Properties

Label 990.2.n.h.91.1
Level $990$
Weight $2$
Character 990.91
Analytic conductor $7.905$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(91,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 990.91
Dual form 990.2.n.h.631.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.427051 + 1.31433i) q^{7} +(-0.309017 - 0.951057i) q^{8} +1.00000 q^{10} +(-1.69098 + 2.85317i) q^{11} +(3.92705 - 2.85317i) q^{13} +(0.427051 + 1.31433i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(5.23607 + 3.80423i) q^{17} +(-1.50000 - 4.61653i) q^{19} +(0.809017 - 0.587785i) q^{20} +(0.309017 + 3.30220i) q^{22} +8.61803 q^{23} +(0.309017 + 0.951057i) q^{25} +(1.50000 - 4.61653i) q^{26} +(1.11803 + 0.812299i) q^{28} +(-2.23607 + 6.88191i) q^{29} +(5.85410 - 4.25325i) q^{31} -1.00000 q^{32} +6.47214 q^{34} +(-1.11803 + 0.812299i) q^{35} +(-0.972136 + 2.99193i) q^{37} +(-3.92705 - 2.85317i) q^{38} +(0.309017 - 0.951057i) q^{40} +(0.336881 + 1.03681i) q^{41} +1.23607 q^{43} +(2.19098 + 2.48990i) q^{44} +(6.97214 - 5.06555i) q^{46} +(-3.64590 - 11.2209i) q^{47} +(4.11803 + 2.99193i) q^{49} +(0.809017 + 0.587785i) q^{50} +(-1.50000 - 4.61653i) q^{52} +(-10.5902 + 7.69421i) q^{53} +(-3.04508 + 1.31433i) q^{55} +1.38197 q^{56} +(2.23607 + 6.88191i) q^{58} +(2.88197 - 8.86978i) q^{59} +(3.00000 + 2.17963i) q^{61} +(2.23607 - 6.88191i) q^{62} +(-0.809017 + 0.587785i) q^{64} +4.85410 q^{65} -15.7082 q^{67} +(5.23607 - 3.80423i) q^{68} +(-0.427051 + 1.31433i) q^{70} +(6.61803 + 4.80828i) q^{71} +(0.618034 - 1.90211i) q^{73} +(0.972136 + 2.99193i) q^{74} -4.85410 q^{76} +(-3.02786 - 3.44095i) q^{77} +(2.85410 - 2.07363i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(0.881966 + 0.640786i) q^{82} +(-5.23607 - 3.80423i) q^{83} +(2.00000 + 6.15537i) q^{85} +(1.00000 - 0.726543i) q^{86} +(3.23607 + 0.726543i) q^{88} -11.5623 q^{89} +(2.07295 + 6.37988i) q^{91} +(2.66312 - 8.19624i) q^{92} +(-9.54508 - 6.93491i) q^{94} +(1.50000 - 4.61653i) q^{95} +(1.61803 - 1.17557i) q^{97} +5.09017 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} + q^{5} + 5 q^{7} + q^{8} + 4 q^{10} - 9 q^{11} + 9 q^{13} - 5 q^{14} - q^{16} + 12 q^{17} - 6 q^{19} + q^{20} - q^{22} + 30 q^{23} - q^{25} + 6 q^{26} + 10 q^{31} - 4 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −0.427051 + 1.31433i −0.161410 + 0.496769i −0.998754 0.0499075i \(-0.984107\pi\)
0.837344 + 0.546677i \(0.184107\pi\)
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −1.69098 + 2.85317i −0.509851 + 0.860263i
\(12\) 0 0
\(13\) 3.92705 2.85317i 1.08917 0.791327i 0.109909 0.993942i \(-0.464944\pi\)
0.979259 + 0.202615i \(0.0649439\pi\)
\(14\) 0.427051 + 1.31433i 0.114134 + 0.351269i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 5.23607 + 3.80423i 1.26993 + 0.922660i 0.999200 0.0399941i \(-0.0127339\pi\)
0.270733 + 0.962654i \(0.412734\pi\)
\(18\) 0 0
\(19\) −1.50000 4.61653i −0.344124 1.05910i −0.962051 0.272869i \(-0.912028\pi\)
0.617928 0.786235i \(-0.287972\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) 0 0
\(22\) 0.309017 + 3.30220i 0.0658826 + 0.704031i
\(23\) 8.61803 1.79698 0.898492 0.438990i \(-0.144664\pi\)
0.898492 + 0.438990i \(0.144664\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 1.50000 4.61653i 0.294174 0.905375i
\(27\) 0 0
\(28\) 1.11803 + 0.812299i 0.211289 + 0.153510i
\(29\) −2.23607 + 6.88191i −0.415227 + 1.27794i 0.496820 + 0.867854i \(0.334501\pi\)
−0.912047 + 0.410085i \(0.865499\pi\)
\(30\) 0 0
\(31\) 5.85410 4.25325i 1.05143 0.763907i 0.0789443 0.996879i \(-0.474845\pi\)
0.972483 + 0.232972i \(0.0748451\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 6.47214 1.10996
\(35\) −1.11803 + 0.812299i −0.188982 + 0.137304i
\(36\) 0 0
\(37\) −0.972136 + 2.99193i −0.159818 + 0.491870i −0.998617 0.0525715i \(-0.983258\pi\)
0.838799 + 0.544441i \(0.183258\pi\)
\(38\) −3.92705 2.85317i −0.637052 0.462845i
\(39\) 0 0
\(40\) 0.309017 0.951057i 0.0488599 0.150375i
\(41\) 0.336881 + 1.03681i 0.0526120 + 0.161923i 0.973910 0.226934i \(-0.0728701\pi\)
−0.921298 + 0.388857i \(0.872870\pi\)
\(42\) 0 0
\(43\) 1.23607 0.188499 0.0942493 0.995549i \(-0.469955\pi\)
0.0942493 + 0.995549i \(0.469955\pi\)
\(44\) 2.19098 + 2.48990i 0.330303 + 0.375366i
\(45\) 0 0
\(46\) 6.97214 5.06555i 1.02799 0.746875i
\(47\) −3.64590 11.2209i −0.531809 1.63674i −0.750445 0.660933i \(-0.770161\pi\)
0.218636 0.975806i \(-0.429839\pi\)
\(48\) 0 0
\(49\) 4.11803 + 2.99193i 0.588291 + 0.427418i
\(50\) 0.809017 + 0.587785i 0.114412 + 0.0831254i
\(51\) 0 0
\(52\) −1.50000 4.61653i −0.208013 0.640197i
\(53\) −10.5902 + 7.69421i −1.45467 + 1.05688i −0.469960 + 0.882688i \(0.655732\pi\)
−0.984711 + 0.174193i \(0.944268\pi\)
\(54\) 0 0
\(55\) −3.04508 + 1.31433i −0.410599 + 0.177224i
\(56\) 1.38197 0.184673
\(57\) 0 0
\(58\) 2.23607 + 6.88191i 0.293610 + 0.903639i
\(59\) 2.88197 8.86978i 0.375200 1.15475i −0.568144 0.822929i \(-0.692338\pi\)
0.943344 0.331817i \(-0.107662\pi\)
\(60\) 0 0
\(61\) 3.00000 + 2.17963i 0.384111 + 0.279073i 0.763038 0.646354i \(-0.223707\pi\)
−0.378927 + 0.925426i \(0.623707\pi\)
\(62\) 2.23607 6.88191i 0.283981 0.874003i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 4.85410 0.602077
\(66\) 0 0
\(67\) −15.7082 −1.91906 −0.959531 0.281602i \(-0.909134\pi\)
−0.959531 + 0.281602i \(0.909134\pi\)
\(68\) 5.23607 3.80423i 0.634967 0.461330i
\(69\) 0 0
\(70\) −0.427051 + 1.31433i −0.0510424 + 0.157092i
\(71\) 6.61803 + 4.80828i 0.785416 + 0.570638i 0.906600 0.421992i \(-0.138669\pi\)
−0.121183 + 0.992630i \(0.538669\pi\)
\(72\) 0 0
\(73\) 0.618034 1.90211i 0.0723354 0.222625i −0.908352 0.418206i \(-0.862659\pi\)
0.980688 + 0.195580i \(0.0626591\pi\)
\(74\) 0.972136 + 2.99193i 0.113009 + 0.347804i
\(75\) 0 0
\(76\) −4.85410 −0.556804
\(77\) −3.02786 3.44095i −0.345057 0.392133i
\(78\) 0 0
\(79\) 2.85410 2.07363i 0.321112 0.233301i −0.415538 0.909576i \(-0.636407\pi\)
0.736650 + 0.676275i \(0.236407\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 0 0
\(82\) 0.881966 + 0.640786i 0.0973969 + 0.0707630i
\(83\) −5.23607 3.80423i −0.574733 0.417568i 0.262088 0.965044i \(-0.415589\pi\)
−0.836822 + 0.547476i \(0.815589\pi\)
\(84\) 0 0
\(85\) 2.00000 + 6.15537i 0.216930 + 0.667643i
\(86\) 1.00000 0.726543i 0.107833 0.0783451i
\(87\) 0 0
\(88\) 3.23607 + 0.726543i 0.344966 + 0.0774497i
\(89\) −11.5623 −1.22560 −0.612801 0.790237i \(-0.709957\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(90\) 0 0
\(91\) 2.07295 + 6.37988i 0.217304 + 0.668793i
\(92\) 2.66312 8.19624i 0.277649 0.854517i
\(93\) 0 0
\(94\) −9.54508 6.93491i −0.984500 0.715281i
\(95\) 1.50000 4.61653i 0.153897 0.473646i
\(96\) 0 0
\(97\) 1.61803 1.17557i 0.164286 0.119361i −0.502604 0.864517i \(-0.667625\pi\)
0.666891 + 0.745155i \(0.267625\pi\)
\(98\) 5.09017 0.514185
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 4.35926i 0.597022 0.433762i −0.247798 0.968812i \(-0.579707\pi\)
0.844821 + 0.535050i \(0.179707\pi\)
\(102\) 0 0
\(103\) −1.50000 + 4.61653i −0.147799 + 0.454880i −0.997360 0.0726107i \(-0.976867\pi\)
0.849561 + 0.527490i \(0.176867\pi\)
\(104\) −3.92705 2.85317i −0.385079 0.279776i
\(105\) 0 0
\(106\) −4.04508 + 12.4495i −0.392893 + 1.20920i
\(107\) −0.472136 1.45309i −0.0456431 0.140475i 0.925638 0.378411i \(-0.123529\pi\)
−0.971281 + 0.237936i \(0.923529\pi\)
\(108\) 0 0
\(109\) 7.41641 0.710363 0.355182 0.934797i \(-0.384419\pi\)
0.355182 + 0.934797i \(0.384419\pi\)
\(110\) −1.69098 + 2.85317i −0.161229 + 0.272039i
\(111\) 0 0
\(112\) 1.11803 0.812299i 0.105644 0.0767551i
\(113\) 1.09017 + 3.35520i 0.102555 + 0.315630i 0.989149 0.146918i \(-0.0469352\pi\)
−0.886594 + 0.462548i \(0.846935\pi\)
\(114\) 0 0
\(115\) 6.97214 + 5.06555i 0.650155 + 0.472365i
\(116\) 5.85410 + 4.25325i 0.543540 + 0.394905i
\(117\) 0 0
\(118\) −2.88197 8.86978i −0.265306 0.816529i
\(119\) −7.23607 + 5.25731i −0.663329 + 0.481937i
\(120\) 0 0
\(121\) −5.28115 9.64932i −0.480105 0.877211i
\(122\) 3.70820 0.335725
\(123\) 0 0
\(124\) −2.23607 6.88191i −0.200805 0.618014i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −8.54508 6.20837i −0.758254 0.550904i 0.140121 0.990134i \(-0.455251\pi\)
−0.898374 + 0.439231i \(0.855251\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) 3.92705 2.85317i 0.344425 0.250240i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 6.70820 0.581675
\(134\) −12.7082 + 9.23305i −1.09782 + 0.797614i
\(135\) 0 0
\(136\) 2.00000 6.15537i 0.171499 0.527818i
\(137\) −15.7082 11.4127i −1.34204 0.975051i −0.999366 0.0355973i \(-0.988667\pi\)
−0.342676 0.939454i \(-0.611333\pi\)
\(138\) 0 0
\(139\) −6.42705 + 19.7804i −0.545135 + 1.67775i 0.175533 + 0.984474i \(0.443835\pi\)
−0.720668 + 0.693280i \(0.756165\pi\)
\(140\) 0.427051 + 1.31433i 0.0360924 + 0.111081i
\(141\) 0 0
\(142\) 8.18034 0.686479
\(143\) 1.50000 + 16.0292i 0.125436 + 1.34043i
\(144\) 0 0
\(145\) −5.85410 + 4.25325i −0.486157 + 0.353214i
\(146\) −0.618034 1.90211i −0.0511489 0.157420i
\(147\) 0 0
\(148\) 2.54508 + 1.84911i 0.209205 + 0.151996i
\(149\) −2.00000 1.45309i −0.163846 0.119041i 0.502841 0.864379i \(-0.332288\pi\)
−0.666687 + 0.745338i \(0.732288\pi\)
\(150\) 0 0
\(151\) −3.56231 10.9637i −0.289896 0.892209i −0.984888 0.173192i \(-0.944592\pi\)
0.694992 0.719018i \(-0.255408\pi\)
\(152\) −3.92705 + 2.85317i −0.318526 + 0.231423i
\(153\) 0 0
\(154\) −4.47214 1.00406i −0.360375 0.0809092i
\(155\) 7.23607 0.581215
\(156\) 0 0
\(157\) −0.663119 2.04087i −0.0529227 0.162879i 0.921102 0.389322i \(-0.127291\pi\)
−0.974025 + 0.226442i \(0.927291\pi\)
\(158\) 1.09017 3.35520i 0.0867293 0.266925i
\(159\) 0 0
\(160\) −0.809017 0.587785i −0.0639584 0.0464685i
\(161\) −3.68034 + 11.3269i −0.290051 + 0.892686i
\(162\) 0 0
\(163\) 2.76393 2.00811i 0.216488 0.157288i −0.474256 0.880387i \(-0.657283\pi\)
0.690744 + 0.723099i \(0.257283\pi\)
\(164\) 1.09017 0.0851280
\(165\) 0 0
\(166\) −6.47214 −0.502335
\(167\) −18.6353 + 13.5393i −1.44204 + 1.04770i −0.454428 + 0.890784i \(0.650156\pi\)
−0.987611 + 0.156919i \(0.949844\pi\)
\(168\) 0 0
\(169\) 3.26393 10.0453i 0.251072 0.772719i
\(170\) 5.23607 + 3.80423i 0.401588 + 0.291771i
\(171\) 0 0
\(172\) 0.381966 1.17557i 0.0291246 0.0896364i
\(173\) 4.51722 + 13.9026i 0.343438 + 1.05699i 0.962415 + 0.271584i \(0.0875475\pi\)
−0.618977 + 0.785409i \(0.712453\pi\)
\(174\) 0 0
\(175\) −1.38197 −0.104467
\(176\) 3.04508 1.31433i 0.229532 0.0990712i
\(177\) 0 0
\(178\) −9.35410 + 6.79615i −0.701120 + 0.509393i
\(179\) −3.42705 10.5474i −0.256150 0.788348i −0.993601 0.112948i \(-0.963971\pi\)
0.737451 0.675400i \(-0.236029\pi\)
\(180\) 0 0
\(181\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(182\) 5.42705 + 3.94298i 0.402280 + 0.292273i
\(183\) 0 0
\(184\) −2.66312 8.19624i −0.196328 0.604235i
\(185\) −2.54508 + 1.84911i −0.187118 + 0.135949i
\(186\) 0 0
\(187\) −19.7082 + 8.50651i −1.44121 + 0.622057i
\(188\) −11.7984 −0.860485
\(189\) 0 0
\(190\) −1.50000 4.61653i −0.108821 0.334918i
\(191\) 1.90983 5.87785i 0.138190 0.425306i −0.857882 0.513846i \(-0.828220\pi\)
0.996073 + 0.0885400i \(0.0282201\pi\)
\(192\) 0 0
\(193\) 1.38197 + 1.00406i 0.0994761 + 0.0722736i 0.636411 0.771350i \(-0.280418\pi\)
−0.536935 + 0.843623i \(0.680418\pi\)
\(194\) 0.618034 1.90211i 0.0443723 0.136564i
\(195\) 0 0
\(196\) 4.11803 2.99193i 0.294145 0.213709i
\(197\) −14.6180 −1.04149 −0.520746 0.853712i \(-0.674346\pi\)
−0.520746 + 0.853712i \(0.674346\pi\)
\(198\) 0 0
\(199\) 2.47214 0.175245 0.0876225 0.996154i \(-0.472073\pi\)
0.0876225 + 0.996154i \(0.472073\pi\)
\(200\) 0.809017 0.587785i 0.0572061 0.0415627i
\(201\) 0 0
\(202\) 2.29180 7.05342i 0.161250 0.496277i
\(203\) −8.09017 5.87785i −0.567819 0.412544i
\(204\) 0 0
\(205\) −0.336881 + 1.03681i −0.0235288 + 0.0724142i
\(206\) 1.50000 + 4.61653i 0.104510 + 0.321649i
\(207\) 0 0
\(208\) −4.85410 −0.336571
\(209\) 15.7082 + 3.52671i 1.08656 + 0.243948i
\(210\) 0 0
\(211\) −11.7082 + 8.50651i −0.806026 + 0.585612i −0.912676 0.408684i \(-0.865988\pi\)
0.106650 + 0.994297i \(0.465988\pi\)
\(212\) 4.04508 + 12.4495i 0.277818 + 0.855035i
\(213\) 0 0
\(214\) −1.23607 0.898056i −0.0844959 0.0613898i
\(215\) 1.00000 + 0.726543i 0.0681994 + 0.0495498i
\(216\) 0 0
\(217\) 3.09017 + 9.51057i 0.209774 + 0.645619i
\(218\) 6.00000 4.35926i 0.406371 0.295246i
\(219\) 0 0
\(220\) 0.309017 + 3.30220i 0.0208339 + 0.222634i
\(221\) 31.4164 2.11330
\(222\) 0 0
\(223\) −2.60739 8.02472i −0.174604 0.537375i 0.825011 0.565116i \(-0.191169\pi\)
−0.999615 + 0.0277409i \(0.991169\pi\)
\(224\) 0.427051 1.31433i 0.0285335 0.0878172i
\(225\) 0 0
\(226\) 2.85410 + 2.07363i 0.189852 + 0.137936i
\(227\) −4.85410 + 14.9394i −0.322178 + 0.991562i 0.650520 + 0.759489i \(0.274551\pi\)
−0.972698 + 0.232073i \(0.925449\pi\)
\(228\) 0 0
\(229\) −4.09017 + 2.97168i −0.270286 + 0.196374i −0.714669 0.699462i \(-0.753423\pi\)
0.444383 + 0.895837i \(0.353423\pi\)
\(230\) 8.61803 0.568256
\(231\) 0 0
\(232\) 7.23607 0.475071
\(233\) −2.61803 + 1.90211i −0.171513 + 0.124612i −0.670230 0.742153i \(-0.733805\pi\)
0.498717 + 0.866765i \(0.333805\pi\)
\(234\) 0 0
\(235\) 3.64590 11.2209i 0.237832 0.731972i
\(236\) −7.54508 5.48183i −0.491143 0.356836i
\(237\) 0 0
\(238\) −2.76393 + 8.50651i −0.179159 + 0.551395i
\(239\) −3.76393 11.5842i −0.243469 0.749319i −0.995885 0.0906309i \(-0.971112\pi\)
0.752416 0.658688i \(-0.228888\pi\)
\(240\) 0 0
\(241\) 5.56231 0.358300 0.179150 0.983822i \(-0.442665\pi\)
0.179150 + 0.983822i \(0.442665\pi\)
\(242\) −9.94427 4.70228i −0.639242 0.302274i
\(243\) 0 0
\(244\) 3.00000 2.17963i 0.192055 0.139536i
\(245\) 1.57295 + 4.84104i 0.100492 + 0.309283i
\(246\) 0 0
\(247\) −19.0623 13.8496i −1.21291 0.881227i
\(248\) −5.85410 4.25325i −0.371736 0.270082i
\(249\) 0 0
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) −2.97214 + 2.15938i −0.187600 + 0.136299i −0.677621 0.735411i \(-0.736989\pi\)
0.490021 + 0.871710i \(0.336989\pi\)
\(252\) 0 0
\(253\) −14.5729 + 24.5887i −0.916193 + 1.54588i
\(254\) −10.5623 −0.662738
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 6.03444 18.5721i 0.376418 1.15850i −0.566099 0.824337i \(-0.691548\pi\)
0.942517 0.334158i \(-0.108452\pi\)
\(258\) 0 0
\(259\) −3.51722 2.55541i −0.218549 0.158785i
\(260\) 1.50000 4.61653i 0.0930261 0.286305i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.381966 −0.0235530 −0.0117765 0.999931i \(-0.503749\pi\)
−0.0117765 + 0.999931i \(0.503749\pi\)
\(264\) 0 0
\(265\) −13.0902 −0.804123
\(266\) 5.42705 3.94298i 0.332754 0.241760i
\(267\) 0 0
\(268\) −4.85410 + 14.9394i −0.296511 + 0.912568i
\(269\) −17.4721 12.6942i −1.06529 0.773982i −0.0902343 0.995921i \(-0.528762\pi\)
−0.975061 + 0.221938i \(0.928762\pi\)
\(270\) 0 0
\(271\) −1.94427 + 5.98385i −0.118106 + 0.363493i −0.992582 0.121575i \(-0.961205\pi\)
0.874476 + 0.485069i \(0.161205\pi\)
\(272\) −2.00000 6.15537i −0.121268 0.373224i
\(273\) 0 0
\(274\) −19.4164 −1.17299
\(275\) −3.23607 0.726543i −0.195142 0.0438122i
\(276\) 0 0
\(277\) 9.50000 6.90215i 0.570800 0.414710i −0.264596 0.964359i \(-0.585239\pi\)
0.835396 + 0.549649i \(0.185239\pi\)
\(278\) 6.42705 + 19.7804i 0.385469 + 1.18635i
\(279\) 0 0
\(280\) 1.11803 + 0.812299i 0.0668153 + 0.0485442i
\(281\) 21.7984 + 15.8374i 1.30038 + 0.944783i 0.999959 0.00902337i \(-0.00287227\pi\)
0.300423 + 0.953806i \(0.402872\pi\)
\(282\) 0 0
\(283\) −5.29180 16.2865i −0.314565 0.968130i −0.975933 0.218069i \(-0.930024\pi\)
0.661369 0.750061i \(-0.269976\pi\)
\(284\) 6.61803 4.80828i 0.392708 0.285319i
\(285\) 0 0
\(286\) 10.6353 + 12.0862i 0.628876 + 0.714673i
\(287\) −1.50658 −0.0889305
\(288\) 0 0
\(289\) 7.69098 + 23.6704i 0.452411 + 1.39238i
\(290\) −2.23607 + 6.88191i −0.131306 + 0.404120i
\(291\) 0 0
\(292\) −1.61803 1.17557i −0.0946883 0.0687951i
\(293\) 3.37132 10.3759i 0.196955 0.606165i −0.802993 0.595988i \(-0.796761\pi\)
0.999948 0.0101766i \(-0.00323938\pi\)
\(294\) 0 0
\(295\) 7.54508 5.48183i 0.439292 0.319164i
\(296\) 3.14590 0.182852
\(297\) 0 0
\(298\) −2.47214 −0.143207
\(299\) 33.8435 24.5887i 1.95722 1.42200i
\(300\) 0 0
\(301\) −0.527864 + 1.62460i −0.0304256 + 0.0936403i
\(302\) −9.32624 6.77591i −0.536665 0.389910i
\(303\) 0 0
\(304\) −1.50000 + 4.61653i −0.0860309 + 0.264776i
\(305\) 1.14590 + 3.52671i 0.0656139 + 0.201939i
\(306\) 0 0
\(307\) 26.8328 1.53143 0.765715 0.643180i \(-0.222385\pi\)
0.765715 + 0.643180i \(0.222385\pi\)
\(308\) −4.20820 + 1.81636i −0.239785 + 0.103497i
\(309\) 0 0
\(310\) 5.85410 4.25325i 0.332491 0.241569i
\(311\) −3.67376 11.3067i −0.208320 0.641143i −0.999561 0.0296381i \(-0.990565\pi\)
0.791241 0.611505i \(-0.209435\pi\)
\(312\) 0 0
\(313\) 6.23607 + 4.53077i 0.352483 + 0.256094i 0.749910 0.661540i \(-0.230097\pi\)
−0.397427 + 0.917634i \(0.630097\pi\)
\(314\) −1.73607 1.26133i −0.0979720 0.0711808i
\(315\) 0 0
\(316\) −1.09017 3.35520i −0.0613269 0.188745i
\(317\) −17.8713 + 12.9843i −1.00375 + 0.729270i −0.962890 0.269895i \(-0.913011\pi\)
−0.0408638 + 0.999165i \(0.513011\pi\)
\(318\) 0 0
\(319\) −15.8541 18.0171i −0.887659 1.00876i
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 3.68034 + 11.3269i 0.205097 + 0.631225i
\(323\) 9.70820 29.8788i 0.540179 1.66250i
\(324\) 0 0
\(325\) 3.92705 + 2.85317i 0.217834 + 0.158265i
\(326\) 1.05573 3.24920i 0.0584714 0.179956i
\(327\) 0 0
\(328\) 0.881966 0.640786i 0.0486984 0.0353815i
\(329\) 16.3050 0.898921
\(330\) 0 0
\(331\) 16.8541 0.926385 0.463193 0.886258i \(-0.346704\pi\)
0.463193 + 0.886258i \(0.346704\pi\)
\(332\) −5.23607 + 3.80423i −0.287367 + 0.208784i
\(333\) 0 0
\(334\) −7.11803 + 21.9071i −0.389481 + 1.19870i
\(335\) −12.7082 9.23305i −0.694323 0.504455i
\(336\) 0 0
\(337\) −1.05573 + 3.24920i −0.0575092 + 0.176995i −0.975685 0.219179i \(-0.929662\pi\)
0.918176 + 0.396174i \(0.129662\pi\)
\(338\) −3.26393 10.0453i −0.177534 0.546395i
\(339\) 0 0
\(340\) 6.47214 0.351001
\(341\) 2.23607 + 23.8949i 0.121090 + 1.29398i
\(342\) 0 0
\(343\) −13.5172 + 9.82084i −0.729861 + 0.530275i
\(344\) −0.381966 1.17557i −0.0205942 0.0633825i
\(345\) 0 0
\(346\) 11.8262 + 8.59226i 0.635782 + 0.461923i
\(347\) 3.00000 + 2.17963i 0.161048 + 0.117009i 0.665391 0.746495i \(-0.268265\pi\)
−0.504342 + 0.863504i \(0.668265\pi\)
\(348\) 0 0
\(349\) −4.14590 12.7598i −0.221925 0.683014i −0.998589 0.0530998i \(-0.983090\pi\)
0.776664 0.629915i \(-0.216910\pi\)
\(350\) −1.11803 + 0.812299i −0.0597614 + 0.0434192i
\(351\) 0 0
\(352\) 1.69098 2.85317i 0.0901297 0.152074i
\(353\) −3.23607 −0.172239 −0.0861193 0.996285i \(-0.527447\pi\)
−0.0861193 + 0.996285i \(0.527447\pi\)
\(354\) 0 0
\(355\) 2.52786 + 7.77997i 0.134165 + 0.412918i
\(356\) −3.57295 + 10.9964i −0.189366 + 0.582808i
\(357\) 0 0
\(358\) −8.97214 6.51864i −0.474192 0.344521i
\(359\) −7.65248 + 23.5519i −0.403882 + 1.24302i 0.517943 + 0.855415i \(0.326698\pi\)
−0.921825 + 0.387606i \(0.873302\pi\)
\(360\) 0 0
\(361\) −3.69098 + 2.68166i −0.194262 + 0.141140i
\(362\) 0 0
\(363\) 0 0
\(364\) 6.70820 0.351605
\(365\) 1.61803 1.17557i 0.0846918 0.0615322i
\(366\) 0 0
\(367\) 2.65248 8.16348i 0.138458 0.426130i −0.857654 0.514228i \(-0.828079\pi\)
0.996112 + 0.0880974i \(0.0280787\pi\)
\(368\) −6.97214 5.06555i −0.363448 0.264060i
\(369\) 0 0
\(370\) −0.972136 + 2.99193i −0.0505389 + 0.155543i
\(371\) −5.59017 17.2048i −0.290227 0.893227i
\(372\) 0 0
\(373\) 34.5623 1.78957 0.894784 0.446499i \(-0.147329\pi\)
0.894784 + 0.446499i \(0.147329\pi\)
\(374\) −10.9443 + 18.4661i −0.565915 + 0.954859i
\(375\) 0 0
\(376\) −9.54508 + 6.93491i −0.492250 + 0.357641i
\(377\) 10.8541 + 33.4055i 0.559015 + 1.72047i
\(378\) 0 0
\(379\) 3.64590 + 2.64890i 0.187277 + 0.136065i 0.677473 0.735547i \(-0.263075\pi\)
−0.490196 + 0.871612i \(0.663075\pi\)
\(380\) −3.92705 2.85317i −0.201453 0.146365i
\(381\) 0 0
\(382\) −1.90983 5.87785i −0.0977154 0.300737i
\(383\) 12.7361 9.25330i 0.650783 0.472821i −0.212755 0.977106i \(-0.568244\pi\)
0.863538 + 0.504284i \(0.168244\pi\)
\(384\) 0 0
\(385\) −0.427051 4.56352i −0.0217645 0.232579i
\(386\) 1.70820 0.0869453
\(387\) 0 0
\(388\) −0.618034 1.90211i −0.0313759 0.0965652i
\(389\) −1.85410 + 5.70634i −0.0940067 + 0.289323i −0.986994 0.160760i \(-0.948606\pi\)
0.892987 + 0.450083i \(0.148606\pi\)
\(390\) 0 0
\(391\) 45.1246 + 32.7849i 2.28205 + 1.65801i
\(392\) 1.57295 4.84104i 0.0794459 0.244509i
\(393\) 0 0
\(394\) −11.8262 + 8.59226i −0.595797 + 0.432872i
\(395\) 3.52786 0.177506
\(396\) 0 0
\(397\) −35.7426 −1.79387 −0.896936 0.442160i \(-0.854212\pi\)
−0.896936 + 0.442160i \(0.854212\pi\)
\(398\) 2.00000 1.45309i 0.100251 0.0728366i
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.0154508 0.0475528i
\(401\) 8.16312 + 5.93085i 0.407647 + 0.296173i 0.772648 0.634834i \(-0.218932\pi\)
−0.365002 + 0.931007i \(0.618932\pi\)
\(402\) 0 0
\(403\) 10.8541 33.4055i 0.540681 1.66405i
\(404\) −2.29180 7.05342i −0.114021 0.350921i
\(405\) 0 0
\(406\) −10.0000 −0.496292
\(407\) −6.89261 7.83297i −0.341654 0.388266i
\(408\) 0 0
\(409\) −18.2533 + 13.2618i −0.902567 + 0.655753i −0.939124 0.343578i \(-0.888361\pi\)
0.0365570 + 0.999332i \(0.488361\pi\)
\(410\) 0.336881 + 1.03681i 0.0166374 + 0.0512046i
\(411\) 0 0
\(412\) 3.92705 + 2.85317i 0.193472 + 0.140566i
\(413\) 10.4271 + 7.57570i 0.513082 + 0.372776i
\(414\) 0 0
\(415\) −2.00000 6.15537i −0.0981761 0.302155i
\(416\) −3.92705 + 2.85317i −0.192540 + 0.139888i
\(417\) 0 0
\(418\) 14.7812 6.37988i 0.722970 0.312050i
\(419\) 3.79837 0.185563 0.0927814 0.995687i \(-0.470424\pi\)
0.0927814 + 0.995687i \(0.470424\pi\)
\(420\) 0 0
\(421\) −12.3262 37.9363i −0.600744 1.84890i −0.523756 0.851868i \(-0.675470\pi\)
−0.0769877 0.997032i \(-0.524530\pi\)
\(422\) −4.47214 + 13.7638i −0.217700 + 0.670012i
\(423\) 0 0
\(424\) 10.5902 + 7.69421i 0.514304 + 0.373664i
\(425\) −2.00000 + 6.15537i −0.0970143 + 0.298579i
\(426\) 0 0
\(427\) −4.14590 + 3.01217i −0.200634 + 0.145769i
\(428\) −1.52786 −0.0738521
\(429\) 0 0
\(430\) 1.23607 0.0596085
\(431\) −28.0344 + 20.3682i −1.35037 + 0.981102i −0.351379 + 0.936233i \(0.614287\pi\)
−0.998993 + 0.0448689i \(0.985713\pi\)
\(432\) 0 0
\(433\) 8.38197 25.7970i 0.402812 1.23973i −0.519897 0.854229i \(-0.674030\pi\)
0.922709 0.385498i \(-0.125970\pi\)
\(434\) 8.09017 + 5.87785i 0.388341 + 0.282146i
\(435\) 0 0
\(436\) 2.29180 7.05342i 0.109757 0.337798i
\(437\) −12.9271 39.7854i −0.618385 1.90319i
\(438\) 0 0
\(439\) 20.2918 0.968475 0.484237 0.874937i \(-0.339097\pi\)
0.484237 + 0.874937i \(0.339097\pi\)
\(440\) 2.19098 + 2.48990i 0.104451 + 0.118701i
\(441\) 0 0
\(442\) 25.4164 18.4661i 1.20894 0.878343i
\(443\) −2.61803 8.05748i −0.124387 0.382822i 0.869402 0.494105i \(-0.164504\pi\)
−0.993789 + 0.111283i \(0.964504\pi\)
\(444\) 0 0
\(445\) −9.35410 6.79615i −0.443427 0.322169i
\(446\) −6.82624 4.95955i −0.323232 0.234842i
\(447\) 0 0
\(448\) −0.427051 1.31433i −0.0201763 0.0620962i
\(449\) 30.8156 22.3888i 1.45428 1.05659i 0.469470 0.882949i \(-0.344445\pi\)
0.984808 0.173646i \(-0.0555549\pi\)
\(450\) 0 0
\(451\) −3.52786 0.792055i −0.166121 0.0372964i
\(452\) 3.52786 0.165937
\(453\) 0 0
\(454\) 4.85410 + 14.9394i 0.227814 + 0.701140i
\(455\) −2.07295 + 6.37988i −0.0971813 + 0.299093i
\(456\) 0 0
\(457\) −28.1803 20.4742i −1.31822 0.957743i −0.999953 0.00974267i \(-0.996899\pi\)
−0.318268 0.948001i \(-0.603101\pi\)
\(458\) −1.56231 + 4.80828i −0.0730018 + 0.224676i
\(459\) 0 0
\(460\) 6.97214 5.06555i 0.325078 0.236183i
\(461\) 15.7082 0.731604 0.365802 0.930693i \(-0.380795\pi\)
0.365802 + 0.930693i \(0.380795\pi\)
\(462\) 0 0
\(463\) −4.27051 −0.198467 −0.0992337 0.995064i \(-0.531639\pi\)
−0.0992337 + 0.995064i \(0.531639\pi\)
\(464\) 5.85410 4.25325i 0.271770 0.197452i
\(465\) 0 0
\(466\) −1.00000 + 3.07768i −0.0463241 + 0.142571i
\(467\) −7.70820 5.60034i −0.356693 0.259153i 0.394978 0.918690i \(-0.370752\pi\)
−0.751671 + 0.659538i \(0.770752\pi\)
\(468\) 0 0
\(469\) 6.70820 20.6457i 0.309756 0.953331i
\(470\) −3.64590 11.2209i −0.168173 0.517582i
\(471\) 0 0
\(472\) −9.32624 −0.429275
\(473\) −2.09017 + 3.52671i −0.0961061 + 0.162158i
\(474\) 0 0
\(475\) 3.92705 2.85317i 0.180185 0.130912i
\(476\) 2.76393 + 8.50651i 0.126685 + 0.389895i
\(477\) 0 0
\(478\) −9.85410 7.15942i −0.450716 0.327464i
\(479\) −2.23607 1.62460i −0.102169 0.0742298i 0.535528 0.844517i \(-0.320113\pi\)
−0.637697 + 0.770288i \(0.720113\pi\)
\(480\) 0 0
\(481\) 4.71885 + 14.5231i 0.215161 + 0.662197i
\(482\) 4.50000 3.26944i 0.204969 0.148919i
\(483\) 0 0
\(484\) −10.8090 + 2.04087i −0.491319 + 0.0927668i
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −7.23607 22.2703i −0.327898 1.00916i −0.970116 0.242643i \(-0.921986\pi\)
0.642218 0.766522i \(-0.278014\pi\)
\(488\) 1.14590 3.52671i 0.0518724 0.159647i
\(489\) 0 0
\(490\) 4.11803 + 2.99193i 0.186034 + 0.135161i
\(491\) 3.29837 10.1514i 0.148854 0.458124i −0.848633 0.528982i \(-0.822574\pi\)
0.997486 + 0.0708582i \(0.0225738\pi\)
\(492\) 0 0
\(493\) −37.8885 + 27.5276i −1.70641 + 1.23978i
\(494\) −23.5623 −1.06012
\(495\) 0 0
\(496\) −7.23607 −0.324909
\(497\) −9.14590 + 6.64488i −0.410250 + 0.298064i
\(498\) 0 0
\(499\) 3.84346 11.8290i 0.172057 0.529537i −0.827430 0.561569i \(-0.810198\pi\)
0.999487 + 0.0320324i \(0.0101980\pi\)
\(500\) 0.809017 + 0.587785i 0.0361803 + 0.0262866i
\(501\) 0 0
\(502\) −1.13525 + 3.49396i −0.0506689 + 0.155943i
\(503\) −4.46556 13.7436i −0.199109 0.612796i −0.999904 0.0138566i \(-0.995589\pi\)
0.800795 0.598939i \(-0.204411\pi\)
\(504\) 0 0
\(505\) 7.41641 0.330026
\(506\) 2.66312 + 28.4585i 0.118390 + 1.26513i
\(507\) 0 0
\(508\) −8.54508 + 6.20837i −0.379127 + 0.275452i
\(509\) −8.14590 25.0705i −0.361061 1.11123i −0.952411 0.304816i \(-0.901405\pi\)
0.591351 0.806414i \(-0.298595\pi\)
\(510\) 0 0
\(511\) 2.23607 + 1.62460i 0.0989178 + 0.0718680i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) −6.03444 18.5721i −0.266168 0.819180i
\(515\) −3.92705 + 2.85317i −0.173047 + 0.125726i
\(516\) 0 0
\(517\) 38.1803 + 8.57202i 1.67917 + 0.376997i
\(518\) −4.34752 −0.191019
\(519\) 0 0
\(520\) −1.50000 4.61653i −0.0657794 0.202448i
\(521\) 3.95492 12.1720i 0.173268 0.533264i −0.826282 0.563256i \(-0.809548\pi\)
0.999550 + 0.0299924i \(0.00954832\pi\)
\(522\) 0 0
\(523\) 23.9443 + 17.3965i 1.04701 + 0.760697i 0.971642 0.236459i \(-0.0759867\pi\)
0.0753683 + 0.997156i \(0.475987\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.309017 + 0.224514i −0.0134738 + 0.00978928i
\(527\) 46.8328 2.04007
\(528\) 0 0
\(529\) 51.2705 2.22915
\(530\) −10.5902 + 7.69421i −0.460008 + 0.334215i
\(531\) 0 0
\(532\) 2.07295 6.37988i 0.0898737 0.276603i
\(533\) 4.28115 + 3.11044i 0.185437 + 0.134728i
\(534\) 0 0
\(535\) 0.472136 1.45309i 0.0204122 0.0628223i
\(536\) 4.85410 + 14.9394i 0.209665 + 0.645283i
\(537\) 0 0
\(538\) −21.5967 −0.931102
\(539\) −15.5000 + 6.69015i −0.667632 + 0.288165i
\(540\) 0 0
\(541\) 12.4721 9.06154i 0.536219 0.389586i −0.286460 0.958092i \(-0.592479\pi\)
0.822679 + 0.568506i \(0.192479\pi\)
\(542\) 1.94427 + 5.98385i 0.0835136 + 0.257029i
\(543\) 0 0
\(544\) −5.23607 3.80423i −0.224495 0.163105i
\(545\) 6.00000 + 4.35926i 0.257012 + 0.186730i
\(546\) 0 0
\(547\) 8.56231 + 26.3521i 0.366098 + 1.12673i 0.949291 + 0.314399i \(0.101803\pi\)
−0.583193 + 0.812334i \(0.698197\pi\)
\(548\) −15.7082 + 11.4127i −0.671021 + 0.487525i
\(549\) 0 0
\(550\) −3.04508 + 1.31433i −0.129843 + 0.0560431i
\(551\) 35.1246 1.49636
\(552\) 0 0
\(553\) 1.50658 + 4.63677i 0.0640662 + 0.197176i
\(554\) 3.62868 11.1679i 0.154168 0.474479i
\(555\) 0 0
\(556\) 16.8262 + 12.2250i 0.713591 + 0.518455i
\(557\) −12.8262 + 39.4751i −0.543465 + 1.67261i 0.181146 + 0.983456i \(0.442019\pi\)
−0.724612 + 0.689158i \(0.757981\pi\)
\(558\) 0 0
\(559\) 4.85410 3.52671i 0.205307 0.149164i
\(560\) 1.38197 0.0583987
\(561\) 0 0
\(562\) 26.9443 1.13658
\(563\) −14.1803 + 10.3026i −0.597630 + 0.434204i −0.845037 0.534708i \(-0.820422\pi\)
0.247407 + 0.968912i \(0.420422\pi\)
\(564\) 0 0
\(565\) −1.09017 + 3.35520i −0.0458638 + 0.141154i
\(566\) −13.8541 10.0656i −0.582331 0.423088i
\(567\) 0 0
\(568\) 2.52786 7.77997i 0.106067 0.326440i
\(569\) 0.718847 + 2.21238i 0.0301356 + 0.0927480i 0.964993 0.262275i \(-0.0844729\pi\)
−0.934857 + 0.355023i \(0.884473\pi\)
\(570\) 0 0
\(571\) 18.9787 0.794234 0.397117 0.917768i \(-0.370011\pi\)
0.397117 + 0.917768i \(0.370011\pi\)
\(572\) 15.7082 + 3.52671i 0.656793 + 0.147459i
\(573\) 0 0
\(574\) −1.21885 + 0.885544i −0.0508737 + 0.0369619i
\(575\) 2.66312 + 8.19624i 0.111060 + 0.341807i
\(576\) 0 0
\(577\) 14.3262 + 10.4086i 0.596409 + 0.433317i 0.844602 0.535394i \(-0.179837\pi\)
−0.248193 + 0.968711i \(0.579837\pi\)
\(578\) 20.1353 + 14.6291i 0.837516 + 0.608491i
\(579\) 0 0
\(580\) 2.23607 + 6.88191i 0.0928477 + 0.285756i
\(581\) 7.23607 5.25731i 0.300203 0.218110i
\(582\) 0 0
\(583\) −4.04508 43.2263i −0.167530 1.79025i
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) −3.37132 10.3759i −0.139268 0.428623i
\(587\) 0.944272 2.90617i 0.0389743 0.119950i −0.929676 0.368377i \(-0.879914\pi\)
0.968651 + 0.248427i \(0.0799135\pi\)
\(588\) 0 0
\(589\) −28.4164 20.6457i −1.17088 0.850692i
\(590\) 2.88197 8.86978i 0.118649 0.365163i
\(591\) 0 0
\(592\) 2.54508 1.84911i 0.104602 0.0759981i
\(593\) 23.8885 0.980985 0.490492 0.871445i \(-0.336817\pi\)
0.490492 + 0.871445i \(0.336817\pi\)
\(594\) 0 0
\(595\) −8.94427 −0.366679
\(596\) −2.00000 + 1.45309i −0.0819232 + 0.0595207i
\(597\) 0 0
\(598\) 12.9271 39.7854i 0.528626 1.62694i
\(599\) 0.145898 + 0.106001i 0.00596123 + 0.00433109i 0.590762 0.806846i \(-0.298827\pi\)
−0.584801 + 0.811177i \(0.698827\pi\)
\(600\) 0 0
\(601\) −5.50000 + 16.9273i −0.224350 + 0.690477i 0.774007 + 0.633177i \(0.218249\pi\)
−0.998357 + 0.0573006i \(0.981751\pi\)
\(602\) 0.527864 + 1.62460i 0.0215141 + 0.0662137i
\(603\) 0 0
\(604\) −11.5279 −0.469062
\(605\) 1.39919 10.9106i 0.0568850 0.443581i
\(606\) 0 0
\(607\) 18.9443 13.7638i 0.768924 0.558656i −0.132710 0.991155i \(-0.542368\pi\)
0.901635 + 0.432499i \(0.142368\pi\)
\(608\) 1.50000 + 4.61653i 0.0608330 + 0.187225i
\(609\) 0 0
\(610\) 3.00000 + 2.17963i 0.121466 + 0.0882505i
\(611\) −46.3328 33.6628i −1.87443 1.36185i
\(612\) 0 0
\(613\) 4.50658 + 13.8698i 0.182019 + 0.560197i 0.999884 0.0152129i \(-0.00484262\pi\)
−0.817865 + 0.575410i \(0.804843\pi\)
\(614\) 21.7082 15.7719i 0.876072 0.636503i
\(615\) 0 0
\(616\) −2.33688 + 3.94298i −0.0941556 + 0.158867i
\(617\) 24.0000 0.966204 0.483102 0.875564i \(-0.339510\pi\)
0.483102 + 0.875564i \(0.339510\pi\)
\(618\) 0 0
\(619\) 8.20820 + 25.2623i 0.329916 + 1.01538i 0.969173 + 0.246383i \(0.0792420\pi\)
−0.639257 + 0.768993i \(0.720758\pi\)
\(620\) 2.23607 6.88191i 0.0898027 0.276384i
\(621\) 0 0
\(622\) −9.61803 6.98791i −0.385648 0.280190i
\(623\) 4.93769 15.1967i 0.197825 0.608841i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 7.70820 0.308082
\(627\) 0 0
\(628\) −2.14590 −0.0856307
\(629\) −16.4721 + 11.9677i −0.656787 + 0.477184i
\(630\) 0 0
\(631\) 4.09017 12.5882i 0.162827 0.501130i −0.836043 0.548665i \(-0.815136\pi\)
0.998870 + 0.0475344i \(0.0151364\pi\)
\(632\) −2.85410 2.07363i −0.113530 0.0824844i
\(633\) 0 0
\(634\) −6.82624 + 21.0090i −0.271105 + 0.834374i
\(635\) −3.26393 10.0453i −0.129525 0.398638i
\(636\) 0 0
\(637\) 24.7082 0.978975
\(638\) −23.4164 5.25731i −0.927064 0.208139i
\(639\) 0 0
\(640\) −0.809017 + 0.587785i −0.0319792 + 0.0232343i
\(641\) −14.4098 44.3489i −0.569154 1.75168i −0.655274 0.755391i \(-0.727447\pi\)
0.0861199 0.996285i \(-0.472553\pi\)
\(642\) 0 0
\(643\) −32.3607 23.5114i −1.27618 0.927200i −0.276750 0.960942i \(-0.589257\pi\)
−0.999431 + 0.0337424i \(0.989257\pi\)
\(644\) 9.63525 + 7.00042i 0.379682 + 0.275855i
\(645\) 0 0
\(646\) −9.70820 29.8788i −0.381964 1.17556i
\(647\) −11.4164 + 8.29451i −0.448825 + 0.326091i −0.789132 0.614224i \(-0.789469\pi\)
0.340306 + 0.940315i \(0.389469\pi\)
\(648\) 0 0
\(649\) 20.4336 + 23.2214i 0.802090 + 0.911519i
\(650\) 4.85410 0.190394
\(651\) 0 0
\(652\) −1.05573 3.24920i −0.0413455 0.127248i
\(653\) 4.22949 13.0170i 0.165513 0.509396i −0.833561 0.552427i \(-0.813702\pi\)
0.999074 + 0.0430316i \(0.0137016\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.336881 1.03681i 0.0131530 0.0404808i
\(657\) 0 0
\(658\) 13.1910 9.58381i 0.514238 0.373616i
\(659\) 24.3262 0.947616 0.473808 0.880628i \(-0.342879\pi\)
0.473808 + 0.880628i \(0.342879\pi\)
\(660\) 0 0
\(661\) 20.6525 0.803288 0.401644 0.915796i \(-0.368439\pi\)
0.401644 + 0.915796i \(0.368439\pi\)
\(662\) 13.6353 9.90659i 0.529949 0.385031i
\(663\) 0 0
\(664\) −2.00000 + 6.15537i −0.0776151 + 0.238875i
\(665\) 5.42705 + 3.94298i 0.210452 + 0.152902i
\(666\) 0 0
\(667\) −19.2705 + 59.3085i −0.746157 + 2.29644i
\(668\) 7.11803 + 21.9071i 0.275405 + 0.847609i
\(669\) 0 0
\(670\) −15.7082 −0.606861
\(671\) −11.2918 + 4.87380i −0.435915 + 0.188151i
\(672\) 0 0
\(673\) −16.7984 + 12.2047i −0.647530 + 0.470458i −0.862429 0.506178i \(-0.831058\pi\)
0.214899 + 0.976636i \(0.431058\pi\)
\(674\) 1.05573 + 3.24920i 0.0406651 + 0.125154i
\(675\) 0 0
\(676\) −8.54508 6.20837i −0.328657 0.238783i
\(677\) −8.38197 6.08985i −0.322145 0.234052i 0.414945 0.909846i \(-0.363801\pi\)
−0.737090 + 0.675794i \(0.763801\pi\)
\(678\) 0 0
\(679\) 0.854102 + 2.62866i 0.0327774 + 0.100879i
\(680\) 5.23607 3.80423i 0.200794 0.145885i
\(681\) 0 0
\(682\) 15.8541 + 18.0171i 0.607085 + 0.689909i
\(683\) −43.0132 −1.64585 −0.822926 0.568148i \(-0.807660\pi\)
−0.822926 + 0.568148i \(0.807660\pi\)
\(684\) 0 0
\(685\) −6.00000 18.4661i −0.229248 0.705553i
\(686\) −5.16312 + 15.8904i −0.197129 + 0.606700i
\(687\) 0 0
\(688\) −1.00000 0.726543i −0.0381246 0.0276992i
\(689\) −19.6353 + 60.4311i −0.748044 + 2.30224i
\(690\) 0 0
\(691\) −9.06231 + 6.58415i −0.344746 + 0.250473i −0.746662 0.665204i \(-0.768345\pi\)
0.401915 + 0.915677i \(0.368345\pi\)
\(692\) 14.6180 0.555694
\(693\) 0 0
\(694\) 3.70820 0.140761
\(695\) −16.8262 + 12.2250i −0.638256 + 0.463720i
\(696\) 0 0
\(697\) −2.18034 + 6.71040i −0.0825863 + 0.254174i
\(698\) −10.8541 7.88597i −0.410834 0.298488i
\(699\) 0 0
\(700\) −0.427051 + 1.31433i −0.0161410 + 0.0496769i
\(701\) 3.11146 + 9.57608i 0.117518 + 0.361683i 0.992464 0.122537i \(-0.0391031\pi\)
−0.874946 + 0.484221i \(0.839103\pi\)
\(702\) 0 0
\(703\) 15.2705 0.575938
\(704\) −0.309017 3.30220i −0.0116465 0.124456i
\(705\) 0 0
\(706\) −2.61803 + 1.90211i −0.0985310 + 0.0715870i
\(707\) 3.16718 + 9.74759i 0.119114 + 0.366596i
\(708\) 0 0
\(709\) −12.3262 8.95554i −0.462922 0.336332i 0.331755 0.943366i \(-0.392359\pi\)
−0.794676 + 0.607033i \(0.792359\pi\)
\(710\) 6.61803 + 4.80828i 0.248370 + 0.180452i
\(711\) 0 0
\(712\) 3.57295 + 10.9964i 0.133902 + 0.412108i
\(713\) 50.4508 36.6547i 1.88940 1.37273i
\(714\) 0 0
\(715\) −8.20820 + 13.8496i −0.306969 + 0.517945i
\(716\) −11.0902 −0.414459
\(717\) 0 0
\(718\) 7.65248 + 23.5519i 0.285588 + 0.878949i
\(719\) −10.0344 + 30.8828i −0.374222 + 1.15174i 0.569781 + 0.821797i \(0.307028\pi\)
−0.944002 + 0.329939i \(0.892972\pi\)
\(720\) 0 0
\(721\) −5.42705 3.94298i −0.202114 0.146844i
\(722\) −1.40983 + 4.33901i −0.0524684 + 0.161481i
\(723\) 0 0
\(724\) 0 0
\(725\) −7.23607 −0.268741
\(726\) 0 0
\(727\) −10.6869 −0.396356 −0.198178 0.980166i \(-0.563502\pi\)
−0.198178 + 0.980166i \(0.563502\pi\)
\(728\) 5.42705 3.94298i 0.201140 0.146137i
\(729\) 0 0
\(730\) 0.618034 1.90211i 0.0228745 0.0704004i
\(731\) 6.47214 + 4.70228i 0.239381 + 0.173920i
\(732\) 0 0
\(733\) −3.27051 + 10.0656i −0.120799 + 0.371781i −0.993112 0.117166i \(-0.962619\pi\)
0.872313 + 0.488947i \(0.162619\pi\)
\(734\) −2.65248 8.16348i −0.0979047 0.301320i
\(735\) 0 0
\(736\) −8.61803 −0.317665
\(737\) 26.5623 44.8182i 0.978435 1.65090i
\(738\) 0 0
\(739\) 3.35410 2.43690i 0.123383 0.0896427i −0.524383 0.851483i \(-0.675704\pi\)
0.647765 + 0.761840i \(0.275704\pi\)
\(740\) 0.972136 + 2.99193i 0.0357364 + 0.109985i
\(741\) 0 0
\(742\) −14.6353 10.6331i −0.537277 0.390355i
\(743\) −10.2082 7.41669i −0.374503 0.272092i 0.384573 0.923095i \(-0.374349\pi\)
−0.759076 + 0.651002i \(0.774349\pi\)
\(744\) 0 0
\(745\) −0.763932 2.35114i −0.0279883 0.0861391i
\(746\) 27.9615 20.3152i 1.02374 0.743793i
\(747\) 0 0
\(748\) 2.00000 + 21.3723i 0.0731272 + 0.781448i
\(749\) 2.11146 0.0771509
\(750\) 0 0
\(751\) 2.65248 + 8.16348i 0.0967902 + 0.297890i 0.987716 0.156259i \(-0.0499435\pi\)
−0.890926 + 0.454149i \(0.849943\pi\)
\(752\) −3.64590 + 11.2209i −0.132952 + 0.409185i
\(753\) 0 0
\(754\) 28.4164 + 20.6457i 1.03486 + 0.751873i
\(755\) 3.56231 10.9637i 0.129646 0.399008i
\(756\) 0 0
\(757\) −40.5795 + 29.4828i −1.47489 + 1.07157i −0.495728 + 0.868478i \(0.665099\pi\)
−0.979160 + 0.203091i \(0.934901\pi\)
\(758\) 4.50658 0.163686
\(759\) 0 0
\(760\) −4.85410 −0.176077
\(761\) 29.0344 21.0948i 1.05250 0.764684i 0.0798119 0.996810i \(-0.474568\pi\)
0.972686 + 0.232126i \(0.0745680\pi\)
\(762\) 0 0
\(763\) −3.16718 + 9.74759i −0.114660 + 0.352886i
\(764\) −5.00000 3.63271i −0.180894 0.131427i
\(765\) 0 0
\(766\) 4.86475 14.9721i 0.175770 0.540966i
\(767\) −13.9894 43.0548i −0.505126 1.55462i
\(768\) 0 0
\(769\) 35.9098 1.29494 0.647471 0.762090i \(-0.275827\pi\)
0.647471 + 0.762090i \(0.275827\pi\)
\(770\) −3.02786 3.44095i −0.109117 0.124003i
\(771\) 0 0
\(772\) 1.38197 1.00406i 0.0497380 0.0361368i
\(773\) −3.37132 10.3759i −0.121258 0.373194i 0.871943 0.489608i \(-0.162860\pi\)
−0.993201 + 0.116414i \(0.962860\pi\)
\(774\) 0 0
\(775\) 5.85410 + 4.25325i 0.210286 + 0.152781i
\(776\) −1.61803 1.17557i −0.0580840 0.0422005i
\(777\) 0 0
\(778\) 1.85410 + 5.70634i 0.0664728 + 0.204582i
\(779\) 4.28115 3.11044i 0.153388 0.111443i
\(780\) 0 0
\(781\) −24.9098 + 10.7516i −0.891344 + 0.384724i
\(782\) 55.7771 1.99458
\(783\) 0 0
\(784\) −1.57295 4.84104i −0.0561768 0.172894i
\(785\) 0.663119 2.04087i 0.0236677 0.0728418i
\(786\) 0 0
\(787\) −5.09017 3.69822i −0.181445 0.131827i 0.493355 0.869828i \(-0.335770\pi\)
−0.674800 + 0.738000i \(0.735770\pi\)
\(788\) −4.51722 + 13.9026i −0.160919 + 0.495259i
\(789\) 0 0
\(790\) 2.85410 2.07363i 0.101544 0.0737763i
\(791\) −4.87539 −0.173349
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) −28.9164 + 21.0090i −1.02620 + 0.745582i
\(795\) 0 0
\(796\) 0.763932 2.35114i 0.0270769 0.0833340i
\(797\) 17.7254 + 12.8783i 0.627867 + 0.456172i 0.855661 0.517537i \(-0.173151\pi\)
−0.227794 + 0.973709i \(0.573151\pi\)
\(798\) 0 0
\(799\) 23.5967 72.6233i 0.834793 2.56923i
\(800\) −0.309017 0.951057i −0.0109254 0.0336249i
\(801\) 0 0
\(802\) 10.0902 0.356296
\(803\) 4.38197 + 4.97980i 0.154636 + 0.175733i
\(804\) 0 0
\(805\) −9.63525 + 7.00042i −0.339598 + 0.246732i
\(806\) −10.8541 33.4055i −0.382319 1.17666i
\(807\) 0 0
\(808\) −6.00000 4.35926i −0.211079 0.153358i
\(809\) 13.5451 + 9.84108i 0.476220 + 0.345994i 0.799860 0.600186i \(-0.204907\pi\)
−0.323641 + 0.946180i \(0.604907\pi\)
\(810\) 0 0
\(811\) 11.1008 + 34.1648i 0.389802 + 1.19969i 0.932936 + 0.360042i \(0.117238\pi\)
−0.543134 + 0.839646i \(0.682762\pi\)
\(812\) −8.09017 + 5.87785i −0.283909 + 0.206272i
\(813\) 0 0
\(814\) −10.1803 2.28563i −0.356821 0.0801112i
\(815\) 3.41641 0.119672
\(816\) 0 0
\(817\) −1.85410 5.70634i −0.0648668 0.199640i
\(818\) −6.97214 + 21.4580i −0.243775 + 0.750262i
\(819\) 0 0
\(820\) 0.881966 + 0.640786i 0.0307996 + 0.0223772i
\(821\) −13.9098 + 42.8101i −0.485456 + 1.49408i 0.345862 + 0.938285i \(0.387586\pi\)
−0.831319 + 0.555796i \(0.812414\pi\)
\(822\) 0 0
\(823\) 5.78115 4.20025i 0.201518 0.146412i −0.482450 0.875924i \(-0.660253\pi\)
0.683968 + 0.729512i \(0.260253\pi\)
\(824\) 4.85410 0.169101
\(825\) 0 0
\(826\) 12.8885 0.448450
\(827\) 2.70820 1.96763i 0.0941735 0.0684210i −0.539702 0.841856i \(-0.681463\pi\)
0.633876 + 0.773435i \(0.281463\pi\)
\(828\) 0 0
\(829\) −9.56231 + 29.4298i −0.332113 + 1.02214i 0.636014 + 0.771677i \(0.280582\pi\)
−0.968127 + 0.250460i \(0.919418\pi\)
\(830\) −5.23607 3.80423i −0.181747 0.132047i
\(831\) 0 0
\(832\) −1.50000 + 4.61653i −0.0520031 + 0.160049i
\(833\) 10.1803 + 31.3319i 0.352728 + 1.08558i
\(834\) 0 0
\(835\) −23.0344 −0.797140
\(836\) 8.20820 13.8496i 0.283887 0.478998i
\(837\) 0 0
\(838\) 3.07295 2.23263i 0.106153 0.0771249i
\(839\) 13.4377 + 41.3570i 0.463921 + 1.42780i 0.860335 + 0.509729i \(0.170254\pi\)
−0.396414 + 0.918072i \(0.629746\pi\)
\(840\) 0 0
\(841\) −18.8992 13.7311i −0.651696 0.473485i
\(842\) −32.2705 23.4459i −1.11212 0.807999i
\(843\) 0 0
\(844\) 4.47214 + 13.7638i 0.153937 + 0.473770i
\(845\) 8.54508 6.20837i 0.293960 0.213574i
\(846\) 0 0
\(847\) 14.9377 2.82041i 0.513265 0.0969106i
\(848\) 13.0902 0.449518
\(849\) 0 0
\(850\) 2.00000 + 6.15537i 0.0685994 + 0.211127i
\(851\) −8.37790 + 25.7845i −0.287191 + 0.883882i
\(852\) 0 0
\(853\) 25.3885 + 18.4459i 0.869287 + 0.631574i 0.930396 0.366557i \(-0.119464\pi\)
−0.0611084 + 0.998131i \(0.519464\pi\)
\(854\) −1.58359 + 4.87380i −0.0541894 + 0.166778i
\(855\) 0 0
\(856\) −1.23607 + 0.898056i −0.0422479 + 0.0306949i
\(857\) −37.5967 −1.28428 −0.642140 0.766587i \(-0.721953\pi\)
−0.642140 + 0.766587i \(0.721953\pi\)
\(858\) 0 0
\(859\) −12.5066 −0.426719 −0.213359 0.976974i \(-0.568441\pi\)
−0.213359 + 0.976974i \(0.568441\pi\)
\(860\) 1.00000 0.726543i 0.0340997 0.0247749i
\(861\) 0 0
\(862\) −10.7082 + 32.9565i −0.364723 + 1.12250i
\(863\) −28.6353 20.8047i −0.974755 0.708201i −0.0182250 0.999834i \(-0.505802\pi\)
−0.956530 + 0.291633i \(0.905802\pi\)
\(864\) 0 0
\(865\) −4.51722 + 13.9026i −0.153590 + 0.472702i
\(866\) −8.38197 25.7970i −0.284831 0.876619i
\(867\) 0 0
\(868\) 10.0000 0.339422
\(869\) 1.09017 + 11.6497i 0.0369815 + 0.395189i
\(870\) 0 0
\(871\) −61.6869 + 44.8182i −2.09018 + 1.51861i
\(872\) −2.29180 7.05342i −0.0776100 0.238859i
\(873\) 0 0
\(874\) −33.8435 24.5887i −1.14477 0.831726i
\(875\) −1.11803 0.812299i −0.0377964 0.0274607i
\(876\) 0 0
\(877\) 3.44427 + 10.6004i 0.116305 + 0.357949i 0.992217 0.124521i \(-0.0397395\pi\)
−0.875912 + 0.482471i \(0.839740\pi\)
\(878\) 16.4164 11.9272i 0.554027 0.402524i
\(879\) 0 0
\(880\) 3.23607 + 0.726543i 0.109088 + 0.0244917i
\(881\) −8.50658 −0.286594 −0.143297 0.989680i \(-0.545770\pi\)
−0.143297 + 0.989680i \(0.545770\pi\)
\(882\) 0 0
\(883\) 4.76393 + 14.6619i 0.160319 + 0.493411i 0.998661 0.0517335i \(-0.0164746\pi\)
−0.838342 + 0.545145i \(0.816475\pi\)
\(884\) 9.70820 29.8788i 0.326522 1.00493i
\(885\) 0 0
\(886\) −6.85410 4.97980i −0.230268 0.167300i
\(887\) 4.75329 14.6291i 0.159600 0.491198i −0.838998 0.544134i \(-0.816858\pi\)
0.998598 + 0.0529367i \(0.0168581\pi\)
\(888\) 0 0
\(889\) 11.8090 8.57975i 0.396062 0.287756i
\(890\) −11.5623 −0.387569
\(891\) 0 0
\(892\) −8.43769 −0.282515
\(893\) −46.3328 + 33.6628i −1.55047 + 1.12648i
\(894\) 0 0
\(895\) 3.42705 10.5474i 0.114554 0.352560i
\(896\) −1.11803 0.812299i −0.0373509 0.0271370i
\(897\) 0 0
\(898\) 11.7705 36.2259i 0.392787 1.20887i
\(899\) 16.1803 + 49.7980i 0.539645 + 1.66086i
\(900\) 0 0
\(901\) −84.7214 −2.82248
\(902\) −3.31966 + 1.43284i −0.110533 + 0.0477084i
\(903\) 0 0
\(904\) 2.85410 2.07363i 0.0949260 0.0689678i
\(905\) 0 0
\(906\) 0 0
\(907\) −47.1246 34.2380i −1.56475 1.13686i −0.931978 0.362515i \(-0.881918\pi\)
−0.632769 0.774341i \(-0.718082\pi\)
\(908\) 12.7082 + 9.23305i 0.421737 + 0.306410i
\(909\) 0 0
\(910\) 2.07295 + 6.37988i 0.0687176 + 0.211491i
\(911\) −33.1803 + 24.1069i −1.09931 + 0.798698i −0.980948 0.194272i \(-0.937766\pi\)
−0.118366 + 0.992970i \(0.537766\pi\)
\(912\) 0 0
\(913\) 19.7082 8.50651i 0.652246 0.281524i
\(914\) −34.8328 −1.15217
\(915\) 0 0
\(916\) 1.56231 + 4.80828i 0.0516200 + 0.158870i
\(917\) 0 0
\(918\) 0 0
\(919\) −7.00000 5.08580i −0.230909 0.167765i 0.466315 0.884619i \(-0.345581\pi\)
−0.697223 + 0.716854i \(0.745581\pi\)
\(920\) 2.66312 8.19624i 0.0878004 0.270222i
\(921\) 0 0
\(922\) 12.7082 9.23305i 0.418522 0.304074i
\(923\) 39.7082 1.30701
\(924\) 0 0
\(925\) −3.14590 −0.103436
\(926\) −3.45492 + 2.51014i −0.113536 + 0.0824884i
\(927\) 0 0
\(928\) 2.23607 6.88191i 0.0734025 0.225910i
\(929\) −10.0623 7.31069i −0.330134 0.239856i 0.410354 0.911926i \(-0.365405\pi\)
−0.740487 + 0.672070i \(0.765405\pi\)
\(930\) 0 0
\(931\) 7.63525 23.4989i 0.250235 0.770145i
\(932\) 1.00000 + 3.07768i 0.0327561 + 0.100813i
\(933\) 0 0
\(934\) −9.52786 −0.311761
\(935\) −20.9443 4.70228i −0.684951 0.153781i
\(936\) 0 0
\(937\) 12.0000 8.71851i 0.392023 0.284821i −0.374261 0.927323i \(-0.622104\pi\)
0.766284 + 0.642502i \(0.222104\pi\)
\(938\) −6.70820 20.6457i −0.219031 0.674107i
\(939\) 0 0
\(940\) −9.54508 6.93491i −0.311326 0.226192i
\(941\) −28.9443 21.0292i −0.943556 0.685534i 0.00571778 0.999984i \(-0.498180\pi\)
−0.949274 + 0.314450i \(0.898180\pi\)
\(942\) 0 0
\(943\) 2.90325 + 8.93529i 0.0945429 + 0.290973i
\(944\) −7.54508 + 5.48183i −0.245572 + 0.178418i
\(945\) 0 0
\(946\) 0.381966 + 4.08174i 0.0124188 + 0.132709i
\(947\) 26.9443 0.875571 0.437786 0.899079i \(-0.355763\pi\)
0.437786 + 0.899079i \(0.355763\pi\)
\(948\) 0 0
\(949\) −3.00000 9.23305i −0.0973841 0.299718i
\(950\) 1.50000 4.61653i 0.0486664 0.149780i
\(951\) 0 0
\(952\) 7.23607 + 5.25731i 0.234522 + 0.170390i
\(953\) −11.4377 + 35.2016i −0.370503 + 1.14029i 0.575959 + 0.817478i \(0.304629\pi\)
−0.946463 + 0.322813i \(0.895371\pi\)
\(954\) 0 0
\(955\) 5.00000 3.63271i 0.161796 0.117552i
\(956\) −12.1803 −0.393940
\(957\) 0 0
\(958\) −2.76393 −0.0892986
\(959\) 21.7082 15.7719i 0.700994 0.509302i
\(960\) 0 0
\(961\) 6.60081 20.3152i 0.212929 0.655329i
\(962\) 12.3541 + 8.97578i 0.398312 + 0.289391i
\(963\) 0 0
\(964\) 1.71885 5.29007i 0.0553603 0.170382i
\(965\) 0.527864 + 1.62460i 0.0169925 + 0.0522977i
\(966\) 0 0
\(967\) −57.9787 −1.86447 −0.932235 0.361854i \(-0.882144\pi\)
−0.932235 + 0.361854i \(0.882144\pi\)
\(968\) −7.54508 + 8.00448i −0.242508 + 0.257274i
\(969\) 0 0
\(970\) 1.61803 1.17557i 0.0519519 0.0377453i
\(971\) −1.24671 3.83698i −0.0400089 0.123135i 0.929057 0.369936i \(-0.120620\pi\)
−0.969066 + 0.246802i \(0.920620\pi\)
\(972\) 0 0
\(973\) −23.2533 16.8945i −0.745466 0.541613i
\(974\) −18.9443 13.7638i −0.607014 0.441021i
\(975\) 0 0
\(976\) −1.14590 3.52671i −0.0366793 0.112887i
\(977\) 0.854102 0.620541i 0.0273251 0.0198529i −0.574039 0.818828i \(-0.694624\pi\)
0.601364 + 0.798975i \(0.294624\pi\)
\(978\) 0 0
\(979\) 19.5517 32.9892i 0.624874 1.05434i
\(980\) 5.09017 0.162600
\(981\) 0 0
\(982\) −3.29837 10.1514i −0.105255 0.323943i
\(983\) −6.57295 + 20.2295i −0.209645 + 0.645219i 0.789846 + 0.613305i \(0.210160\pi\)
−0.999491 + 0.0319144i \(0.989840\pi\)
\(984\) 0 0
\(985\) −11.8262 8.59226i −0.376815 0.273772i
\(986\) −14.4721 + 44.5407i −0.460887 + 1.41846i
\(987\) 0 0
\(988\) −19.0623 + 13.8496i −0.606453 + 0.440614i
\(989\) 10.6525 0.338729
\(990\) 0 0
\(991\) −12.0000 −0.381193 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(992\) −5.85410 + 4.25325i −0.185868 + 0.135041i
\(993\) 0 0
\(994\) −3.49342 + 10.7516i −0.110805 + 0.341022i
\(995\) 2.00000 + 1.45309i 0.0634043 + 0.0460659i
\(996\) 0 0
\(997\) −6.79837 + 20.9232i −0.215307 + 0.662646i 0.783825 + 0.620982i \(0.213266\pi\)
−0.999132 + 0.0416640i \(0.986734\pi\)
\(998\) −3.84346 11.8290i −0.121663 0.374439i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.h.91.1 4
3.2 odd 2 330.2.m.a.91.1 4
11.4 even 5 inner 990.2.n.h.631.1 4
33.2 even 10 3630.2.a.bf.1.1 2
33.20 odd 10 3630.2.a.bl.1.2 2
33.26 odd 10 330.2.m.a.301.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.m.a.91.1 4 3.2 odd 2
330.2.m.a.301.1 yes 4 33.26 odd 10
990.2.n.h.91.1 4 1.1 even 1 trivial
990.2.n.h.631.1 4 11.4 even 5 inner
3630.2.a.bf.1.1 2 33.2 even 10
3630.2.a.bl.1.2 2 33.20 odd 10