132 6.36396i 0.217643 0.652929i
\(96\) 0 0
\(97\) −2.24264 2.24264i −0.227706 0.227706i 0.584028 0.811734i \(-0.301476\pi\)
−0.811734 + 0.584028i \(0.801476\pi\)
\(98\) 1.41421 + 1.41421i 0.142857 + 0.142857i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 2.48528i 0.247295i −0.992326 0.123647i \(-0.960541\pi\)
0.992326 0.123647i \(-0.0394592\pi\)
\(102\) 0 0
\(103\) 6.24264 6.24264i 0.615106 0.615106i −0.329166 0.944272i \(-0.606768\pi\)
0.944272 + 0.329166i \(0.106768\pi\)
\(104\) 4.24264i 0.416025i
\(105\) 0 0
\(106\) 13.4853i 1.30981i
\(107\) 10.2426 10.2426i 0.990193 0.990193i −0.00975893 0.999952i \(-0.503106\pi\)
0.999952 + 0.00975893i \(0.00310641\pi\)
\(108\) 0 0
\(109\) −2.48528 −0.238047 −0.119023 0.992891i \(-0.537976\pi\)
−0.119023 + 0.992891i \(0.537976\pi\)
\(110\) 7.41421 0.171573i 0.706918 0.0163588i
\(111\) 0 0
\(112\) 2.12132 2.12132i 0.200446 0.200446i
\(113\) 4.41421 4.41421i 0.415254 0.415254i −0.468310 0.883564i \(-0.655137\pi\)
0.883564 + 0.468310i \(0.155137\pi\)
\(114\) 0 0
\(115\) −0.242641 0.485281i −0.0226264 0.0452527i
\(116\) 1.24264i 0.115376i
\(117\) 0 0
\(118\) 1.00000 + 1.00000i 0.0920575 + 0.0920575i
\(119\) 21.7279i 1.99180i
\(120\) 0 0
\(121\) −7.00000 8.48528i −0.636364 0.771389i
\(122\) −5.12132 5.12132i −0.463663 0.463663i
\(123\) 0 0
\(124\) 7.24264i 0.650408i
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) 4.24264 4.24264i 0.376473 0.376473i −0.493355 0.869828i \(-0.664230\pi\)
0.869828 + 0.493355i \(0.164230\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 3.00000 9.00000i 0.263117 0.789352i
\(131\) 13.9706i 1.22061i −0.792165 0.610307i \(-0.791046\pi\)
0.792165 0.610307i \(-0.208954\pi\)
\(132\) 0 0
\(133\) −6.36396 + 6.36396i −0.551825 + 0.551825i
\(134\) 5.65685 0.488678
\(135\) 0 0
\(136\) −7.24264 −0.621051
\(137\) 11.6569 + 11.6569i 0.995912 + 0.995912i 0.999992 0.00407941i \(-0.00129852\pi\)
−0.00407941 + 0.999992i \(0.501299\pi\)
\(138\) 0 0
\(139\) 14.4853 1.22863 0.614313 0.789063i \(-0.289433\pi\)
0.614313 + 0.789063i \(0.289433\pi\)
\(140\) 6.00000 3.00000i 0.507093 0.253546i
\(141\) 0 0
\(142\) −0.878680 + 0.878680i −0.0737372 + 0.0737372i
\(143\) −13.2426 + 4.75736i −1.10741 + 0.397830i
\(144\) 0 0
\(145\) −0.878680 + 2.63604i −0.0729704 + 0.218911i
\(146\) 8.48528 0.702247
\(147\) 0 0
\(148\) 0.121320 0.121320i 0.00997247 0.00997247i
\(149\) −19.2426 −1.57642 −0.788209 0.615407i \(-0.788992\pi\)
−0.788209 + 0.615407i \(0.788992\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 2.12132 + 2.12132i 0.172062 + 0.172062i
\(153\) 0 0
\(154\) −9.00000 4.24264i −0.725241 0.341882i
\(155\) −5.12132 + 15.3640i −0.411354 + 1.23406i
\(156\) 0 0
\(157\) 16.3640 + 16.3640i 1.30599 + 1.30599i 0.924286 + 0.381700i \(0.124661\pi\)
0.381700 + 0.924286i \(0.375339\pi\)
\(158\) 7.24264 7.24264i 0.576194 0.576194i
\(159\) 0 0
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) 0.727922i 0.0573683i
\(162\) 0 0
\(163\) −13.8492 + 13.8492i −1.08476 + 1.08476i −0.0886978 + 0.996059i \(0.528271\pi\)
−0.996059 + 0.0886978i \(0.971729\pi\)
\(164\) −1.75736 −0.137227
\(165\) 0 0
\(166\) 10.2426 0.794983
\(167\) −6.36396 + 6.36396i −0.492458 + 0.492458i −0.909080 0.416622i \(-0.863214\pi\)
0.416622 + 0.909080i \(0.363214\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) −15.3640 5.12132i −1.17836 0.392787i
\(171\) 0 0
\(172\) −1.24264 + 1.24264i −0.0947505 + 0.0947505i
\(173\) 16.2426 + 16.2426i 1.23491 + 1.23491i 0.962057 + 0.272848i \(0.0879656\pi\)
0.272848 + 0.962057i \(0.412034\pi\)
\(174\) 0 0
\(175\) 14.8492 2.12132i 1.12250 0.160357i
\(176\) −1.41421 + 3.00000i −0.106600 + 0.226134i
\(177\) 0 0
\(178\) 3.87868 + 3.87868i 0.290719 + 0.290719i
\(179\) 13.7574i 1.02827i 0.857708 + 0.514137i \(0.171888\pi\)
−0.857708 + 0.514137i \(0.828112\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) −9.00000 + 9.00000i −0.667124 + 0.667124i
\(183\) 0 0
\(184\) 0.242641 0.0178877
\(185\) 0.343146 0.171573i 0.0252286 0.0126143i
\(186\) 0 0
\(187\) 8.12132 + 22.6066i 0.593890 + 1.65316i
\(188\) −4.41421 + 4.41421i −0.321940 + 0.321940i
\(189\) 0 0
\(190\) 3.00000 + 6.00000i 0.217643 + 0.435286i
\(191\) −2.82843 −0.204658 −0.102329 0.994751i \(-0.532629\pi\)
−0.102329 + 0.994751i \(0.532629\pi\)
\(192\) 0 0
\(193\) −0.878680 0.878680i −0.0632487 0.0632487i 0.674775 0.738024i \(-0.264241\pi\)
−0.738024 + 0.674775i \(0.764241\pi\)
\(194\) 3.17157 0.227706
\(195\) 0 0
\(196\) −2.00000 −0.142857
\(197\) −1.24264 + 1.24264i −0.0885345 + 0.0885345i −0.749987 0.661453i \(-0.769940\pi\)
0.661453 + 0.749987i \(0.269940\pi\)
\(198\) 0 0
\(199\) 4.75736i 0.337240i 0.985681 + 0.168620i \(0.0539311\pi\)
−0.985681 + 0.168620i \(0.946069\pi\)
\(200\) −0.707107 4.94975i −0.0500000 0.350000i
\(201\) 0 0
\(202\) 1.75736 + 1.75736i 0.123647 + 0.123647i
\(203\) 2.63604 2.63604i 0.185014 0.185014i
\(204\) 0 0
\(205\) −3.72792 1.24264i −0.260369 0.0867898i
\(206\) 8.82843i 0.615106i
\(207\) 0 0
\(208\) 3.00000 + 3.00000i 0.208013 + 0.208013i
\(209\) 4.24264 9.00000i 0.293470 0.622543i
\(210\) 0 0
\(211\) 17.4853i 1.20374i 0.798595 + 0.601868i \(0.205577\pi\)
−0.798595 + 0.601868i \(0.794423\pi\)
\(212\) 9.53553 + 9.53553i 0.654903 + 0.654903i
\(213\) 0 0
\(214\) 14.4853i 0.990193i
\(215\) −3.51472 + 1.75736i −0.239702 + 0.119851i
\(216\) 0 0
\(217\) 15.3640 15.3640i 1.04297 1.04297i
\(218\) 1.75736 1.75736i 0.119023 0.119023i
\(219\) 0 0
\(220\) −5.12132 + 5.36396i −0.345279 + 0.361638i
\(221\) 30.7279 2.06698
\(222\) 0 0
\(223\) −3.75736 + 3.75736i −0.251611 + 0.251611i −0.821631 0.570020i \(-0.806936\pi\)
0.570020 + 0.821631i \(0.306936\pi\)
\(224\) 3.00000i 0.200446i
\(225\) 0 0
\(226\) 6.24264i 0.415254i
\(227\) 15.0000 15.0000i 0.995585 0.995585i −0.00440533 0.999990i \(-0.501402\pi\)
0.999990 + 0.00440533i \(0.00140226\pi\)
\(228\) 0 0
\(229\) 15.2132i 1.00532i −0.864485 0.502658i \(-0.832355\pi\)
0.864485 0.502658i \(-0.167645\pi\)
\(230\) 0.514719 + 0.171573i 0.0339395 + 0.0113132i
\(231\) 0 0
\(232\) −0.878680 0.878680i −0.0576881 0.0576881i
\(233\) 1.60660 + 1.60660i 0.105252 + 0.105252i 0.757772 0.652520i \(-0.226288\pi\)
−0.652520 + 0.757772i \(0.726288\pi\)
\(234\) 0 0
\(235\) −12.4853 + 6.24264i −0.814450 + 0.407225i
\(236\) −1.41421 −0.0920575
\(237\) 0 0
\(238\) 15.3640 + 15.3640i 0.995898 + 0.995898i
\(239\) −0.727922 −0.0470854 −0.0235427 0.999723i \(-0.507495\pi\)
−0.0235427 + 0.999723i \(0.507495\pi\)
\(240\) 0 0
\(241\) 6.72792i 0.433384i 0.976240 + 0.216692i \(0.0695267\pi\)
−0.976240 + 0.216692i \(0.930473\pi\)
\(242\) 10.9497 + 1.05025i 0.703876 + 0.0675128i
\(243\) 0 0
\(244\) 7.24264 0.463663
\(245\) −4.24264 1.41421i −0.271052 0.0903508i
\(246\) 0 0
\(247\) −9.00000 9.00000i −0.572656 0.572656i
\(248\) −5.12132 5.12132i −0.325204 0.325204i
\(249\) 0 0
\(250\) 2.00000 11.0000i 0.126491 0.695701i
\(251\) −3.51472 −0.221847 −0.110924 0.993829i \(-0.535381\pi\)
−0.110924 + 0.993829i \(0.535381\pi\)
\(252\) 0 0
\(253\) −0.272078 0.757359i −0.0171054 0.0476148i
\(254\) 6.00000i 0.376473i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.92893 + 1.92893i 0.120323 + 0.120323i 0.764705 0.644381i \(-0.222885\pi\)
−0.644381 + 0.764705i \(0.722885\pi\)
\(258\) 0 0
\(259\) −0.514719 −0.0319831
\(260\) 4.24264 + 8.48528i 0.263117 + 0.526235i
\(261\) 0 0
\(262\) 9.87868 + 9.87868i 0.610307 + 0.610307i
\(263\) 6.36396 + 6.36396i 0.392419 + 0.392419i 0.875549 0.483130i \(-0.160500\pi\)
−0.483130 + 0.875549i \(0.660500\pi\)
\(264\) 0 0
\(265\) 13.4853 + 26.9706i 0.828394 + 1.65679i
\(266\) 9.00000i 0.551825i
\(267\) 0 0
\(268\) −4.00000 + 4.00000i −0.244339 + 0.244339i
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) 0 0
\(271\) 6.72792i 0.408692i −0.978899 0.204346i \(-0.934493\pi\)
0.978899 0.204346i \(-0.0655068\pi\)
\(272\) 5.12132 5.12132i 0.310526 0.310526i
\(273\) 0 0
\(274\) −16.4853 −0.995912
\(275\) −14.6569 + 7.75736i −0.883842 + 0.467786i
\(276\) 0 0
\(277\) −10.2426 + 10.2426i −0.615421 + 0.615421i −0.944353 0.328933i \(-0.893311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(278\) −10.2426 + 10.2426i −0.614313 + 0.614313i
\(279\) 0 0
\(280\) −2.12132 + 6.36396i −0.126773 + 0.380319i
\(281\) 22.9706i 1.37031i 0.728398 + 0.685154i \(0.240265\pi\)
−0.728398 + 0.685154i \(0.759735\pi\)
\(282\) 0 0
\(283\) −13.2426 13.2426i −0.787193 0.787193i 0.193840 0.981033i \(-0.437906\pi\)
−0.981033 + 0.193840i \(0.937906\pi\)
\(284\) 1.24264i 0.0737372i
\(285\) 0 0
\(286\) 6.00000 12.7279i 0.354787 0.752618i
\(287\) 3.72792 + 3.72792i 0.220052 + 0.220052i
\(288\) 0 0
\(289\) 35.4558i 2.08564i
\(290\) −1.24264 2.48528i −0.0729704 0.145941i
\(291\) 0 0
\(292\) −6.00000 + 6.00000i −0.351123 + 0.351123i
\(293\) −15.7279 15.7279i −0.918835 0.918835i 0.0781097 0.996945i \(-0.475112\pi\)
−0.996945 + 0.0781097i \(0.975112\pi\)
\(294\) 0 0
\(295\) −3.00000 1.00000i −0.174667 0.0582223i
\(296\) 0.171573i 0.00997247i
\(297\) 0 0
\(298\) 13.6066 13.6066i 0.788209 0.788209i
\(299\) −1.02944 −0.0595339
\(300\) 0 0
\(301\) 5.27208 0.303878
\(302\) 8.48528 + 8.48528i 0.488273 + 0.488273i
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 15.3640 + 5.12132i 0.879738 + 0.293246i
\(306\) 0 0
\(307\) 11.4853 11.4853i 0.655500 0.655500i −0.298812 0.954312i \(-0.596590\pi\)
0.954312 + 0.298812i \(0.0965904\pi\)
\(308\) 9.36396 3.36396i 0.533561 0.191679i
\(309\) 0 0
\(310\) −7.24264 14.4853i −0.411354 0.822709i
\(311\) 9.72792 0.551620 0.275810 0.961212i \(-0.411054\pi\)
0.275810 + 0.961212i \(0.411054\pi\)
\(312\) 0 0
\(313\) 3.75736 3.75736i 0.212379 0.212379i −0.592899 0.805277i \(-0.702017\pi\)
0.805277 + 0.592899i \(0.202017\pi\)
\(314\) −23.1421 −1.30599
\(315\) 0 0
\(316\) 10.2426i 0.576194i
\(317\) 9.53553 + 9.53553i 0.535569 + 0.535569i 0.922224 0.386655i \(-0.126370\pi\)
−0.386655 + 0.922224i \(0.626370\pi\)
\(318\) 0 0
\(319\) −1.75736 + 3.72792i −0.0983932 + 0.208724i
\(320\) 2.12132 + 0.707107i 0.118585 + 0.0395285i
\(321\) 0 0
\(322\) −0.514719 0.514719i −0.0286841 0.0286841i
\(323\) −15.3640 + 15.3640i −0.854874 + 0.854874i
\(324\) 0 0
\(325\) 3.00000 + 21.0000i 0.166410 + 1.16487i
\(326\) 19.5858i 1.08476i
\(327\) 0 0
\(328\) 1.24264 1.24264i 0.0686134 0.0686134i
\(329\) 18.7279 1.03250
\(330\) 0 0
\(331\) 24.7279 1.35917 0.679585 0.733597i \(-0.262160\pi\)
0.679585 + 0.733597i \(0.262160\pi\)
\(332\) −7.24264 + 7.24264i −0.397492 + 0.397492i
\(333\) 0 0
\(334\) 9.00000i 0.492458i
\(335\) −11.3137 + 5.65685i −0.618134 + 0.309067i
\(336\) 0 0
\(337\) 12.8787 12.8787i 0.701546 0.701546i −0.263196 0.964742i \(-0.584777\pi\)
0.964742 + 0.263196i \(0.0847766\pi\)
\(338\) −3.53553 3.53553i −0.192308 0.192308i
\(339\) 0 0
\(340\) 14.4853 7.24264i 0.785575 0.392787i
\(341\) −10.2426 + 21.7279i −0.554670 + 1.17663i
\(342\) 0 0
\(343\) −10.6066 10.6066i −0.572703 0.572703i
\(344\) 1.75736i 0.0947505i
\(345\) 0 0
\(346\) −22.9706 −1.23491
\(347\) 6.72792 6.72792i 0.361174 0.361174i −0.503071 0.864245i \(-0.667797\pi\)
0.864245 + 0.503071i \(0.167797\pi\)
\(348\) 0 0
\(349\) −10.9706 −0.587241 −0.293620 0.955922i \(-0.594860\pi\)
−0.293620 + 0.955922i \(0.594860\pi\)
\(350\) −9.00000 + 12.0000i −0.481070 + 0.641427i
\(351\) 0 0
\(352\) −1.12132 3.12132i −0.0597666 0.166367i
\(353\) 14.8284 14.8284i 0.789238 0.789238i −0.192132 0.981369i \(-0.561540\pi\)
0.981369 + 0.192132i \(0.0615401\pi\)
\(354\) 0 0
\(355\) 0.878680 2.63604i 0.0466355 0.139906i
\(356\) −5.48528 −0.290719
\(357\) 0 0
\(358\) −9.72792 9.72792i −0.514137 0.514137i
\(359\) 34.9706 1.84568 0.922838 0.385189i \(-0.125864\pi\)
0.922838 + 0.385189i \(0.125864\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −8.48528 + 8.48528i −0.445976 + 0.445976i
\(363\) 0 0
\(364\) 12.7279i 0.667124i
\(365\) −16.9706 + 8.48528i −0.888280 + 0.444140i
\(366\) 0 0
\(367\) −2.00000 2.00000i −0.104399 0.104399i 0.652978 0.757377i \(-0.273519\pi\)
−0.757377 + 0.652978i \(0.773519\pi\)
\(368\) −0.171573 + 0.171573i −0.00894385 + 0.00894385i
\(369\) 0 0
\(370\) −0.121320 + 0.363961i −0.00630714 + 0.0189214i
\(371\) 40.4558i 2.10036i
\(372\) 0 0
\(373\) 1.24264 + 1.24264i 0.0643415 + 0.0643415i 0.738545 0.674204i \(-0.235513\pi\)
−0.674204 + 0.738545i \(0.735513\pi\)
\(374\) −21.7279 10.2426i −1.12352 0.529634i
\(375\) 0 0
\(376\) 6.24264i 0.321940i
\(377\) 3.72792 + 3.72792i 0.191998 + 0.191998i
\(378\) 0 0
\(379\) 4.97056i 0.255321i −0.991818 0.127660i \(-0.959253\pi\)
0.991818 0.127660i \(-0.0407467\pi\)
\(380\) −6.36396 2.12132i −0.326464 0.108821i
\(381\) 0 0
\(382\) 2.00000 2.00000i 0.102329 0.102329i
\(383\) 1.41421 1.41421i 0.0722629 0.0722629i −0.670052 0.742315i \(-0.733728\pi\)
0.742315 + 0.670052i \(0.233728\pi\)
\(384\) 0 0
\(385\) 22.2426 0.514719i 1.13359 0.0262325i
\(386\) 1.24264 0.0632487
\(387\) 0 0
\(388\) −2.24264 + 2.24264i −0.113853 + 0.113853i
\(389\) 2.82843i 0.143407i −0.997426 0.0717035i \(-0.977156\pi\)
0.997426 0.0717035i \(-0.0228435\pi\)
\(390\) 0 0
\(391\) 1.75736i 0.0888735i
\(392\) 1.41421 1.41421i 0.0714286 0.0714286i
\(393\) 0 0
\(394\) 1.75736i 0.0885345i
\(395\) −7.24264 + 21.7279i −0.364417 + 1.09325i
\(396\) 0 0
\(397\) −1.51472 1.51472i −0.0760215 0.0760215i 0.668074 0.744095i \(-0.267119\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(398\) −3.36396 3.36396i −0.168620 0.168620i
\(399\) 0 0
\(400\) 4.00000 + 3.00000i 0.200000 + 0.150000i
\(401\) −2.31371 −0.115541 −0.0577705 0.998330i \(-0.518399\pi\)
−0.0577705 + 0.998330i \(0.518399\pi\)
\(402\) 0 0
\(403\) 21.7279 + 21.7279i 1.08234 + 1.08234i
\(404\) −2.48528 −0.123647
\(405\) 0 0
\(406\) 3.72792i 0.185014i
\(407\) 0.535534 0.192388i 0.0265454 0.00953633i
\(408\) 0 0
\(409\) 22.9706 1.13582 0.567911 0.823090i \(-0.307752\pi\)
0.567911 + 0.823090i \(0.307752\pi\)
\(410\) 3.51472 1.75736i 0.173580 0.0867898i
\(411\) 0 0
\(412\) −6.24264 6.24264i −0.307553 0.307553i
\(413\) 3.00000 + 3.00000i 0.147620 + 0.147620i
\(414\) 0 0
\(415\) −20.4853 + 10.2426i −1.00558 + 0.502791i
\(416\) −4.24264 −0.208013
\(417\) 0 0
\(418\) 3.36396 + 9.36396i 0.164537 + 0.458006i
\(419\) 6.00000i 0.293119i −0.989202 0.146560i \(-0.953180\pi\)
0.989202 0.146560i \(-0.0468200\pi\)
\(420\) 0 0
\(421\) −9.51472 −0.463719 −0.231860 0.972749i \(-0.574481\pi\)
−0.231860 + 0.972749i \(0.574481\pi\)
\(422\) −12.3640 12.3640i −0.601868 0.601868i
\(423\) 0 0
\(424\) −13.4853 −0.654903
\(425\) 35.8492 5.12132i 1.73894 0.248421i
\(426\) 0 0
\(427\) −15.3640 15.3640i −0.743514 0.743514i
\(428\) −10.2426 10.2426i −0.495097 0.495097i
\(429\) 0 0
\(430\) 1.24264 3.72792i 0.0599255 0.179776i
\(431\) 3.51472i 0.169298i 0.996411 + 0.0846490i \(0.0269769\pi\)
−0.996411 + 0.0846490i \(0.973023\pi\)
\(432\) 0 0
\(433\) −21.9706 + 21.9706i −1.05584 + 1.05584i −0.0574919 + 0.998346i \(0.518310\pi\)
−0.998346 + 0.0574919i \(0.981690\pi\)
\(434\) 21.7279i 1.04297i
\(435\) 0 0
\(436\) 2.48528i 0.119023i
\(437\) 0.514719 0.514719i 0.0246223 0.0246223i
\(438\) 0 0
\(439\) −0.727922 −0.0347418 −0.0173709 0.999849i \(-0.505530\pi\)
−0.0173709 + 0.999849i \(0.505530\pi\)
\(440\) −0.171573 7.41421i −0.00817942 0.353459i
\(441\) 0 0
\(442\) −21.7279 + 21.7279i −1.03349 + 1.03349i
\(443\) 19.0711 19.0711i 0.906094 0.906094i −0.0898606 0.995954i \(-0.528642\pi\)
0.995954 + 0.0898606i \(0.0286421\pi\)
\(444\) 0 0
\(445\) −11.6360 3.87868i −0.551601 0.183867i
\(446\) 5.31371i 0.251611i
\(447\) 0 0
\(448\) −2.12132 2.12132i −0.100223 0.100223i
\(449\) 20.4853i 0.966760i 0.875411 + 0.483380i \(0.160591\pi\)
−0.875411 + 0.483380i \(0.839409\pi\)
\(450\) 0 0
\(451\) −5.27208 2.48528i −0.248252 0.117027i
\(452\) −4.41421 4.41421i −0.207627 0.207627i
\(453\) 0 0
\(454\) 21.2132i 0.995585i
\(455\) 9.00000 27.0000i 0.421927 1.26578i
\(456\) 0 0
\(457\) −7.60660 + 7.60660i −0.355822 + 0.355822i −0.862270 0.506448i \(-0.830958\pi\)
0.506448 + 0.862270i \(0.330958\pi\)
\(458\) 10.7574 + 10.7574i 0.502658 + 0.502658i
\(459\) 0 0
\(460\) −0.485281 + 0.242641i −0.0226264 + 0.0113132i
\(461\) 1.24264i 0.0578755i 0.999581 + 0.0289378i \(0.00921247\pi\)
−0.999581 + 0.0289378i \(0.990788\pi\)
\(462\) 0 0
\(463\) −15.9706 + 15.9706i −0.742215 + 0.742215i −0.973004 0.230789i \(-0.925869\pi\)
0.230789 + 0.973004i \(0.425869\pi\)
\(464\) 1.24264 0.0576881
\(465\) 0 0
\(466\) −2.27208 −0.105252
\(467\) −16.7782 16.7782i −0.776401 0.776401i 0.202816 0.979217i \(-0.434991\pi\)
−0.979217 + 0.202816i \(0.934991\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 4.41421 13.2426i 0.203612 0.610837i
\(471\) 0 0
\(472\) 1.00000 1.00000i 0.0460287 0.0460287i
\(473\) −5.48528 + 1.97056i −0.252214 + 0.0906066i
\(474\) 0 0
\(475\) −12.0000 9.00000i −0.550598 0.412948i
\(476\) −21.7279 −0.995898
\(477\) 0 0
\(478\) 0.514719 0.514719i 0.0235427 0.0235427i
\(479\) −36.7279 −1.67814 −0.839071 0.544022i \(-0.816901\pi\)
−0.839071 + 0.544022i \(0.816901\pi\)
\(480\) 0 0
\(481\) 0.727922i 0.0331904i
\(482\) −4.75736 4.75736i −0.216692 0.216692i
\(483\) 0 0
\(484\) −8.48528 + 7.00000i −0.385695 + 0.318182i
\(485\) −6.34315 + 3.17157i −0.288027 + 0.144014i
\(486\) 0 0
\(487\) −11.9706 11.9706i −0.542438 0.542438i 0.381805 0.924243i \(-0.375303\pi\)
−0.924243 + 0.381805i \(0.875303\pi\)
\(488\) −5.12132 + 5.12132i −0.231831 + 0.231831i
\(489\) 0 0
\(490\) 4.00000 2.00000i 0.180702 0.0903508i
\(491\) 5.48528i 0.247547i 0.992310 + 0.123774i \(0.0394997\pi\)
−0.992310 + 0.123774i \(0.960500\pi\)
\(492\) 0 0
\(493\) 6.36396 6.36396i 0.286618 0.286618i
\(494\) 12.7279 0.572656
\(495\) 0 0
\(496\) 7.24264 0.325204
\(497\) −2.63604 + 2.63604i −0.118243 + 0.118243i
\(498\) 0 0
\(499\) 34.9706i 1.56550i −0.622338 0.782749i \(-0.713817\pi\)
0.622338 0.782749i \(-0.286183\pi\)
\(500\) 6.36396 + 9.19239i 0.284605 + 0.411096i
\(501\) 0 0
\(502\) 2.48528 2.48528i 0.110924 0.110924i
\(503\) 0.727922 + 0.727922i 0.0324564 + 0.0324564i 0.723149 0.690692i \(-0.242694\pi\)
−0.690692 + 0.723149i \(0.742694\pi\)
\(504\) 0 0
\(505\) −5.27208 1.75736i −0.234604 0.0782015i
\(506\) 0.727922 + 0.343146i 0.0323601 + 0.0152547i
\(507\) 0 0
\(508\) −4.24264 4.24264i −0.188237 0.188237i
\(509\) 32.1421i 1.42468i −0.701837 0.712338i \(-0.747637\pi\)
0.701837 0.712338i \(-0.252363\pi\)
\(510\) 0 0
\(511\) 25.4558 1.12610
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −2.72792 −0.120323
\(515\) −8.82843 17.6569i −0.389027 0.778054i
\(516\) 0 0
\(517\) −19.4853 + 7.00000i −0.856962 + 0.307860i
\(518\) 0.363961 0.363961i 0.0159915 0.0159915i
\(519\) 0 0
\(520\) −9.00000 3.00000i −0.394676 0.131559i
\(521\) −41.6569 −1.82502 −0.912510 0.409054i \(-0.865859\pi\)
−0.912510 + 0.409054i \(0.865859\pi\)
\(522\) 0 0
\(523\) −18.7279 18.7279i −0.818915 0.818915i 0.167036 0.985951i \(-0.446580\pi\)
−0.985951 + 0.167036i \(0.946580\pi\)
\(524\) −13.9706 −0.610307
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) 37.0919 37.0919i 1.61575 1.61575i
\(528\) 0 0
\(529\) 22.9411i 0.997440i
\(530\) −28.6066 9.53553i −1.24259 0.414197i
\(531\) 0 0
\(532\) 6.36396 + 6.36396i 0.275913 + 0.275913i
\(533\) −5.27208 + 5.27208i −0.228359 + 0.228359i
\(534\) 0 0
\(535\) −14.4853 28.9706i −0.626253 1.25251i
\(536\) 5.65685i 0.244339i
\(537\) 0 0
\(538\) 14.0000 + 14.0000i 0.603583 + 0.603583i
\(539\) −6.00000 2.82843i −0.258438 0.121829i
\(540\) 0 0
\(541\) 10.7574i 0.462495i −0.972895 0.231248i \(-0.925719\pi\)
0.972895 0.231248i \(-0.0742807\pi\)
\(542\) 4.75736 + 4.75736i 0.204346 + 0.204346i
\(543\) 0 0
\(544\) 7.24264i 0.310526i
\(545\) −1.75736 + 5.27208i −0.0752770 + 0.225831i
\(546\) 0 0
\(547\) 30.7279 30.7279i 1.31383 1.31383i 0.395263 0.918568i \(-0.370653\pi\)
0.918568 0.395263i \(-0.129347\pi\)
\(548\) 11.6569 11.6569i 0.497956 0.497956i
\(549\) 0 0
\(550\) 4.87868 15.8492i 0.208028 0.675814i
\(551\) −3.72792 −0.158815
\(552\) 0 0
\(553\) 21.7279 21.7279i 0.923965 0.923965i
\(554\) 14.4853i 0.615421i
\(555\) 0 0
\(556\) 14.4853i 0.614313i
\(557\) 6.51472 6.51472i 0.276037 0.276037i −0.555487 0.831525i \(-0.687468\pi\)
0.831525 + 0.555487i \(0.187468\pi\)
\(558\) 0 0
\(559\) 7.45584i 0.315349i
\(560\) −3.00000 6.00000i −0.126773 0.253546i
\(561\) 0 0
\(562\) −16.2426 16.2426i −0.685154 0.685154i
\(563\) −5.48528 5.48528i −0.231177 0.231177i 0.582007 0.813184i \(-0.302268\pi\)
−0.813184 + 0.582007i \(0.802268\pi\)
\(564\) 0 0
\(565\) −6.24264 12.4853i −0.262630 0.525260i
\(566\) 18.7279 0.787193
\(567\) 0 0
\(568\) 0.878680 + 0.878680i 0.0368686 + 0.0368686i
\(569\) −2.48528 −0.104188 −0.0520942 0.998642i \(-0.516590\pi\)
−0.0520942 + 0.998642i \(0.516590\pi\)
\(570\) 0 0
\(571\) 29.4853i 1.23392i 0.786994 + 0.616960i \(0.211636\pi\)
−0.786994 + 0.616960i \(0.788364\pi\)
\(572\) 4.75736 + 13.2426i 0.198915 + 0.553703i
\(573\) 0 0
\(574\) −5.27208 −0.220052
\(575\) −1.20101 + 0.171573i −0.0500856 + 0.00715508i
\(576\) 0 0
\(577\) −19.7279 19.7279i −0.821284 0.821284i 0.165008 0.986292i \(-0.447235\pi\)
−0.986292 + 0.165008i \(0.947235\pi\)
\(578\) 25.0711 + 25.0711i 1.04282 + 1.04282i
\(579\) 0 0
\(580\) 2.63604 + 0.878680i 0.109456 + 0.0364852i
\(581\) 30.7279 1.27481
\(582\) 0 0
\(583\) 15.1213 + 42.0919i 0.626261 + 1.74327i
\(584\) 8.48528i 0.351123i
\(585\) 0 0
\(586\) 22.2426 0.918835
\(587\) 20.6777 + 20.6777i 0.853459 + 0.853459i 0.990557 0.137099i \(-0.0437777\pi\)
−0.137099 + 0.990557i \(0.543778\pi\)
\(588\) 0 0
\(589\) −21.7279 −0.895283
\(590\) 2.82843 1.41421i 0.116445 0.0582223i
\(591\) 0 0
\(592\) −0.121320 0.121320i −0.00498624 0.00498624i
\(593\) −13.7574 13.7574i −0.564947 0.564947i 0.365762 0.930709i \(-0.380809\pi\)
−0.930709 + 0.365762i \(0.880809\pi\)
\(594\) 0 0
\(595\) −46.0919 15.3640i −1.88958 0.629861i
\(596\) 19.2426i 0.788209i
\(597\) 0 0
\(598\) 0.727922 0.727922i 0.0297669 0.0297669i
\(599\) 3.72792i 0.152319i 0.997096 + 0.0761594i \(0.0242658\pi\)
−0.997096 + 0.0761594i \(0.975734\pi\)
\(600\) 0 0
\(601\) 27.9411i 1.13974i 0.821734 + 0.569871i \(0.193007\pi\)
−0.821734 + 0.569871i \(0.806993\pi\)
\(602\) −3.72792 + 3.72792i −0.151939 + 0.151939i
\(603\) 0 0
\(604\) −12.0000 −0.488273
\(605\) −22.9497 + 8.84924i −0.933040 + 0.359773i
\(606\) 0 0
\(607\) 15.8787 15.8787i 0.644496 0.644496i −0.307162 0.951657i \(-0.599379\pi\)
0.951657 + 0.307162i \(0.0993792\pi\)
\(608\) 2.12132 2.12132i 0.0860309 0.0860309i
\(609\) 0 0
\(610\) −14.4853 + 7.24264i −0.586492 + 0.293246i
\(611\) 26.4853i 1.07148i
\(612\) 0 0
\(613\) 18.0000 + 18.0000i 0.727013 + 0.727013i 0.970024 0.243011i \(-0.0781350\pi\)
−0.243011 + 0.970024i \(0.578135\pi\)
\(614\) 16.2426i 0.655500i
\(615\) 0 0
\(616\) −4.24264 + 9.00000i −0.170941 + 0.362620i
\(617\) −31.0711 31.0711i −1.25087 1.25087i −0.955329 0.295545i \(-0.904499\pi\)
−0.295545 0.955329i \(-0.595501\pi\)
\(618\) 0 0
\(619\) 10.0000i 0.401934i −0.979598 0.200967i \(-0.935592\pi\)
0.979598 0.200967i \(-0.0644084\pi\)
\(620\) 15.3640 + 5.12132i 0.617032 + 0.205677i
\(621\) 0 0
\(622\) −6.87868 + 6.87868i −0.275810 + 0.275810i
\(623\) 11.6360 + 11.6360i 0.466188 + 0.466188i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 5.31371i 0.212379i
\(627\) 0 0
\(628\) 16.3640 16.3640i 0.652993 0.652993i
\(629\) −1.24264 −0.0495473
\(630\) 0 0
\(631\) 1.72792 0.0687875 0.0343937 0.999408i \(-0.489050\pi\)
0.0343937 + 0.999408i \(0.489050\pi\)
\(632\) −7.24264 7.24264i −0.288097 0.288097i
\(633\) 0 0
\(634\) −13.4853 −0.535569
\(635\) −6.00000 12.0000i −0.238103 0.476205i
\(636\) 0 0
\(637\) −6.00000 + 6.00000i −0.237729 + 0.237729i
\(638\) −1.39340 3.87868i −0.0551652 0.153558i
\(639\) 0 0
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 6.17157 0.243762 0.121881 0.992545i \(-0.461107\pi\)
0.121881 + 0.992545i \(0.461107\pi\)
\(642\) 0 0
\(643\) 32.5772 32.5772i 1.28472 1.28472i 0.346766 0.937952i \(-0.387280\pi\)
0.937952 0.346766i \(-0.112720\pi\)
\(644\) 0.727922 0.0286841
\(645\) 0 0
\(646\) 21.7279i 0.854874i
\(647\) −28.1127 28.1127i −1.10522 1.10522i −0.993770 0.111455i \(-0.964449\pi\)
−0.111455 0.993770i \(-0.535551\pi\)
\(648\) 0 0
\(649\) −4.24264 2.00000i −0.166538 0.0785069i
\(650\) −16.9706 12.7279i −0.665640 0.499230i
\(651\) 0 0
\(652\) 13.8492 + 13.8492i 0.542378 + 0.542378i
\(653\) 9.53553 9.53553i 0.373154 0.373154i −0.495470 0.868625i \(-0.665004\pi\)
0.868625 + 0.495470i \(0.165004\pi\)
\(654\) 0 0
\(655\) −29.6360 9.87868i −1.15798 0.385992i
\(656\) 1.75736i 0.0686134i
\(657\) 0 0
\(658\) −13.2426 + 13.2426i −0.516252 + 0.516252i
\(659\) −28.4558 −1.10848 −0.554241 0.832356i \(-0.686991\pi\)
−0.554241 + 0.832356i \(0.686991\pi\)
\(660\) 0 0
\(661\) −16.7279 −0.650641 −0.325320 0.945604i \(-0.605472\pi\)
−0.325320 + 0.945604i \(0.605472\pi\)
\(662\) −17.4853 + 17.4853i −0.679585 + 0.679585i
\(663\) 0 0
\(664\) 10.2426i 0.397492i
\(665\) 9.00000 + 18.0000i 0.349005 + 0.698010i
\(666\) 0 0
\(667\) −0.213203 + 0.213203i −0.00825527 + 0.00825527i
\(668\) 6.36396 + 6.36396i 0.246229 + 0.246229i
\(669\) 0 0
\(670\) 4.00000 12.0000i 0.154533 0.463600i
\(671\) 21.7279 + 10.2426i 0.838797 + 0.395413i
\(672\) 0 0
\(673\) −2.63604 2.63604i −0.101612 0.101612i 0.654473 0.756085i \(-0.272890\pi\)
−0.756085 + 0.654473i \(0.772890\pi\)
\(674\) 18.2132i 0.701546i
\(675\) 0 0
\(676\) 5.00000 0.192308
\(677\) −33.2132 + 33.2132i −1.27649 + 1.27649i −0.333867 + 0.942620i \(0.608354\pi\)
−0.942620 + 0.333867i \(0.891646\pi\)
\(678\) 0 0
\(679\) 9.51472 0.365141
\(680\) −5.12132 + 15.3640i −0.196394 + 0.589181i
\(681\) 0 0
\(682\) −8.12132 22.6066i −0.310981 0.865652i
\(683\) −12.1924 + 12.1924i −0.466529 + 0.466529i −0.900788 0.434259i \(-0.857010\pi\)
0.434259 + 0.900788i \(0.357010\pi\)
\(684\) 0 0
\(685\) 32.9706 16.4853i 1.25974 0.629870i
\(686\) 15.0000 0.572703
\(687\) 0 0
\(688\) 1.24264 + 1.24264i 0.0473752 + 0.0473752i
\(689\) 57.2132 2.17965
\(690\) 0 0
\(691\) 13.2721 0.504894 0.252447 0.967611i \(-0.418765\pi\)
0.252447 + 0.967611i \(0.418765\pi\)
\(692\) 16.2426 16.2426i 0.617453 0.617453i
\(693\) 0 0
\(694\) 9.51472i 0.361174i
\(695\) 10.2426 30.7279i 0.388526 1.16558i
\(696\) 0 0
\(697\) 9.00000 + 9.00000i 0.340899 + 0.340899i
\(698\) 7.75736 7.75736i 0.293620 0.293620i
\(699\) 0 0
\(700\) −2.12132 14.8492i −0.0801784 0.561249i
\(701\) 27.7279i 1.04727i −0.851943 0.523635i \(-0.824576\pi\)
0.851943 0.523635i \(-0.175424\pi\)
\(702\) 0 0
\(703\) 0.363961 + 0.363961i 0.0137271 + 0.0137271i
\(704\) 3.00000 + 1.41421i 0.113067 + 0.0533002i
\(705\) 0 0
\(706\) 20.9706i 0.789238i
\(707\) 5.27208 + 5.27208i 0.198277 + 0.198277i
\(708\) 0 0
\(709\) 10.0000i 0.375558i 0.982211 + 0.187779i \(0.0601289\pi\)
−0.982211 + 0.187779i \(0.939871\pi\)
\(710\) 1.24264 + 2.48528i 0.0466355 + 0.0932709i
\(711\) 0 0
\(712\) 3.87868 3.87868i 0.145360 0.145360i
\(713\) −1.24264 + 1.24264i −0.0465373 + 0.0465373i
\(714\) 0 0
\(715\) 0.727922 + 31.4558i 0.0272227 + 1.17638i
\(716\) 13.7574 0.514137
\(717\) 0 0
\(718\) −24.7279 + 24.7279i −0.922838 + 0.922838i
\(719\) 20.6985i 0.771923i 0.922515 + 0.385962i \(0.126130\pi\)
−0.922515 + 0.385962i \(0.873870\pi\)
\(720\) 0 0
\(721\) 26.4853i 0.986363i
\(722\) 7.07107 7.07107i 0.263158 0.263158i
\(723\) 0 0
\(724\) 12.0000i 0.445976i
\(725\) 4.97056 + 3.72792i 0.184602 + 0.138452i
\(726\) 0 0
\(727\) −6.97056 6.97056i −0.258524 0.258524i 0.565930 0.824454i \(-0.308517\pi\)
−0.824454 + 0.565930i \(0.808517\pi\)
\(728\) 9.00000 + 9.00000i 0.333562 + 0.333562i
\(729\) 0 0
\(730\) 6.00000 18.0000i 0.222070 0.666210i
\(731\) 12.7279 0.470759
\(732\) 0 0
\(733\) −25.9706 25.9706i −0.959245 0.959245i 0.0399568 0.999201i \(-0.487278\pi\)
−0.999201 + 0.0399568i \(0.987278\pi\)
\(734\) 2.82843 0.104399
\(735\) 0 0
\(736\) 0.242641i 0.00894385i
\(737\) −17.6569 + 6.34315i −0.650399 + 0.233653i
\(738\) 0 0
\(739\) 33.9411 1.24854 0.624272 0.781207i \(-0.285396\pi\)
0.624272 + 0.781207i \(0.285396\pi\)
\(740\) −0.171573 0.343146i −0.00630714 0.0126143i
\(741\) 0 0
\(742\) 28.6066 + 28.6066i 1.05018 + 1.05018i
\(743\) 8.12132 + 8.12132i 0.297942 + 0.297942i 0.840207 0.542265i \(-0.182433\pi\)
−0.542265 + 0.840207i \(0.682433\pi\)
\(744\) 0 0
\(745\) −13.6066 + 40.8198i −0.498507 + 1.49552i
\(746\) −1.75736 −0.0643415
\(747\) 0 0
\(748\) 22.6066 8.12132i 0.826579 0.296945i
\(749\) 43.4558i 1.58784i
\(750\) 0 0
\(751\) −43.1838 −1.57580 −0.787899 0.615804i \(-0.788831\pi\)
−0.787899 + 0.615804i \(0.788831\pi\)
\(752\) 4.41421 + 4.41421i 0.160970 + 0.160970i
\(753\) 0 0
\(754\) −5.27208 −0.191998
\(755\) −25.4558 8.48528i −0.926433 0.308811i
\(756\) 0 0
\(757\) 13.2132 + 13.2132i 0.480242 + 0.480242i 0.905209 0.424967i \(-0.139714\pi\)
−0.424967 + 0.905209i \(0.639714\pi\)
\(758\) 3.51472 + 3.51472i 0.127660 + 0.127660i
\(759\) 0 0
\(760\) 6.00000 3.00000i 0.217643 0.108821i
\(761\) 18.7279i 0.678887i 0.940627 + 0.339443i \(0.110239\pi\)
−0.940627 + 0.339443i \(0.889761\pi\)
\(762\) 0 0
\(763\) 5.27208 5.27208i 0.190862 0.190862i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 2.00000i 0.0722629i
\(767\) −4.24264 + 4.24264i −0.153193 + 0.153193i
\(768\) 0 0
\(769\) −43.4558 −1.56706 −0.783529 0.621355i \(-0.786582\pi\)
−0.783529 + 0.621355i \(0.786582\pi\)
\(770\) −15.3640 + 16.0919i −0.553679 + 0.579911i
\(771\) 0 0
\(772\) −0.878680 + 0.878680i −0.0316244 + 0.0316244i
\(773\) −16.2635 + 16.2635i −0.584956 + 0.584956i −0.936261 0.351305i \(-0.885738\pi\)
0.351305 + 0.936261i \(0.385738\pi\)
\(774\) 0 0
\(775\) 28.9706 + 21.7279i 1.04065 + 0.780490i
\(776\) 3.17157i 0.113853i
\(777\) 0 0
\(778\) 2.00000 + 2.00000i 0.0717035 + 0.0717035i
\(779\) 5.27208i 0.188892i
\(780\) 0 0
\(781\) 1.75736 3.72792i 0.0628833 0.133396i
\(782\) −1.24264 1.24264i −0.0444367 0.0444367i
\(783\) 0 0
\(784\) 2.00000i 0.0714286i
\(785\) 46.2843 23.1421i 1.65196 0.825978i
\(786\) 0 0
\(787\) 5.48528 5.48528i 0.195529 0.195529i −0.602551 0.798080i \(-0.705849\pi\)
0.798080 + 0.602551i \(0.205849\pi\)
\(788\) 1.24264 + 1.24264i 0.0442672 + 0.0442672i
\(789\) 0 0
\(790\) −10.2426 20.4853i −0.364417 0.728834i
\(791\) 18.7279i 0.665888i
\(792\) 0 0
\(793\) 21.7279 21.7279i 0.771581 0.771581i
\(794\) 2.14214 0.0760215
\(795\) 0 0
\(796\) 4.75736 0.168620
\(797\) −8.14214 8.14214i −0.288409 0.288409i 0.548042 0.836451i \(-0.315373\pi\)
−0.836451 + 0.548042i \(0.815373\pi\)
\(798\) 0 0
\(799\) 45.2132 1.59953
\(800\) −4.94975 + 0.707107i −0.175000 + 0.0250000i
\(801\) 0 0
\(802\) 1.63604 1.63604i 0.0577705 0.0577705i
\(803\) −26.4853 + 9.51472i −0.934645 + 0.335767i
\(804\) 0 0
\(805\) 1.54416 + 0.514719i 0.0544243 + 0.0181414i
\(806\) −30.7279 −1.08234
\(807\) 0 0
\(808\) 1.75736 1.75736i 0.0618237 0.0618237i
\(809\) 37.4558 1.31688 0.658439 0.752634i \(-0.271217\pi\)
0.658439 + 0.752634i \(0.271217\pi\)
\(810\) 0 0
\(811\) 4.45584i 0.156466i −0.996935 0.0782329i \(-0.975072\pi\)
0.996935 0.0782329i \(-0.0249278\pi\)
\(812\) −2.63604 2.63604i −0.0925068 0.0925068i
\(813\) 0 0
\(814\) −0.242641 + 0.514719i −0.00850455 + 0.0180409i
\(815\) 19.5858 + 39.1716i 0.686060 + 1.37212i
\(816\) 0 0
\(817\) −3.72792 3.72792i −0.130423 0.130423i
\(818\) −16.2426 + 16.2426i −0.567911 + 0.567911i
\(819\) 0 0
\(820\) −1.24264 + 3.72792i −0.0433949 + 0.130185i
\(821\) 49.4558i 1.72602i 0.505186 + 0.863010i \(0.331424\pi\)
−0.505186 + 0.863010i \(0.668576\pi\)
\(822\) 0 0
\(823\) 28.6985 28.6985i 1.00037 1.00037i 0.000366361 1.00000i \(-0.499883\pi\)
1.00000 0.000366361i \(-0.000116616\pi\)
\(824\) 8.82843 0.307553
\(825\) 0 0
\(826\) −4.24264 −0.147620
\(827\) −3.00000 + 3.00000i −0.104320 + 0.104320i −0.757340 0.653020i \(-0.773502\pi\)
0.653020 + 0.757340i \(0.273502\pi\)
\(828\) 0 0
\(829\) 45.4558i 1.57875i 0.613913 + 0.789373i \(0.289594\pi\)
−0.613913 + 0.789373i \(0.710406\pi\)
\(830\) 7.24264 21.7279i 0.251396 0.754187i
\(831\) 0 0
\(832\) 3.00000 3.00000i 0.104006 0.104006i
\(833\) 10.2426 + 10.2426i 0.354886 + 0.354886i
\(834\) 0 0
\(835\) 9.00000 + 18.0000i 0.311458 + 0.622916i
\(836\) −9.00000 4.24264i −0.311272 0.146735i
\(837\) 0 0
\(838\) 4.24264 + 4.24264i 0.146560 + 0.146560i
\(839\) 33.1716i 1.14521i 0.819831 + 0.572605i \(0.194067\pi\)
−0.819831 + 0.572605i \(0.805933\pi\)
\(840\) 0 0
\(841\) −27.4558 −0.946753
\(842\) 6.72792 6.72792i 0.231860 0.231860i
\(843\) 0 0
\(844\) 17.4853 0.601868
\(845\) 10.6066 + 3.53553i 0.364878 + 0.121626i
\(846\) 0 0
\(847\) 32.8492 + 3.15076i 1.12871 + 0.108261i
\(848\) 9.53553 9.53553i 0.327452 0.327452i
\(849\) 0 0
\(850\) −21.7279 + 28.9706i −0.745262 + 0.993682i
\(851\) 0.0416306 0.00142708
\(852\) 0 0
\(853\) −31.9706 31.9706i −1.09465 1.09465i −0.995025 0.0996263i \(-0.968235\pi\)
−0.0996263 0.995025i \(-0.531765\pi\)
\(854\) 21.7279 0.743514
\(855\) 0 0
\(856\) 14.4853 0.495097
\(857\) −4.39340 + 4.39340i −0.150076 + 0.150076i −0.778152 0.628076i \(-0.783843\pi\)
0.628076 + 0.778152i \(0.283843\pi\)
\(858\) 0 0
\(859\) 32.0000i 1.09183i 0.837842 + 0.545913i \(0.183817\pi\)
−0.837842 + 0.545913i \(0.816183\pi\)
\(860\) 1.75736 + 3.51472i 0.0599255 + 0.119851i
\(861\) 0 0
\(862\) −2.48528 2.48528i −0.0846490 0.0846490i
\(863\) 0.899495 0.899495i 0.0306192 0.0306192i −0.691631 0.722251i \(-0.743108\pi\)
0.722251 + 0.691631i \(0.243108\pi\)
\(864\) 0 0
\(865\) 45.9411 22.9706i 1.56205 0.781023i
\(866\) 31.0711i 1.05584i
\(867\) 0 0
\(868\) −15.3640 15.3640i −0.521487 0.521487i
\(869\) −14.4853 + 30.7279i −0.491380 + 1.04237i
\(870\) 0 0
\(871\) 24.0000i 0.813209i
\(872\) −1.75736 1.75736i −0.0595117 0.0595117i
\(873\) 0 0
\(874\) 0.727922i 0.0246223i
\(875\) 6.00000 33.0000i 0.202837 1.11560i
\(876\) 0 0
\(877\) −5.27208 + 5.27208i −0.178025 + 0.178025i −0.790495 0.612469i \(-0.790176\pi\)
0.612469 + 0.790495i \(0.290176\pi\)
\(878\) 0.514719 0.514719i 0.0173709 0.0173709i
\(879\) 0 0
\(880\) 5.36396 + 5.12132i 0.180819 + 0.172640i
\(881\) −8.48528 −0.285876 −0.142938 0.989732i \(-0.545655\pi\)
−0.142938 + 0.989732i \(0.545655\pi\)
\(882\) 0 0
\(883\) −8.39340 + 8.39340i −0.282460 + 0.282460i −0.834089 0.551629i \(-0.814006\pi\)
0.551629 + 0.834089i \(0.314006\pi\)
\(884\) 30.7279i 1.03349i
\(885\) 0 0
\(886\) 26.9706i 0.906094i
\(887\) 13.7574 13.7574i 0.461927 0.461927i −0.437360 0.899287i \(-0.644086\pi\)
0.899287 + 0.437360i \(0.144086\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 10.9706 5.48528i 0.367734 0.183867i
\(891\) 0 0
\(892\) 3.75736 + 3.75736i 0.125806 + 0.125806i
\(893\) −13.2426 13.2426i −0.443148 0.443148i
\(894\) 0 0
\(895\) 29.1838 + 9.72792i 0.975506 + 0.325169i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) −14.4853 14.4853i −0.483380 0.483380i
\(899\) 9.00000 0.300167
\(900\) 0 0
\(901\) 97.6690i 3.25383i
\(902\) 5.48528 1.97056i 0.182640 0.0656126i
\(903\) 0 0
\(904\) 6.24264 0.207627
\(905\) 8.48528 25.4558i 0.282060 0.846181i
\(906\) 0 0
\(907\) −11.3640 11.3640i −0.377334 0.377334i 0.492805 0.870140i \(-0.335971\pi\)
−0.870140 + 0.492805i \(0.835971\pi\)
\(908\) −15.0000 15.0000i −0.497792 0.497792i
\(909\) 0 0
\(910\) 12.7279 + 25.4558i 0.421927 + 0.843853i
\(911\) −26.3553 −0.873191 −0.436596 0.899658i \(-0.643816\pi\)
−0.436596 + 0.899658i \(0.643816\pi\)
\(912\) 0 0
\(913\) −31.9706 + 11.4853i −1.05807 + 0.380107i
\(914\) 10.7574i 0.355822i
\(915\) 0 0
\(916\) −15.2132 −0.502658
\(917\) 29.6360 + 29.6360i 0.978668 + 0.978668i
\(918\) 0 0
\(919\) 13.7574 0.453813 0.226907 0.973916i \(-0.427139\pi\)
0.226907 + 0.973916i \(0.427139\pi\)
\(920\) 0.171573 0.514719i 0.00565659 0.0169698i
\(921\) 0 0
\(922\) −0.878680 0.878680i −0.0289378 0.0289378i
\(923\) −3.72792 3.72792i −0.122706 0.122706i
\(924\) 0 0
\(925\) −0.121320 0.849242i −0.00398899 0.0279229i
\(926\) 22.5858i 0.742215i
\(927\) 0 0
\(928\) −0.878680 + 0.878680i −0.0288441 + 0.0288441i
\(929\) 42.1716i 1.38360i −0.722087 0.691802i \(-0.756817\pi\)
0.722087 0.691802i \(-0.243183\pi\)
\(930\) 0 0
\(931\) 6.00000i 0.196642i
\(932\) 1.60660 1.60660i 0.0526260 0.0526260i
\(933\) 0 0
\(934\) 23.7279 0.776401
\(935\) 53.6985 1.24264i 1.75613 0.0406387i
\(936\) 0 0
\(937\) −24.7279 + 24.7279i −0.807826 + 0.807826i −0.984304 0.176478i \(-0.943529\pi\)
0.176478 + 0.984304i \(0.443529\pi\)
\(938\) −12.0000 + 12.0000i −0.391814 + 0.391814i
\(939\) 0 0
\(940\) 6.24264 + 12.4853i 0.203612 + 0.407225i
\(941\) 43.6690i 1.42357i −0.702397 0.711785i \(-0.747887\pi\)
0.702397 0.711785i \(-0.252113\pi\)
\(942\) 0 0
\(943\) −0.301515 0.301515i −0.00981869 0.00981869i
\(944\) 1.41421i 0.0460287i
\(945\) 0 0
\(946\) 2.48528 5.27208i 0.0808035 0.171410i
\(947\) −22.4350 22.4350i −0.729040 0.729040i 0.241388 0.970429i \(-0.422397\pi\)
−0.970429 + 0.241388i \(0.922397\pi\)
\(948\) 0 0
\(949\) 36.0000i 1.16861i
\(950\) 14.8492 2.12132i 0.481773 0.0688247i
\(951\) 0 0
\(952\) 15.3640 15.3640i 0.497949 0.497949i
\(953\) −29.1213 29.1213i −0.943332 0.943332i 0.0551462 0.998478i \(-0.482438\pi\)
−0.998478 + 0.0551462i \(0.982438\pi\)
\(954\) 0 0
\(955\) −2.00000 + 6.00000i −0.0647185 + 0.194155i
\(956\) 0.727922i 0.0235427i
\(957\) 0 0
\(958\) 25.9706 25.9706i 0.839071 0.839071i
\(959\) −49.4558 −1.59701
\(960\) 0 0
\(961\) 21.4558 0.692124
\(962\) 0.514719 + 0.514719i 0.0165952 + 0.0165952i
\(963\) 0 0
\(964\) 6.72792 0.216692
\(965\) −2.48528 + 1.24264i −0.0800040 + 0.0400020i
\(966\) 0 0
\(967\) 8.12132 8.12132i 0.261164 0.261164i −0.564363 0.825527i \(-0.690878\pi\)
0.825527 + 0.564363i \(0.190878\pi\)
\(968\) 1.05025 10.9497i 0.0337564 0.351938i
\(969\) 0 0
\(970\) 2.24264 6.72792i 0.0720069 0.216021i
\(971\) −13.1127 −0.420807 −0.210403 0.977615i \(-0.567478\pi\)
−0.210403 + 0.977615i \(0.567478\pi\)
\(972\) 0 0
\(973\) −30.7279 + 30.7279i −0.985092 + 0.985092i
\(974\) 16.9289 0.542438
\(975\) 0 0
\(976\) 7.24264i 0.231831i
\(977\) 3.55635 + 3.55635i 0.113778 + 0.113778i 0.761703 0.647926i \(-0.224363\pi\)
−0.647926 + 0.761703i \(0.724363\pi\)
\(978\) 0 0
\(979\) −16.4558 7.75736i −0.525931 0.247926i
\(980\) −1.41421 + 4.24264i −0.0451754 + 0.135526i
\(981\) 0 0
\(982\) −3.87868 3.87868i −0.123774 0.123774i
\(983\) −9.17157 + 9.17157i −0.292528 + 0.292528i −0.838078 0.545550i \(-0.816321\pi\)
0.545550 + 0.838078i \(0.316321\pi\)
\(984\) 0 0
\(985\) 1.75736 + 3.51472i 0.0559941 + 0.111988i
\(986\) 9.00000i 0.286618i
\(987\) 0 0
\(988\) −9.00000 + 9.00000i −0.286328 + 0.286328i
\(989\) −0.426407 −0.0135589
\(990\) 0 0
\(991\) −25.4558 −0.808632 −0.404316 0.914619i \(-0.632490\pi\)
−0.404316 + 0.914619i \(0.632490\pi\)
\(992\) −5.12132 + 5.12132i −0.162602 + 0.162602i
\(993\) 0 0
\(994\) 3.72792i 0.118243i
\(995\) 10.0919 + 3.36396i 0.319934 + 0.106645i
\(996\) 0 0
\(997\) −41.4853 + 41.4853i −1.31385 + 1.31385i −0.395300 + 0.918552i \(0.629359\pi\)
−0.918552 + 0.395300i \(0.870641\pi\)
\(998\) 24.7279 + 24.7279i 0.782749 + 0.782749i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.m.d.307.1 4
3.2 odd 2 110.2.f.c.87.2 yes 4
5.3 odd 4 990.2.m.c.703.2 4
11.10 odd 2 990.2.m.c.307.2 4
12.11 even 2 880.2.bd.b.417.1 4
15.2 even 4 550.2.f.a.43.2 4
15.8 even 4 110.2.f.b.43.1 4
15.14 odd 2 550.2.f.b.307.1 4
33.32 even 2 110.2.f.b.87.1 yes 4
55.43 even 4 inner 990.2.m.d.703.1 4
60.23 odd 4 880.2.bd.c.593.1 4
132.131 odd 2 880.2.bd.c.417.1 4
165.32 odd 4 550.2.f.b.43.1 4
165.98 odd 4 110.2.f.c.43.2 yes 4
165.164 even 2 550.2.f.a.307.2 4
660.263 even 4 880.2.bd.b.593.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.f.b.43.1 4 15.8 even 4
110.2.f.b.87.1 yes 4 33.32 even 2
110.2.f.c.43.2 yes 4 165.98 odd 4
110.2.f.c.87.2 yes 4 3.2 odd 2
550.2.f.a.43.2 4 15.2 even 4
550.2.f.a.307.2 4 165.164 even 2
550.2.f.b.43.1 4 165.32 odd 4
550.2.f.b.307.1 4 15.14 odd 2
880.2.bd.b.417.1 4 12.11 even 2
880.2.bd.b.593.1 4 660.263 even 4
880.2.bd.c.417.1 4 132.131 odd 2
880.2.bd.c.593.1 4 60.23 odd 4
990.2.m.c.307.2 4 11.10 odd 2
990.2.m.c.703.2 4 5.3 odd 4
990.2.m.d.307.1 4 1.1 even 1 trivial
990.2.m.d.703.1 4 55.43 even 4 inner