Properties

Label 990.2.n.i.631.2
Level $990$
Weight $2$
Character 990.631
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(91,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.2769390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 5x^{5} + 21x^{4} + 75x^{3} - 198x^{2} - 87x + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 631.2
Root \(-1.07877 + 2.33544i\) of defining polynomial
Character \(\chi\) \(=\) 990.631
Dual form 990.2.n.i.91.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +(-0.809017 + 0.587785i) q^{5} +(1.57877 + 4.85894i) q^{7} +(0.309017 - 0.951057i) q^{8} +1.00000 q^{10} +(-1.45132 + 2.98223i) q^{11} +(-1.07877 - 0.783769i) q^{13} +(1.57877 - 4.85894i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(0.627445 - 0.455866i) q^{17} +(-0.0242693 + 0.0746932i) q^{19} +(-0.809017 - 0.587785i) q^{20} +(2.92705 - 1.55961i) q^{22} -6.64849 q^{23} +(0.309017 - 0.951057i) q^{25} +(0.412052 + 1.26816i) q^{26} +(-4.13326 + 3.00299i) q^{28} +(0.623850 + 1.92001i) q^{29} +(-6.86933 - 4.99086i) q^{31} +1.00000 q^{32} -0.775565 q^{34} +(-4.13326 - 3.00299i) q^{35} +(-1.21539 - 3.74060i) q^{37} +(0.0635378 - 0.0461629i) q^{38} +(0.309017 + 0.951057i) q^{40} +(3.67612 - 11.3139i) q^{41} -6.01163 q^{43} +(-3.28475 - 0.458729i) q^{44} +(5.37874 + 3.90788i) q^{46} +(-2.03009 + 6.24796i) q^{47} +(-15.4537 + 11.2278i) q^{49} +(-0.809017 + 0.587785i) q^{50} +(0.412052 - 1.26816i) q^{52} +(8.36933 + 6.08067i) q^{53} +(-0.578765 - 3.26574i) q^{55} +5.10899 q^{56} +(0.623850 - 1.92001i) q^{58} +(1.64590 + 5.06555i) q^{59} +(3.03046 - 2.20175i) q^{61} +(2.62385 + 8.07538i) q^{62} +(-0.809017 - 0.587785i) q^{64} +1.33343 q^{65} +0.588036 q^{67} +(0.627445 + 0.455866i) q^{68} +(1.57877 + 4.85894i) q^{70} +(-1.87292 + 1.36076i) q^{71} +(3.38197 + 10.4086i) q^{73} +(-1.21539 + 3.74060i) q^{74} -0.0785371 q^{76} +(-16.7818 - 2.34364i) q^{77} +(-9.97251 - 7.24545i) q^{79} +(0.309017 - 0.951057i) q^{80} +(-9.62422 + 6.99241i) q^{82} +(-6.47214 + 4.70228i) q^{83} +(-0.239663 + 0.737606i) q^{85} +(4.86351 + 3.53355i) q^{86} +(2.38778 + 2.30185i) q^{88} +9.67821 q^{89} +(2.10517 - 6.47904i) q^{91} +(-2.05450 - 6.32309i) q^{92} +(5.31483 - 3.86145i) q^{94} +(-0.0242693 - 0.0746932i) q^{95} +(10.8846 + 7.90809i) q^{97} +19.1018 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 2 q^{4} - 2 q^{5} + 3 q^{7} - 2 q^{8} + 8 q^{10} - 10 q^{11} + q^{13} + 3 q^{14} - 2 q^{16} - 3 q^{17} - 12 q^{19} - 2 q^{20} + 10 q^{22} - 2 q^{25} + q^{26} - 2 q^{28} - 27 q^{29} - 6 q^{31}+ \cdots + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) 1.57877 + 4.85894i 0.596717 + 1.83651i 0.545986 + 0.837795i \(0.316155\pi\)
0.0507316 + 0.998712i \(0.483845\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −1.45132 + 2.98223i −0.437590 + 0.899175i
\(12\) 0 0
\(13\) −1.07877 0.783769i −0.299196 0.217378i 0.428051 0.903755i \(-0.359200\pi\)
−0.727247 + 0.686376i \(0.759200\pi\)
\(14\) 1.57877 4.85894i 0.421943 1.29861i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 0.627445 0.455866i 0.152178 0.110564i −0.509091 0.860713i \(-0.670018\pi\)
0.661269 + 0.750149i \(0.270018\pi\)
\(18\) 0 0
\(19\) −0.0242693 + 0.0746932i −0.00556776 + 0.0171358i −0.953802 0.300437i \(-0.902868\pi\)
0.948234 + 0.317572i \(0.102868\pi\)
\(20\) −0.809017 0.587785i −0.180902 0.131433i
\(21\) 0 0
\(22\) 2.92705 1.55961i 0.624049 0.332509i
\(23\) −6.64849 −1.38631 −0.693153 0.720791i \(-0.743779\pi\)
−0.693153 + 0.720791i \(0.743779\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0.412052 + 1.26816i 0.0808100 + 0.248708i
\(27\) 0 0
\(28\) −4.13326 + 3.00299i −0.781113 + 0.567512i
\(29\) 0.623850 + 1.92001i 0.115846 + 0.356538i 0.992123 0.125271i \(-0.0399800\pi\)
−0.876276 + 0.481809i \(0.839980\pi\)
\(30\) 0 0
\(31\) −6.86933 4.99086i −1.23377 0.896385i −0.236601 0.971607i \(-0.576033\pi\)
−0.997167 + 0.0752219i \(0.976033\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.775565 −0.133008
\(35\) −4.13326 3.00299i −0.698649 0.507598i
\(36\) 0 0
\(37\) −1.21539 3.74060i −0.199809 0.614950i −0.999887 0.0150533i \(-0.995208\pi\)
0.800077 0.599897i \(-0.204792\pi\)
\(38\) 0.0635378 0.0461629i 0.0103072 0.00748862i
\(39\) 0 0
\(40\) 0.309017 + 0.951057i 0.0488599 + 0.150375i
\(41\) 3.67612 11.3139i 0.574114 1.76694i −0.0650614 0.997881i \(-0.520724\pi\)
0.639176 0.769061i \(-0.279276\pi\)
\(42\) 0 0
\(43\) −6.01163 −0.916765 −0.458383 0.888755i \(-0.651571\pi\)
−0.458383 + 0.888755i \(0.651571\pi\)
\(44\) −3.28475 0.458729i −0.495194 0.0691560i
\(45\) 0 0
\(46\) 5.37874 + 3.90788i 0.793052 + 0.576186i
\(47\) −2.03009 + 6.24796i −0.296118 + 0.911359i 0.686725 + 0.726917i \(0.259048\pi\)
−0.982843 + 0.184442i \(0.940952\pi\)
\(48\) 0 0
\(49\) −15.4537 + 11.2278i −2.20767 + 1.60397i
\(50\) −0.809017 + 0.587785i −0.114412 + 0.0831254i
\(51\) 0 0
\(52\) 0.412052 1.26816i 0.0571413 0.175863i
\(53\) 8.36933 + 6.08067i 1.14962 + 0.835245i 0.988430 0.151679i \(-0.0484681\pi\)
0.161186 + 0.986924i \(0.448468\pi\)
\(54\) 0 0
\(55\) −0.578765 3.26574i −0.0780407 0.440352i
\(56\) 5.10899 0.682718
\(57\) 0 0
\(58\) 0.623850 1.92001i 0.0819156 0.252110i
\(59\) 1.64590 + 5.06555i 0.214278 + 0.659479i 0.999204 + 0.0398899i \(0.0127007\pi\)
−0.784926 + 0.619589i \(0.787299\pi\)
\(60\) 0 0
\(61\) 3.03046 2.20175i 0.388010 0.281906i −0.376630 0.926364i \(-0.622917\pi\)
0.764640 + 0.644458i \(0.222917\pi\)
\(62\) 2.62385 + 8.07538i 0.333229 + 1.02557i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 1.33343 0.165391
\(66\) 0 0
\(67\) 0.588036 0.0718400 0.0359200 0.999355i \(-0.488564\pi\)
0.0359200 + 0.999355i \(0.488564\pi\)
\(68\) 0.627445 + 0.455866i 0.0760889 + 0.0552818i
\(69\) 0 0
\(70\) 1.57877 + 4.85894i 0.188699 + 0.580754i
\(71\) −1.87292 + 1.36076i −0.222275 + 0.161492i −0.693350 0.720601i \(-0.743866\pi\)
0.471075 + 0.882093i \(0.343866\pi\)
\(72\) 0 0
\(73\) 3.38197 + 10.4086i 0.395829 + 1.21824i 0.928314 + 0.371797i \(0.121258\pi\)
−0.532485 + 0.846440i \(0.678742\pi\)
\(74\) −1.21539 + 3.74060i −0.141287 + 0.434836i
\(75\) 0 0
\(76\) −0.0785371 −0.00900882
\(77\) −16.7818 2.34364i −1.91246 0.267083i
\(78\) 0 0
\(79\) −9.97251 7.24545i −1.12199 0.815177i −0.137484 0.990504i \(-0.543902\pi\)
−0.984510 + 0.175327i \(0.943902\pi\)
\(80\) 0.309017 0.951057i 0.0345492 0.106331i
\(81\) 0 0
\(82\) −9.62422 + 6.99241i −1.06282 + 0.772182i
\(83\) −6.47214 + 4.70228i −0.710409 + 0.516143i −0.883306 0.468798i \(-0.844687\pi\)
0.172896 + 0.984940i \(0.444687\pi\)
\(84\) 0 0
\(85\) −0.239663 + 0.737606i −0.0259951 + 0.0800046i
\(86\) 4.86351 + 3.53355i 0.524446 + 0.381032i
\(87\) 0 0
\(88\) 2.38778 + 2.30185i 0.254538 + 0.245378i
\(89\) 9.67821 1.02589 0.512944 0.858422i \(-0.328555\pi\)
0.512944 + 0.858422i \(0.328555\pi\)
\(90\) 0 0
\(91\) 2.10517 6.47904i 0.220682 0.679188i
\(92\) −2.05450 6.32309i −0.214196 0.659228i
\(93\) 0 0
\(94\) 5.31483 3.86145i 0.548183 0.398278i
\(95\) −0.0242693 0.0746932i −0.00248998 0.00766336i
\(96\) 0 0
\(97\) 10.8846 + 7.90809i 1.10516 + 0.802945i 0.981895 0.189429i \(-0.0606635\pi\)
0.123265 + 0.992374i \(0.460664\pi\)
\(98\) 19.1018 1.92957
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −8.60862 6.25453i −0.856590 0.622349i 0.0703651 0.997521i \(-0.477584\pi\)
−0.926955 + 0.375172i \(0.877584\pi\)
\(102\) 0 0
\(103\) 5.16326 + 15.8909i 0.508751 + 1.56577i 0.794372 + 0.607432i \(0.207800\pi\)
−0.285620 + 0.958343i \(0.592200\pi\)
\(104\) −1.07877 + 0.783769i −0.105782 + 0.0768549i
\(105\) 0 0
\(106\) −3.19680 9.83874i −0.310501 0.955623i
\(107\) −5.42360 + 16.6921i −0.524319 + 1.61369i 0.241340 + 0.970441i \(0.422413\pi\)
−0.765659 + 0.643247i \(0.777587\pi\)
\(108\) 0 0
\(109\) −8.94427 −0.856706 −0.428353 0.903612i \(-0.640906\pi\)
−0.428353 + 0.903612i \(0.640906\pi\)
\(110\) −1.45132 + 2.98223i −0.138378 + 0.284344i
\(111\) 0 0
\(112\) −4.13326 3.00299i −0.390557 0.283756i
\(113\) 1.76975 5.44673i 0.166484 0.512385i −0.832659 0.553787i \(-0.813182\pi\)
0.999143 + 0.0414017i \(0.0131823\pi\)
\(114\) 0 0
\(115\) 5.37874 3.90788i 0.501570 0.364412i
\(116\) −1.63326 + 1.18663i −0.151645 + 0.110176i
\(117\) 0 0
\(118\) 1.64590 5.06555i 0.151517 0.466322i
\(119\) 3.20561 + 2.32901i 0.293858 + 0.213500i
\(120\) 0 0
\(121\) −6.78734 8.65633i −0.617031 0.786939i
\(122\) −3.74585 −0.339133
\(123\) 0 0
\(124\) 2.62385 8.07538i 0.235629 0.725191i
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 5.63303 4.09264i 0.499851 0.363163i −0.309109 0.951027i \(-0.600031\pi\)
0.808960 + 0.587864i \(0.200031\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) −1.07877 0.783769i −0.0946140 0.0687411i
\(131\) 2.19916 0.192142 0.0960709 0.995374i \(-0.469372\pi\)
0.0960709 + 0.995374i \(0.469372\pi\)
\(132\) 0 0
\(133\) −0.401245 −0.0347924
\(134\) −0.475731 0.345639i −0.0410969 0.0298586i
\(135\) 0 0
\(136\) −0.239663 0.737606i −0.0205509 0.0632492i
\(137\) −1.76034 + 1.27896i −0.150396 + 0.109269i −0.660438 0.750880i \(-0.729630\pi\)
0.510043 + 0.860149i \(0.329630\pi\)
\(138\) 0 0
\(139\) 3.18517 + 9.80293i 0.270162 + 0.831474i 0.990459 + 0.137808i \(0.0440057\pi\)
−0.720297 + 0.693666i \(0.755994\pi\)
\(140\) 1.57877 4.85894i 0.133430 0.410655i
\(141\) 0 0
\(142\) 2.31506 0.194276
\(143\) 3.90301 2.07962i 0.326386 0.173907i
\(144\) 0 0
\(145\) −1.63326 1.18663i −0.135635 0.0985446i
\(146\) 3.38197 10.4086i 0.279893 0.861424i
\(147\) 0 0
\(148\) 3.18194 2.31182i 0.261554 0.190030i
\(149\) −12.3356 + 8.96237i −1.01058 + 0.734226i −0.964330 0.264704i \(-0.914726\pi\)
−0.0462460 + 0.998930i \(0.514726\pi\)
\(150\) 0 0
\(151\) 2.03000 6.24769i 0.165199 0.508430i −0.833852 0.551988i \(-0.813869\pi\)
0.999051 + 0.0435581i \(0.0138694\pi\)
\(152\) 0.0635378 + 0.0461629i 0.00515360 + 0.00374431i
\(153\) 0 0
\(154\) 12.1992 + 11.7601i 0.983037 + 0.947657i
\(155\) 8.49096 0.682010
\(156\) 0 0
\(157\) −2.87638 + 8.85258i −0.229560 + 0.706513i 0.768237 + 0.640166i \(0.221134\pi\)
−0.997797 + 0.0663469i \(0.978866\pi\)
\(158\) 3.80916 + 11.7234i 0.303040 + 0.932662i
\(159\) 0 0
\(160\) −0.809017 + 0.587785i −0.0639584 + 0.0464685i
\(161\) −10.4964 32.3046i −0.827233 2.54596i
\(162\) 0 0
\(163\) 15.1300 + 10.9926i 1.18508 + 0.861008i 0.992735 0.120320i \(-0.0383921\pi\)
0.192341 + 0.981328i \(0.438392\pi\)
\(164\) 11.8962 0.928936
\(165\) 0 0
\(166\) 8.00000 0.620920
\(167\) −1.92123 1.39586i −0.148670 0.108015i 0.510964 0.859602i \(-0.329289\pi\)
−0.659634 + 0.751587i \(0.729289\pi\)
\(168\) 0 0
\(169\) −3.46778 10.6727i −0.266752 0.820979i
\(170\) 0.627445 0.455866i 0.0481228 0.0349633i
\(171\) 0 0
\(172\) −1.85770 5.71740i −0.141648 0.435948i
\(173\) −0.900560 + 2.77164i −0.0684683 + 0.210724i −0.979436 0.201753i \(-0.935336\pi\)
0.910968 + 0.412477i \(0.135336\pi\)
\(174\) 0 0
\(175\) 5.10899 0.386204
\(176\) −0.578765 3.26574i −0.0436261 0.246164i
\(177\) 0 0
\(178\) −7.82983 5.68871i −0.586871 0.426387i
\(179\) −0.482779 + 1.48584i −0.0360846 + 0.111057i −0.967476 0.252961i \(-0.918595\pi\)
0.931392 + 0.364018i \(0.118595\pi\)
\(180\) 0 0
\(181\) −14.9443 + 10.8576i −1.11080 + 0.807043i −0.982789 0.184730i \(-0.940859\pi\)
−0.128010 + 0.991773i \(0.540859\pi\)
\(182\) −5.51140 + 4.00427i −0.408532 + 0.296816i
\(183\) 0 0
\(184\) −2.05450 + 6.32309i −0.151459 + 0.466144i
\(185\) 3.18194 + 2.31182i 0.233941 + 0.169968i
\(186\) 0 0
\(187\) 0.448870 + 2.53279i 0.0328246 + 0.185216i
\(188\) −6.56950 −0.479130
\(189\) 0 0
\(190\) −0.0242693 + 0.0746932i −0.00176068 + 0.00541881i
\(191\) −6.40523 19.7133i −0.463466 1.42640i −0.860901 0.508772i \(-0.830100\pi\)
0.397435 0.917630i \(-0.369900\pi\)
\(192\) 0 0
\(193\) −1.10899 + 0.805730i −0.0798270 + 0.0579977i −0.626983 0.779033i \(-0.715710\pi\)
0.547156 + 0.837031i \(0.315710\pi\)
\(194\) −4.15753 12.7956i −0.298493 0.918668i
\(195\) 0 0
\(196\) −15.4537 11.2278i −1.10383 0.801983i
\(197\) 5.01135 0.357044 0.178522 0.983936i \(-0.442868\pi\)
0.178522 + 0.983936i \(0.442868\pi\)
\(198\) 0 0
\(199\) 23.3086 1.65230 0.826152 0.563448i \(-0.190525\pi\)
0.826152 + 0.563448i \(0.190525\pi\)
\(200\) −0.809017 0.587785i −0.0572061 0.0415627i
\(201\) 0 0
\(202\) 3.28820 + 10.1200i 0.231357 + 0.712044i
\(203\) −8.34432 + 6.06250i −0.585657 + 0.425504i
\(204\) 0 0
\(205\) 3.67612 + 11.3139i 0.256752 + 0.790200i
\(206\) 5.16326 15.8909i 0.359741 1.10717i
\(207\) 0 0
\(208\) 1.33343 0.0924566
\(209\) −0.187529 0.180780i −0.0129717 0.0125048i
\(210\) 0 0
\(211\) 16.2484 + 11.8052i 1.11859 + 0.812702i 0.983995 0.178199i \(-0.0570269\pi\)
0.134594 + 0.990901i \(0.457027\pi\)
\(212\) −3.19680 + 9.83874i −0.219557 + 0.675727i
\(213\) 0 0
\(214\) 14.1992 10.3163i 0.970635 0.705207i
\(215\) 4.86351 3.53355i 0.331689 0.240986i
\(216\) 0 0
\(217\) 13.4052 41.2571i 0.910006 2.80071i
\(218\) 7.23607 + 5.25731i 0.490088 + 0.356070i
\(219\) 0 0
\(220\) 2.92705 1.55961i 0.197342 0.105149i
\(221\) −1.03416 −0.0695651
\(222\) 0 0
\(223\) 2.81483 8.66317i 0.188495 0.580129i −0.811496 0.584358i \(-0.801346\pi\)
0.999991 + 0.00422962i \(0.00134633\pi\)
\(224\) 1.57877 + 4.85894i 0.105486 + 0.324652i
\(225\) 0 0
\(226\) −4.63326 + 3.36626i −0.308200 + 0.223920i
\(227\) −6.39360 19.6775i −0.424358 1.30604i −0.903608 0.428361i \(-0.859091\pi\)
0.479250 0.877679i \(-0.340909\pi\)
\(228\) 0 0
\(229\) −8.88456 6.45501i −0.587108 0.426559i 0.254172 0.967159i \(-0.418197\pi\)
−0.841280 + 0.540600i \(0.818197\pi\)
\(230\) −6.64849 −0.438388
\(231\) 0 0
\(232\) 2.01882 0.132542
\(233\) −2.39719 1.74166i −0.157045 0.114100i 0.506487 0.862247i \(-0.330944\pi\)
−0.663533 + 0.748147i \(0.730944\pi\)
\(234\) 0 0
\(235\) −2.03009 6.24796i −0.132428 0.407572i
\(236\) −4.30902 + 3.13068i −0.280493 + 0.203790i
\(237\) 0 0
\(238\) −1.22444 3.76842i −0.0793683 0.244271i
\(239\) −2.64821 + 8.15034i −0.171298 + 0.527202i −0.999445 0.0333094i \(-0.989395\pi\)
0.828147 + 0.560511i \(0.189395\pi\)
\(240\) 0 0
\(241\) 7.97000 0.513393 0.256696 0.966492i \(-0.417366\pi\)
0.256696 + 0.966492i \(0.417366\pi\)
\(242\) 0.403010 + 10.9926i 0.0259065 + 0.706632i
\(243\) 0 0
\(244\) 3.03046 + 2.20175i 0.194005 + 0.140953i
\(245\) 5.90278 18.1669i 0.377115 1.16064i
\(246\) 0 0
\(247\) 0.0847231 0.0615549i 0.00539080 0.00391665i
\(248\) −6.86933 + 4.99086i −0.436203 + 0.316920i
\(249\) 0 0
\(250\) 0.309017 0.951057i 0.0195440 0.0601501i
\(251\) 16.3904 + 11.9083i 1.03455 + 0.751645i 0.969215 0.246218i \(-0.0791879\pi\)
0.0653367 + 0.997863i \(0.479188\pi\)
\(252\) 0 0
\(253\) 9.64909 19.8273i 0.606633 1.24653i
\(254\) −6.96281 −0.436886
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 6.16916 + 18.9867i 0.384822 + 1.18436i 0.936609 + 0.350375i \(0.113946\pi\)
−0.551788 + 0.833985i \(0.686054\pi\)
\(258\) 0 0
\(259\) 16.2565 11.8110i 1.01013 0.733903i
\(260\) 0.412052 + 1.26816i 0.0255544 + 0.0786482i
\(261\) 0 0
\(262\) −1.77916 1.29264i −0.109917 0.0798593i
\(263\) 0.696114 0.0429242 0.0214621 0.999770i \(-0.493168\pi\)
0.0214621 + 0.999770i \(0.493168\pi\)
\(264\) 0 0
\(265\) −10.3451 −0.635492
\(266\) 0.324614 + 0.235846i 0.0199034 + 0.0144606i
\(267\) 0 0
\(268\) 0.181713 + 0.559255i 0.0110999 + 0.0341619i
\(269\) 4.79079 3.48071i 0.292100 0.212223i −0.432078 0.901836i \(-0.642219\pi\)
0.724178 + 0.689613i \(0.242219\pi\)
\(270\) 0 0
\(271\) −4.29983 13.2335i −0.261196 0.803880i −0.992545 0.121876i \(-0.961109\pi\)
0.731349 0.682003i \(-0.238891\pi\)
\(272\) −0.239663 + 0.737606i −0.0145317 + 0.0447239i
\(273\) 0 0
\(274\) 2.17590 0.131451
\(275\) 2.38778 + 2.30185i 0.143989 + 0.138807i
\(276\) 0 0
\(277\) 8.17313 + 5.93813i 0.491076 + 0.356787i 0.805598 0.592463i \(-0.201844\pi\)
−0.314522 + 0.949250i \(0.601844\pi\)
\(278\) 3.18517 9.80293i 0.191034 0.587941i
\(279\) 0 0
\(280\) −4.13326 + 3.00299i −0.247010 + 0.179463i
\(281\) 23.3871 16.9918i 1.39516 1.01364i 0.399883 0.916566i \(-0.369051\pi\)
0.995277 0.0970773i \(-0.0309494\pi\)
\(282\) 0 0
\(283\) −4.05464 + 12.4789i −0.241023 + 0.741793i 0.755242 + 0.655446i \(0.227519\pi\)
−0.996265 + 0.0863469i \(0.972481\pi\)
\(284\) −1.87292 1.36076i −0.111138 0.0807462i
\(285\) 0 0
\(286\) −4.37997 0.611682i −0.258993 0.0361695i
\(287\) 60.7775 3.58759
\(288\) 0 0
\(289\) −5.06741 + 15.5959i −0.298083 + 0.917406i
\(290\) 0.623850 + 1.92001i 0.0366338 + 0.112747i
\(291\) 0 0
\(292\) −8.85410 + 6.43288i −0.518147 + 0.376456i
\(293\) −7.00236 21.5511i −0.409082 1.25903i −0.917438 0.397879i \(-0.869746\pi\)
0.508356 0.861147i \(-0.330254\pi\)
\(294\) 0 0
\(295\) −4.30902 3.13068i −0.250881 0.182275i
\(296\) −3.93310 −0.228607
\(297\) 0 0
\(298\) 15.2477 0.883276
\(299\) 7.17216 + 5.21088i 0.414777 + 0.301353i
\(300\) 0 0
\(301\) −9.49096 29.2102i −0.547050 1.68365i
\(302\) −5.31461 + 3.86129i −0.305821 + 0.222192i
\(303\) 0 0
\(304\) −0.0242693 0.0746932i −0.00139194 0.00428395i
\(305\) −1.15753 + 3.56251i −0.0662800 + 0.203989i
\(306\) 0 0
\(307\) −29.3158 −1.67314 −0.836571 0.547859i \(-0.815443\pi\)
−0.836571 + 0.547859i \(0.815443\pi\)
\(308\) −2.95691 16.6846i −0.168485 0.950694i
\(309\) 0 0
\(310\) −6.86933 4.99086i −0.390152 0.283462i
\(311\) −3.50950 + 10.8011i −0.199005 + 0.612476i 0.800901 + 0.598797i \(0.204354\pi\)
−0.999906 + 0.0136789i \(0.995646\pi\)
\(312\) 0 0
\(313\) 2.56995 1.86718i 0.145262 0.105539i −0.512781 0.858520i \(-0.671385\pi\)
0.658043 + 0.752980i \(0.271385\pi\)
\(314\) 7.53046 5.47120i 0.424968 0.308757i
\(315\) 0 0
\(316\) 3.80916 11.7234i 0.214282 0.659492i
\(317\) 3.82747 + 2.78082i 0.214972 + 0.156186i 0.690060 0.723752i \(-0.257584\pi\)
−0.475088 + 0.879938i \(0.657584\pi\)
\(318\) 0 0
\(319\) −6.63132 0.926093i −0.371283 0.0518512i
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −10.4964 + 32.3046i −0.584942 + 1.80027i
\(323\) 0.0188224 + 0.0579294i 0.00104731 + 0.00322328i
\(324\) 0 0
\(325\) −1.07877 + 0.783769i −0.0598391 + 0.0434757i
\(326\) −5.77916 17.7864i −0.320078 0.985099i
\(327\) 0 0
\(328\) −9.62422 6.99241i −0.531409 0.386091i
\(329\) −33.5635 −1.85042
\(330\) 0 0
\(331\) 30.0424 1.65128 0.825639 0.564199i \(-0.190815\pi\)
0.825639 + 0.564199i \(0.190815\pi\)
\(332\) −6.47214 4.70228i −0.355205 0.258071i
\(333\) 0 0
\(334\) 0.733846 + 2.25855i 0.0401543 + 0.123582i
\(335\) −0.475731 + 0.345639i −0.0259919 + 0.0188843i
\(336\) 0 0
\(337\) −7.83574 24.1159i −0.426840 1.31368i −0.901222 0.433359i \(-0.857328\pi\)
0.474382 0.880319i \(-0.342672\pi\)
\(338\) −3.46778 + 10.6727i −0.188622 + 0.580520i
\(339\) 0 0
\(340\) −0.775565 −0.0420609
\(341\) 24.8535 13.2426i 1.34589 0.717125i
\(342\) 0 0
\(343\) −50.0199 36.3416i −2.70082 1.96226i
\(344\) −1.85770 + 5.71740i −0.100160 + 0.308262i
\(345\) 0 0
\(346\) 2.35770 1.71297i 0.126751 0.0920897i
\(347\) −2.56995 + 1.86718i −0.137962 + 0.100235i −0.654626 0.755953i \(-0.727174\pi\)
0.516664 + 0.856189i \(0.327174\pi\)
\(348\) 0 0
\(349\) −2.15034 + 6.61807i −0.115105 + 0.354257i −0.991969 0.126482i \(-0.959632\pi\)
0.876864 + 0.480739i \(0.159632\pi\)
\(350\) −4.13326 3.00299i −0.220932 0.160517i
\(351\) 0 0
\(352\) −1.45132 + 2.98223i −0.0773556 + 0.158953i
\(353\) −8.01163 −0.426416 −0.213208 0.977007i \(-0.568391\pi\)
−0.213208 + 0.977007i \(0.568391\pi\)
\(354\) 0 0
\(355\) 0.715393 2.20175i 0.0379691 0.116857i
\(356\) 2.99073 + 9.20452i 0.158508 + 0.487839i
\(357\) 0 0
\(358\) 1.26393 0.918300i 0.0668009 0.0485337i
\(359\) 0.0557281 + 0.171513i 0.00294122 + 0.00905213i 0.952516 0.304487i \(-0.0984852\pi\)
−0.949575 + 0.313540i \(0.898485\pi\)
\(360\) 0 0
\(361\) 15.3663 + 11.1643i 0.808754 + 0.587594i
\(362\) 18.4721 0.970874
\(363\) 0 0
\(364\) 6.81247 0.357070
\(365\) −8.85410 6.43288i −0.463445 0.336712i
\(366\) 0 0
\(367\) 9.53950 + 29.3596i 0.497958 + 1.53256i 0.812296 + 0.583245i \(0.198217\pi\)
−0.314338 + 0.949311i \(0.601783\pi\)
\(368\) 5.37874 3.90788i 0.280386 0.203713i
\(369\) 0 0
\(370\) −1.21539 3.74060i −0.0631853 0.194464i
\(371\) −16.3324 + 50.2660i −0.847937 + 2.60968i
\(372\) 0 0
\(373\) 16.1018 0.833720 0.416860 0.908971i \(-0.363131\pi\)
0.416860 + 0.908971i \(0.363131\pi\)
\(374\) 1.12559 2.31291i 0.0582030 0.119598i
\(375\) 0 0
\(376\) 5.31483 + 3.86145i 0.274092 + 0.199139i
\(377\) 0.831859 2.56020i 0.0428429 0.131857i
\(378\) 0 0
\(379\) −26.3324 + 19.1316i −1.35261 + 0.982726i −0.353729 + 0.935348i \(0.615086\pi\)
−0.998877 + 0.0473775i \(0.984914\pi\)
\(380\) 0.0635378 0.0461629i 0.00325942 0.00236811i
\(381\) 0 0
\(382\) −6.40523 + 19.7133i −0.327720 + 1.00862i
\(383\) 1.70561 + 1.23920i 0.0871527 + 0.0633202i 0.630508 0.776182i \(-0.282846\pi\)
−0.543356 + 0.839503i \(0.682846\pi\)
\(384\) 0 0
\(385\) 14.9543 7.96802i 0.762141 0.406088i
\(386\) 1.37079 0.0697714
\(387\) 0 0
\(388\) −4.15753 + 12.7956i −0.211067 + 0.649596i
\(389\) 3.89460 + 11.9864i 0.197464 + 0.607732i 0.999939 + 0.0110463i \(0.00351620\pi\)
−0.802475 + 0.596686i \(0.796484\pi\)
\(390\) 0 0
\(391\) −4.17156 + 3.03082i −0.210965 + 0.153275i
\(392\) 5.90278 + 18.1669i 0.298135 + 0.917567i
\(393\) 0 0
\(394\) −4.05427 2.94560i −0.204251 0.148397i
\(395\) 12.3267 0.620223
\(396\) 0 0
\(397\) −30.6341 −1.53748 −0.768741 0.639560i \(-0.779116\pi\)
−0.768741 + 0.639560i \(0.779116\pi\)
\(398\) −18.8571 13.7005i −0.945219 0.686742i
\(399\) 0 0
\(400\) 0.309017 + 0.951057i 0.0154508 + 0.0475528i
\(401\) −16.1537 + 11.7364i −0.806678 + 0.586086i −0.912865 0.408260i \(-0.866136\pi\)
0.106188 + 0.994346i \(0.466136\pi\)
\(402\) 0 0
\(403\) 3.49871 + 10.7679i 0.174283 + 0.536389i
\(404\) 3.28820 10.1200i 0.163594 0.503491i
\(405\) 0 0
\(406\) 10.3141 0.511883
\(407\) 12.9192 + 1.80423i 0.640382 + 0.0894322i
\(408\) 0 0
\(409\) 5.77608 + 4.19656i 0.285609 + 0.207507i 0.721360 0.692560i \(-0.243517\pi\)
−0.435751 + 0.900067i \(0.643517\pi\)
\(410\) 3.67612 11.3139i 0.181551 0.558756i
\(411\) 0 0
\(412\) −13.5176 + 9.82110i −0.665964 + 0.483851i
\(413\) −22.0147 + 15.9946i −1.08327 + 0.787045i
\(414\) 0 0
\(415\) 2.47214 7.60845i 0.121352 0.373484i
\(416\) −1.07877 0.783769i −0.0528908 0.0384274i
\(417\) 0 0
\(418\) 0.0454545 + 0.256481i 0.00222325 + 0.0125449i
\(419\) 22.3691 1.09280 0.546400 0.837524i \(-0.315998\pi\)
0.546400 + 0.837524i \(0.315998\pi\)
\(420\) 0 0
\(421\) −1.87292 + 5.76427i −0.0912807 + 0.280933i −0.986267 0.165161i \(-0.947186\pi\)
0.894986 + 0.446095i \(0.147186\pi\)
\(422\) −6.20635 19.1012i −0.302120 0.929831i
\(423\) 0 0
\(424\) 8.36933 6.08067i 0.406451 0.295304i
\(425\) −0.239663 0.737606i −0.0116254 0.0357791i
\(426\) 0 0
\(427\) 15.4826 + 11.2487i 0.749254 + 0.544365i
\(428\) −17.5511 −0.848366
\(429\) 0 0
\(430\) −6.01163 −0.289907
\(431\) 30.0649 + 21.8434i 1.44818 + 1.05216i 0.986253 + 0.165240i \(0.0528399\pi\)
0.461922 + 0.886921i \(0.347160\pi\)
\(432\) 0 0
\(433\) 9.47259 + 29.1536i 0.455224 + 1.40103i 0.870872 + 0.491509i \(0.163555\pi\)
−0.415649 + 0.909525i \(0.636445\pi\)
\(434\) −35.0954 + 25.4983i −1.68463 + 1.22396i
\(435\) 0 0
\(436\) −2.76393 8.50651i −0.132368 0.407388i
\(437\) 0.161354 0.496597i 0.00771861 0.0237554i
\(438\) 0 0
\(439\) 7.06017 0.336964 0.168482 0.985705i \(-0.446114\pi\)
0.168482 + 0.985705i \(0.446114\pi\)
\(440\) −3.28475 0.458729i −0.156594 0.0218691i
\(441\) 0 0
\(442\) 0.836653 + 0.607864i 0.0397955 + 0.0289131i
\(443\) −4.50932 + 13.8783i −0.214244 + 0.659377i 0.784962 + 0.619544i \(0.212682\pi\)
−0.999206 + 0.0398326i \(0.987318\pi\)
\(444\) 0 0
\(445\) −7.82983 + 5.68871i −0.371170 + 0.269671i
\(446\) −7.36933 + 5.35413i −0.348948 + 0.253525i
\(447\) 0 0
\(448\) 1.57877 4.85894i 0.0745897 0.229563i
\(449\) 10.3301 + 7.50523i 0.487506 + 0.354194i 0.804224 0.594326i \(-0.202581\pi\)
−0.316719 + 0.948520i \(0.602581\pi\)
\(450\) 0 0
\(451\) 28.4055 + 27.3832i 1.33756 + 1.28942i
\(452\) 5.72703 0.269377
\(453\) 0 0
\(454\) −6.39360 + 19.6775i −0.300066 + 0.923510i
\(455\) 2.10517 + 6.47904i 0.0986919 + 0.303742i
\(456\) 0 0
\(457\) 14.0305 10.1937i 0.656317 0.476842i −0.209100 0.977894i \(-0.567053\pi\)
0.865417 + 0.501052i \(0.167053\pi\)
\(458\) 3.39360 + 10.4444i 0.158572 + 0.488036i
\(459\) 0 0
\(460\) 5.37874 + 3.90788i 0.250785 + 0.182206i
\(461\) 2.99355 0.139424 0.0697118 0.997567i \(-0.477792\pi\)
0.0697118 + 0.997567i \(0.477792\pi\)
\(462\) 0 0
\(463\) −16.2589 −0.755614 −0.377807 0.925884i \(-0.623322\pi\)
−0.377807 + 0.925884i \(0.623322\pi\)
\(464\) −1.63326 1.18663i −0.0758223 0.0550881i
\(465\) 0 0
\(466\) 0.915646 + 2.81807i 0.0424165 + 0.130545i
\(467\) −15.0240 + 10.9156i −0.695228 + 0.505113i −0.878375 0.477973i \(-0.841372\pi\)
0.183147 + 0.983086i \(0.441372\pi\)
\(468\) 0 0
\(469\) 0.928370 + 2.85723i 0.0428682 + 0.131935i
\(470\) −2.03009 + 6.24796i −0.0936409 + 0.288197i
\(471\) 0 0
\(472\) 5.32624 0.245160
\(473\) 8.72480 17.9280i 0.401167 0.824332i
\(474\) 0 0
\(475\) 0.0635378 + 0.0461629i 0.00291531 + 0.00211810i
\(476\) −1.22444 + 3.76842i −0.0561219 + 0.172725i
\(477\) 0 0
\(478\) 6.93310 5.03719i 0.317112 0.230396i
\(479\) −24.7198 + 17.9600i −1.12948 + 0.820614i −0.985619 0.168984i \(-0.945951\pi\)
−0.143859 + 0.989598i \(0.545951\pi\)
\(480\) 0 0
\(481\) −1.62064 + 4.98781i −0.0738948 + 0.227425i
\(482\) −6.44787 4.68465i −0.293692 0.213380i
\(483\) 0 0
\(484\) 6.13525 9.13010i 0.278875 0.415004i
\(485\) −13.4541 −0.610917
\(486\) 0 0
\(487\) −0.157074 + 0.483424i −0.00711771 + 0.0219061i −0.954552 0.298043i \(-0.903666\pi\)
0.947435 + 0.319950i \(0.103666\pi\)
\(488\) −1.15753 3.56251i −0.0523990 0.161267i
\(489\) 0 0
\(490\) −15.4537 + 11.2278i −0.698126 + 0.507218i
\(491\) −12.1735 37.4662i −0.549383 1.69083i −0.710333 0.703865i \(-0.751456\pi\)
0.160950 0.986963i \(-0.448544\pi\)
\(492\) 0 0
\(493\) 1.26670 + 0.920312i 0.0570493 + 0.0414488i
\(494\) −0.104723 −0.00471173
\(495\) 0 0
\(496\) 8.49096 0.381255
\(497\) −9.56876 6.95211i −0.429217 0.311845i
\(498\) 0 0
\(499\) 6.63175 + 20.4104i 0.296878 + 0.913696i 0.982584 + 0.185818i \(0.0594934\pi\)
−0.685706 + 0.727878i \(0.740507\pi\)
\(500\) −0.809017 + 0.587785i −0.0361803 + 0.0262866i
\(501\) 0 0
\(502\) −6.26057 19.2680i −0.279423 0.859975i
\(503\) 7.27779 22.3987i 0.324500 0.998710i −0.647165 0.762350i \(-0.724046\pi\)
0.971666 0.236360i \(-0.0759544\pi\)
\(504\) 0 0
\(505\) 10.6408 0.473511
\(506\) −19.4605 + 10.3690i −0.865123 + 0.460959i
\(507\) 0 0
\(508\) 5.63303 + 4.09264i 0.249925 + 0.181581i
\(509\) −11.9645 + 36.8228i −0.530316 + 1.63214i 0.223243 + 0.974763i \(0.428336\pi\)
−0.753558 + 0.657381i \(0.771664\pi\)
\(510\) 0 0
\(511\) −45.2355 + 32.8655i −2.00110 + 1.45389i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) 6.16916 18.9867i 0.272110 0.837469i
\(515\) −13.5176 9.82110i −0.595656 0.432770i
\(516\) 0 0
\(517\) −15.6865 15.1220i −0.689893 0.665063i
\(518\) −20.0942 −0.882887
\(519\) 0 0
\(520\) 0.412052 1.26816i 0.0180697 0.0556127i
\(521\) −0.784660 2.41494i −0.0343766 0.105800i 0.932396 0.361439i \(-0.117714\pi\)
−0.966772 + 0.255638i \(0.917714\pi\)
\(522\) 0 0
\(523\) −30.1927 + 21.9363i −1.32024 + 0.959207i −0.320306 + 0.947314i \(0.603786\pi\)
−0.999929 + 0.0118928i \(0.996214\pi\)
\(524\) 0.679579 + 2.09153i 0.0296875 + 0.0913688i
\(525\) 0 0
\(526\) −0.563168 0.409166i −0.0245553 0.0178405i
\(527\) −6.58529 −0.286860
\(528\) 0 0
\(529\) 21.2024 0.921844
\(530\) 8.36933 + 6.08067i 0.363540 + 0.264128i
\(531\) 0 0
\(532\) −0.123992 0.381607i −0.00537572 0.0165448i
\(533\) −12.8332 + 9.32386i −0.555868 + 0.403861i
\(534\) 0 0
\(535\) −5.42360 16.6921i −0.234483 0.721663i
\(536\) 0.181713 0.559255i 0.00784880 0.0241561i
\(537\) 0 0
\(538\) −5.92175 −0.255305
\(539\) −11.0555 62.3814i −0.476193 2.68696i
\(540\) 0 0
\(541\) 7.47140 + 5.42829i 0.321220 + 0.233380i 0.736696 0.676224i \(-0.236385\pi\)
−0.415476 + 0.909604i \(0.636385\pi\)
\(542\) −4.29983 + 13.2335i −0.184694 + 0.568429i
\(543\) 0 0
\(544\) 0.627445 0.455866i 0.0269015 0.0195451i
\(545\) 7.23607 5.25731i 0.309959 0.225198i
\(546\) 0 0
\(547\) −7.84155 + 24.1338i −0.335281 + 1.03189i 0.631303 + 0.775536i \(0.282520\pi\)
−0.966584 + 0.256351i \(0.917480\pi\)
\(548\) −1.76034 1.27896i −0.0751979 0.0546345i
\(549\) 0 0
\(550\) −0.578765 3.26574i −0.0246786 0.139251i
\(551\) −0.158552 −0.00675456
\(552\) 0 0
\(553\) 19.4610 59.8947i 0.827564 2.54698i
\(554\) −3.12186 9.60809i −0.132635 0.408209i
\(555\) 0 0
\(556\) −8.33887 + 6.05855i −0.353647 + 0.256940i
\(557\) 3.27888 + 10.0913i 0.138930 + 0.427584i 0.996181 0.0873160i \(-0.0278290\pi\)
−0.857250 + 0.514900i \(0.827829\pi\)
\(558\) 0 0
\(559\) 6.48514 + 4.71173i 0.274292 + 0.199285i
\(560\) 5.10899 0.215894
\(561\) 0 0
\(562\) −28.9081 −1.21941
\(563\) −3.75748 2.72997i −0.158359 0.115055i 0.505784 0.862660i \(-0.331203\pi\)
−0.664143 + 0.747606i \(0.731203\pi\)
\(564\) 0 0
\(565\) 1.76975 + 5.44673i 0.0744539 + 0.229145i
\(566\) 10.6152 7.71238i 0.446189 0.324175i
\(567\) 0 0
\(568\) 0.715393 + 2.20175i 0.0300172 + 0.0923836i
\(569\) 10.8497 33.3920i 0.454844 1.39987i −0.416473 0.909148i \(-0.636734\pi\)
0.871318 0.490719i \(-0.163266\pi\)
\(570\) 0 0
\(571\) 17.7758 0.743896 0.371948 0.928254i \(-0.378690\pi\)
0.371948 + 0.928254i \(0.378690\pi\)
\(572\) 3.18393 + 3.06934i 0.133127 + 0.128336i
\(573\) 0 0
\(574\) −49.1701 35.7241i −2.05232 1.49110i
\(575\) −2.05450 + 6.32309i −0.0856784 + 0.263691i
\(576\) 0 0
\(577\) −2.94029 + 2.13624i −0.122406 + 0.0889329i −0.647304 0.762232i \(-0.724103\pi\)
0.524898 + 0.851165i \(0.324103\pi\)
\(578\) 13.2667 9.63880i 0.551820 0.400921i
\(579\) 0 0
\(580\) 0.623850 1.92001i 0.0259040 0.0797243i
\(581\) −33.0661 24.0239i −1.37181 0.996680i
\(582\) 0 0
\(583\) −30.2805 + 16.1342i −1.25409 + 0.668211i
\(584\) 10.9443 0.452877
\(585\) 0 0
\(586\) −7.00236 + 21.5511i −0.289265 + 0.890266i
\(587\) −2.28461 7.03130i −0.0942958 0.290213i 0.892774 0.450505i \(-0.148756\pi\)
−0.987070 + 0.160293i \(0.948756\pi\)
\(588\) 0 0
\(589\) 0.539497 0.391967i 0.0222296 0.0161507i
\(590\) 1.64590 + 5.06555i 0.0677605 + 0.208546i
\(591\) 0 0
\(592\) 3.18194 + 2.31182i 0.130777 + 0.0950150i
\(593\) 35.9315 1.47553 0.737766 0.675057i \(-0.235881\pi\)
0.737766 + 0.675057i \(0.235881\pi\)
\(594\) 0 0
\(595\) −3.96236 −0.162441
\(596\) −12.3356 8.96237i −0.505288 0.367113i
\(597\) 0 0
\(598\) −2.73952 8.43138i −0.112027 0.344785i
\(599\) −16.6297 + 12.0822i −0.679470 + 0.493664i −0.873182 0.487395i \(-0.837947\pi\)
0.193712 + 0.981058i \(0.437947\pi\)
\(600\) 0 0
\(601\) −1.58259 4.87071i −0.0645551 0.198680i 0.913577 0.406667i \(-0.133309\pi\)
−0.978132 + 0.207986i \(0.933309\pi\)
\(602\) −9.49096 + 29.2102i −0.386823 + 1.19052i
\(603\) 0 0
\(604\) 6.56921 0.267297
\(605\) 10.5791 + 3.01362i 0.430103 + 0.122521i
\(606\) 0 0
\(607\) 30.2529 + 21.9800i 1.22793 + 0.892141i 0.996733 0.0807668i \(-0.0257369\pi\)
0.231194 + 0.972908i \(0.425737\pi\)
\(608\) −0.0242693 + 0.0746932i −0.000984249 + 0.00302921i
\(609\) 0 0
\(610\) 3.03046 2.20175i 0.122700 0.0891464i
\(611\) 7.08694 5.14897i 0.286707 0.208305i
\(612\) 0 0
\(613\) −2.59477 + 7.98588i −0.104802 + 0.322546i −0.989684 0.143268i \(-0.954239\pi\)
0.884882 + 0.465815i \(0.154239\pi\)
\(614\) 23.7170 + 17.2314i 0.957139 + 0.695403i
\(615\) 0 0
\(616\) −7.41478 + 15.2362i −0.298750 + 0.613883i
\(617\) 25.9029 1.04281 0.521406 0.853309i \(-0.325408\pi\)
0.521406 + 0.853309i \(0.325408\pi\)
\(618\) 0 0
\(619\) 7.76994 23.9134i 0.312300 0.961162i −0.664551 0.747243i \(-0.731377\pi\)
0.976851 0.213919i \(-0.0686228\pi\)
\(620\) 2.62385 + 8.07538i 0.105376 + 0.324315i
\(621\) 0 0
\(622\) 9.18799 6.67546i 0.368405 0.267662i
\(623\) 15.2796 + 47.0258i 0.612165 + 1.88405i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) −3.17664 −0.126964
\(627\) 0 0
\(628\) −9.30815 −0.371436
\(629\) −2.46780 1.79296i −0.0983977 0.0714901i
\(630\) 0 0
\(631\) −12.9922 39.9858i −0.517210 1.59181i −0.779224 0.626746i \(-0.784387\pi\)
0.262014 0.965064i \(-0.415613\pi\)
\(632\) −9.97251 + 7.24545i −0.396685 + 0.288209i
\(633\) 0 0
\(634\) −1.46196 4.49946i −0.0580620 0.178696i
\(635\) −2.15163 + 6.62203i −0.0853847 + 0.262787i
\(636\) 0 0
\(637\) 25.4709 1.00919
\(638\) 4.82051 + 4.64702i 0.190846 + 0.183977i
\(639\) 0 0
\(640\) −0.809017 0.587785i −0.0319792 0.0232343i
\(641\) 0.653762 2.01207i 0.0258220 0.0794720i −0.937315 0.348483i \(-0.886697\pi\)
0.963137 + 0.269011i \(0.0866968\pi\)
\(642\) 0 0
\(643\) 31.9422 23.2073i 1.25968 0.915208i 0.260934 0.965357i \(-0.415970\pi\)
0.998742 + 0.0501487i \(0.0159695\pi\)
\(644\) 27.4799 19.9653i 1.08286 0.786745i
\(645\) 0 0
\(646\) 0.0188224 0.0579294i 0.000740558 0.00227920i
\(647\) −13.0619 9.49005i −0.513518 0.373092i 0.300639 0.953738i \(-0.402800\pi\)
−0.814156 + 0.580646i \(0.802800\pi\)
\(648\) 0 0
\(649\) −17.4953 2.44330i −0.686752 0.0959080i
\(650\) 1.33343 0.0523013
\(651\) 0 0
\(652\) −5.77916 + 17.7864i −0.226329 + 0.696570i
\(653\) 0.399046 + 1.22814i 0.0156159 + 0.0480607i 0.958561 0.284888i \(-0.0919564\pi\)
−0.942945 + 0.332949i \(0.891956\pi\)
\(654\) 0 0
\(655\) −1.77916 + 1.29264i −0.0695175 + 0.0505074i
\(656\) 3.67612 + 11.3139i 0.143529 + 0.441736i
\(657\) 0 0
\(658\) 27.1534 + 19.7281i 1.05855 + 0.769083i
\(659\) 23.7015 0.923278 0.461639 0.887068i \(-0.347262\pi\)
0.461639 + 0.887068i \(0.347262\pi\)
\(660\) 0 0
\(661\) −17.0796 −0.664318 −0.332159 0.943223i \(-0.607777\pi\)
−0.332159 + 0.943223i \(0.607777\pi\)
\(662\) −24.3048 17.6585i −0.944632 0.686316i
\(663\) 0 0
\(664\) 2.47214 + 7.60845i 0.0959375 + 0.295265i
\(665\) 0.324614 0.235846i 0.0125880 0.00914572i
\(666\) 0 0
\(667\) −4.14766 12.7652i −0.160598 0.494270i
\(668\) 0.733846 2.25855i 0.0283934 0.0873858i
\(669\) 0 0
\(670\) 0.588036 0.0227178
\(671\) 2.16797 + 12.2330i 0.0836935 + 0.472248i
\(672\) 0 0
\(673\) 6.88530 + 5.00246i 0.265409 + 0.192831i 0.712528 0.701644i \(-0.247550\pi\)
−0.447119 + 0.894474i \(0.647550\pi\)
\(674\) −7.83574 + 24.1159i −0.301821 + 0.928910i
\(675\) 0 0
\(676\) 9.07877 6.59611i 0.349183 0.253697i
\(677\) 18.3748 13.3501i 0.706200 0.513084i −0.175746 0.984436i \(-0.556234\pi\)
0.881946 + 0.471351i \(0.156234\pi\)
\(678\) 0 0
\(679\) −21.2408 + 65.3724i −0.815147 + 2.50876i
\(680\) 0.627445 + 0.455866i 0.0240614 + 0.0174816i
\(681\) 0 0
\(682\) −27.8907 3.89505i −1.06799 0.149149i
\(683\) 11.0419 0.422507 0.211254 0.977431i \(-0.432245\pi\)
0.211254 + 0.977431i \(0.432245\pi\)
\(684\) 0 0
\(685\) 0.672389 2.06940i 0.0256907 0.0790677i
\(686\) 19.1059 + 58.8019i 0.729467 + 2.24507i
\(687\) 0 0
\(688\) 4.86351 3.53355i 0.185420 0.134715i
\(689\) −4.26270 13.1192i −0.162396 0.499803i
\(690\) 0 0
\(691\) −7.68513 5.58357i −0.292356 0.212409i 0.431933 0.901906i \(-0.357832\pi\)
−0.724289 + 0.689497i \(0.757832\pi\)
\(692\) −2.91427 −0.110784
\(693\) 0 0
\(694\) 3.17664 0.120583
\(695\) −8.33887 6.05855i −0.316312 0.229814i
\(696\) 0 0
\(697\) −2.85107 8.77470i −0.107992 0.332366i
\(698\) 5.62967 4.09019i 0.213086 0.154816i
\(699\) 0 0
\(700\) 1.57877 + 4.85894i 0.0596717 + 0.183651i
\(701\) −7.97028 + 24.5300i −0.301033 + 0.926486i 0.680094 + 0.733125i \(0.261939\pi\)
−0.981128 + 0.193361i \(0.938061\pi\)
\(702\) 0 0
\(703\) 0.308894 0.0116501
\(704\) 2.92705 1.55961i 0.110317 0.0587799i
\(705\) 0 0
\(706\) 6.48155 + 4.70912i 0.243936 + 0.177230i
\(707\) 16.7994 51.7032i 0.631806 1.94450i
\(708\) 0 0
\(709\) 11.1583 8.10696i 0.419058 0.304463i −0.358201 0.933645i \(-0.616610\pi\)
0.777259 + 0.629181i \(0.216610\pi\)
\(710\) −1.87292 + 1.36076i −0.0702896 + 0.0510684i
\(711\) 0 0
\(712\) 2.99073 9.20452i 0.112082 0.344954i
\(713\) 45.6707 + 33.1817i 1.71038 + 1.24266i
\(714\) 0 0
\(715\) −1.93523 + 3.97658i −0.0723735 + 0.148716i
\(716\) −1.56231 −0.0583861
\(717\) 0 0
\(718\) 0.0557281 0.171513i 0.00207975 0.00640082i
\(719\) 5.99601 + 18.4538i 0.223614 + 0.688212i 0.998429 + 0.0560248i \(0.0178426\pi\)
−0.774816 + 0.632187i \(0.782157\pi\)
\(720\) 0 0
\(721\) −69.0613 + 50.1759i −2.57198 + 1.86865i
\(722\) −5.86942 18.0642i −0.218437 0.672280i
\(723\) 0 0
\(724\) −14.9443 10.8576i −0.555399 0.403521i
\(725\) 2.01882 0.0749772
\(726\) 0 0
\(727\) −1.37752 −0.0510895 −0.0255447 0.999674i \(-0.508132\pi\)
−0.0255447 + 0.999674i \(0.508132\pi\)
\(728\) −5.51140 4.00427i −0.204266 0.148408i
\(729\) 0 0
\(730\) 3.38197 + 10.4086i 0.125172 + 0.385240i
\(731\) −3.77197 + 2.74050i −0.139511 + 0.101361i
\(732\) 0 0
\(733\) 6.76062 + 20.8070i 0.249709 + 0.768526i 0.994826 + 0.101592i \(0.0323936\pi\)
−0.745117 + 0.666934i \(0.767606\pi\)
\(734\) 9.53950 29.3596i 0.352109 1.08368i
\(735\) 0 0
\(736\) −6.64849 −0.245067
\(737\) −0.853428 + 1.75365i −0.0314364 + 0.0645967i
\(738\) 0 0
\(739\) −0.425058 0.308822i −0.0156360 0.0113602i 0.579940 0.814659i \(-0.303076\pi\)
−0.595576 + 0.803299i \(0.703076\pi\)
\(740\) −1.21539 + 3.74060i −0.0446788 + 0.137507i
\(741\) 0 0
\(742\) 42.7588 31.0661i 1.56973 1.14047i
\(743\) 38.7413 28.1472i 1.42128 1.03262i 0.429720 0.902962i \(-0.358612\pi\)
0.991559 0.129657i \(-0.0413876\pi\)
\(744\) 0 0
\(745\) 4.71180 14.5014i 0.172627 0.531291i
\(746\) −13.0266 9.46440i −0.476939 0.346516i
\(747\) 0 0
\(748\) −2.27012 + 1.20958i −0.0830037 + 0.0442265i
\(749\) −89.6686 −3.27642
\(750\) 0 0
\(751\) 11.1723 34.3848i 0.407683 1.25472i −0.510951 0.859610i \(-0.670707\pi\)
0.918634 0.395110i \(-0.129293\pi\)
\(752\) −2.03009 6.24796i −0.0740296 0.227840i
\(753\) 0 0
\(754\) −2.17784 + 1.58229i −0.0793121 + 0.0576236i
\(755\) 2.03000 + 6.24769i 0.0738792 + 0.227377i
\(756\) 0 0
\(757\) 35.2824 + 25.6341i 1.28236 + 0.931689i 0.999622 0.0275084i \(-0.00875730\pi\)
0.282738 + 0.959197i \(0.408757\pi\)
\(758\) 32.5487 1.18222
\(759\) 0 0
\(760\) −0.0785371 −0.00284884
\(761\) −0.891747 0.647892i −0.0323258 0.0234861i 0.571505 0.820599i \(-0.306360\pi\)
−0.603831 + 0.797112i \(0.706360\pi\)
\(762\) 0 0
\(763\) −14.1209 43.4597i −0.511211 1.57335i
\(764\) 16.7691 12.1835i 0.606685 0.440783i
\(765\) 0 0
\(766\) −0.651486 2.00507i −0.0235391 0.0724461i
\(767\) 2.19469 6.75455i 0.0792455 0.243893i
\(768\) 0 0
\(769\) −26.9983 −0.973583 −0.486791 0.873518i \(-0.661833\pi\)
−0.486791 + 0.873518i \(0.661833\pi\)
\(770\) −16.7818 2.34364i −0.604772 0.0844591i
\(771\) 0 0
\(772\) −1.10899 0.805730i −0.0399135 0.0289989i
\(773\) 7.26427 22.3571i 0.261278 0.804130i −0.731250 0.682109i \(-0.761063\pi\)
0.992528 0.122020i \(-0.0389373\pi\)
\(774\) 0 0
\(775\) −6.86933 + 4.99086i −0.246754 + 0.179277i
\(776\) 10.8846 7.90809i 0.390733 0.283884i
\(777\) 0 0
\(778\) 3.89460 11.9864i 0.139628 0.429732i
\(779\) 0.755858 + 0.549163i 0.0270814 + 0.0196758i
\(780\) 0 0
\(781\) −1.33988 7.56038i −0.0479446 0.270532i
\(782\) 5.15633 0.184390
\(783\) 0 0
\(784\) 5.90278 18.1669i 0.210814 0.648818i
\(785\) −2.87638 8.85258i −0.102662 0.315962i
\(786\) 0 0
\(787\) 26.1826 19.0227i 0.933308 0.678088i −0.0134929 0.999909i \(-0.504295\pi\)
0.946800 + 0.321821i \(0.104295\pi\)
\(788\) 1.54859 + 4.76608i 0.0551663 + 0.169784i
\(789\) 0 0
\(790\) −9.97251 7.24545i −0.354806 0.257782i
\(791\) 29.2593 1.04034
\(792\) 0 0
\(793\) −4.99482 −0.177371
\(794\) 24.7835 + 18.0063i 0.879534 + 0.639019i
\(795\) 0 0
\(796\) 7.20276 + 22.1678i 0.255295 + 0.785717i
\(797\) −32.6868 + 23.7483i −1.15782 + 0.841209i −0.989501 0.144523i \(-0.953835\pi\)
−0.168323 + 0.985732i \(0.553835\pi\)
\(798\) 0 0
\(799\) 1.57446 + 4.84570i 0.0557005 + 0.171429i
\(800\) 0.309017 0.951057i 0.0109254 0.0336249i
\(801\) 0 0
\(802\) 19.9671 0.705062
\(803\) −35.9492 5.02046i −1.26862 0.177168i
\(804\) 0 0
\(805\) 27.4799 + 19.9653i 0.968541 + 0.703686i
\(806\) 3.49871 10.7679i 0.123237 0.379284i
\(807\) 0 0
\(808\) −8.60862 + 6.25453i −0.302850 + 0.220034i
\(809\) 9.89956 7.19245i 0.348050 0.252873i −0.400001 0.916515i \(-0.630990\pi\)
0.748050 + 0.663642i \(0.230990\pi\)
\(810\) 0 0
\(811\) −4.68730 + 14.4260i −0.164593 + 0.506566i −0.999006 0.0445737i \(-0.985807\pi\)
0.834413 + 0.551140i \(0.185807\pi\)
\(812\) −8.34432 6.06250i −0.292828 0.212752i
\(813\) 0 0
\(814\) −9.39138 9.05338i −0.329168 0.317321i
\(815\) −18.7018 −0.655094
\(816\) 0 0
\(817\) 0.145898 0.449028i 0.00510433 0.0157095i
\(818\) −2.20626 6.79018i −0.0771402 0.237413i
\(819\) 0 0
\(820\) −9.62422 + 6.99241i −0.336092 + 0.244185i
\(821\) 4.47242 + 13.7647i 0.156088 + 0.480391i 0.998270 0.0588039i \(-0.0187287\pi\)
−0.842181 + 0.539195i \(0.818729\pi\)
\(822\) 0 0
\(823\) −2.86910 2.08452i −0.100011 0.0726619i 0.536656 0.843801i \(-0.319687\pi\)
−0.636667 + 0.771139i \(0.719687\pi\)
\(824\) 16.7087 0.582074
\(825\) 0 0
\(826\) 27.2117 0.946816
\(827\) −30.1130 21.8784i −1.04713 0.760785i −0.0754661 0.997148i \(-0.524044\pi\)
−0.971665 + 0.236363i \(0.924044\pi\)
\(828\) 0 0
\(829\) −12.6297 38.8701i −0.438646 1.35001i −0.889303 0.457318i \(-0.848810\pi\)
0.450657 0.892697i \(-0.351190\pi\)
\(830\) −6.47214 + 4.70228i −0.224651 + 0.163219i
\(831\) 0 0
\(832\) 0.412052 + 1.26816i 0.0142853 + 0.0439657i
\(833\) −4.57799 + 14.0896i −0.158618 + 0.488176i
\(834\) 0 0
\(835\) 2.37478 0.0821825
\(836\) 0.113982 0.234215i 0.00394216 0.00810050i
\(837\) 0 0
\(838\) −18.0970 13.1482i −0.625149 0.454197i
\(839\) 5.07209 15.6103i 0.175108 0.538927i −0.824530 0.565818i \(-0.808561\pi\)
0.999638 + 0.0268909i \(0.00856067\pi\)
\(840\) 0 0
\(841\) 20.1642 14.6502i 0.695318 0.505178i
\(842\) 4.90338 3.56251i 0.168982 0.122772i
\(843\) 0 0
\(844\) −6.20635 + 19.1012i −0.213631 + 0.657490i
\(845\) 9.07877 + 6.59611i 0.312319 + 0.226913i
\(846\) 0 0
\(847\) 31.3450 46.6456i 1.07703 1.60276i
\(848\) −10.3451 −0.355251
\(849\) 0 0
\(850\) −0.239663 + 0.737606i −0.00822036 + 0.0252997i
\(851\) 8.08053 + 24.8693i 0.276997 + 0.852509i
\(852\) 0 0
\(853\) −14.7144 + 10.6906i −0.503811 + 0.366040i −0.810471 0.585779i \(-0.800789\pi\)
0.306660 + 0.951819i \(0.400789\pi\)
\(854\) −5.91382 18.2009i −0.202367 0.622820i
\(855\) 0 0
\(856\) 14.1992 + 10.3163i 0.485317 + 0.352604i
\(857\) −48.5679 −1.65905 −0.829525 0.558470i \(-0.811389\pi\)
−0.829525 + 0.558470i \(0.811389\pi\)
\(858\) 0 0
\(859\) −29.1564 −0.994805 −0.497402 0.867520i \(-0.665713\pi\)
−0.497402 + 0.867520i \(0.665713\pi\)
\(860\) 4.86351 + 3.53355i 0.165844 + 0.120493i
\(861\) 0 0
\(862\) −11.4838 35.3434i −0.391139 1.20380i
\(863\) −24.0405 + 17.4664i −0.818348 + 0.594564i −0.916239 0.400633i \(-0.868790\pi\)
0.0978910 + 0.995197i \(0.468790\pi\)
\(864\) 0 0
\(865\) −0.900560 2.77164i −0.0306200 0.0942385i
\(866\) 9.47259 29.1536i 0.321892 0.990681i
\(867\) 0 0
\(868\) 43.3802 1.47242
\(869\) 36.0809 19.2248i 1.22396 0.652156i
\(870\) 0 0
\(871\) −0.634352 0.460884i −0.0214942 0.0156165i
\(872\) −2.76393 + 8.50651i −0.0935985 + 0.288067i
\(873\) 0 0
\(874\) −0.422430 + 0.306914i −0.0142889 + 0.0103815i
\(875\) −4.13326 + 3.00299i −0.139730 + 0.101520i
\(876\) 0 0
\(877\) 8.25674 25.4116i 0.278810 0.858090i −0.709376 0.704831i \(-0.751023\pi\)
0.988186 0.153259i \(-0.0489770\pi\)
\(878\) −5.71180 4.14986i −0.192764 0.140051i
\(879\) 0 0
\(880\) 2.38778 + 2.30185i 0.0804921 + 0.0775952i
\(881\) −2.72012 −0.0916431 −0.0458216 0.998950i \(-0.514591\pi\)
−0.0458216 + 0.998950i \(0.514591\pi\)
\(882\) 0 0
\(883\) 10.7306 33.0255i 0.361114 1.11140i −0.591265 0.806478i \(-0.701371\pi\)
0.952379 0.304917i \(-0.0986289\pi\)
\(884\) −0.319573 0.983544i −0.0107484 0.0330802i
\(885\) 0 0
\(886\) 11.8056 8.57724i 0.396616 0.288158i
\(887\) 11.5157 + 35.4418i 0.386661 + 1.19002i 0.935268 + 0.353939i \(0.115158\pi\)
−0.548608 + 0.836080i \(0.684842\pi\)
\(888\) 0 0
\(889\) 28.7791 + 20.9093i 0.965221 + 0.701274i
\(890\) 9.67821 0.324414
\(891\) 0 0
\(892\) 9.10899 0.304992
\(893\) −0.417411 0.303267i −0.0139681 0.0101484i
\(894\) 0 0
\(895\) −0.482779 1.48584i −0.0161375 0.0496662i
\(896\) −4.13326 + 3.00299i −0.138083 + 0.100323i
\(897\) 0 0
\(898\) −3.94573 12.1437i −0.131671 0.405241i
\(899\) 5.29709 16.3028i 0.176668 0.543728i
\(900\) 0 0
\(901\) 8.02327 0.267294
\(902\) −6.88510 38.8498i −0.229249 1.29356i
\(903\) 0 0
\(904\) −4.63326 3.36626i −0.154100 0.111960i
\(905\) 5.70820 17.5680i 0.189747 0.583982i
\(906\) 0 0
\(907\) 32.1937 23.3901i 1.06898 0.776656i 0.0932477 0.995643i \(-0.470275\pi\)
0.975728 + 0.218987i \(0.0702752\pi\)
\(908\) 16.7387 12.1613i 0.555492 0.403589i
\(909\) 0 0
\(910\) 2.10517 6.47904i 0.0697857 0.214778i
\(911\) −10.3743 7.53738i −0.343717 0.249725i 0.402512 0.915415i \(-0.368137\pi\)
−0.746228 + 0.665690i \(0.768137\pi\)
\(912\) 0 0
\(913\) −4.63012 26.1259i −0.153235 0.864641i
\(914\) −17.3426 −0.573642
\(915\) 0 0
\(916\) 3.39360 10.4444i 0.112128 0.345093i
\(917\) 3.47196 + 10.6856i 0.114654 + 0.352870i
\(918\) 0 0
\(919\) 30.0258 21.8150i 0.990459 0.719610i 0.0304373 0.999537i \(-0.490310\pi\)
0.960022 + 0.279926i \(0.0903100\pi\)
\(920\) −2.05450 6.32309i −0.0677347 0.208466i
\(921\) 0 0
\(922\) −2.42183 1.75956i −0.0797588 0.0579482i
\(923\) 3.08697 0.101609
\(924\) 0 0
\(925\) −3.93310 −0.129319
\(926\) 13.1537 + 9.55673i 0.432258 + 0.314054i
\(927\) 0 0
\(928\) 0.623850 + 1.92001i 0.0204789 + 0.0630276i
\(929\) 8.06590 5.86022i 0.264634 0.192268i −0.447554 0.894257i \(-0.647705\pi\)
0.712187 + 0.701989i \(0.247705\pi\)
\(930\) 0 0
\(931\) −0.463587 1.42677i −0.0151935 0.0467606i
\(932\) 0.915646 2.81807i 0.0299930 0.0923090i
\(933\) 0 0
\(934\) 18.5707 0.607652
\(935\) −1.85188 1.78523i −0.0605630 0.0583833i
\(936\) 0 0
\(937\) −9.68938 7.03975i −0.316538 0.229979i 0.418159 0.908374i \(-0.362676\pi\)
−0.734697 + 0.678395i \(0.762676\pi\)
\(938\) 0.928370 2.85723i 0.0303124 0.0932919i
\(939\) 0 0
\(940\) 5.31483 3.86145i 0.173351 0.125947i
\(941\) 4.45765 3.23867i 0.145315 0.105578i −0.512752 0.858537i \(-0.671374\pi\)
0.658068 + 0.752959i \(0.271374\pi\)
\(942\) 0 0
\(943\) −24.4407 + 75.2207i −0.795898 + 2.44952i
\(944\) −4.30902 3.13068i −0.140247 0.101895i
\(945\) 0 0
\(946\) −17.5964 + 9.37578i −0.572107 + 0.304833i
\(947\) 27.3946 0.890206 0.445103 0.895479i \(-0.353167\pi\)
0.445103 + 0.895479i \(0.353167\pi\)
\(948\) 0 0
\(949\) 4.50961 13.8791i 0.146388 0.450536i
\(950\) −0.0242693 0.0746932i −0.000787400 0.00242337i
\(951\) 0 0
\(952\) 3.20561 2.32901i 0.103895 0.0754838i
\(953\) −2.46900 7.59879i −0.0799787 0.246149i 0.903070 0.429493i \(-0.141308\pi\)
−0.983049 + 0.183344i \(0.941308\pi\)
\(954\) 0 0
\(955\) 16.7691 + 12.1835i 0.542636 + 0.394248i
\(956\) −8.56978 −0.277166
\(957\) 0 0
\(958\) 30.5554 0.987200
\(959\) −8.99355 6.53420i −0.290417 0.211000i
\(960\) 0 0
\(961\) 12.6995 + 39.0850i 0.409661 + 1.26081i
\(962\) 4.24289 3.08264i 0.136796 0.0993883i
\(963\) 0 0
\(964\) 2.46287 + 7.57992i 0.0793236 + 0.244133i
\(965\) 0.423597 1.30370i 0.0136361 0.0419675i
\(966\) 0 0
\(967\) −19.0966 −0.614106 −0.307053 0.951692i \(-0.599343\pi\)
−0.307053 + 0.951692i \(0.599343\pi\)
\(968\) −10.3301 + 3.78019i −0.332021 + 0.121500i
\(969\) 0 0
\(970\) 10.8846 + 7.90809i 0.349482 + 0.253914i
\(971\) −0.0462836 + 0.142446i −0.00148531 + 0.00457131i −0.951796 0.306730i \(-0.900765\pi\)
0.950311 + 0.311302i \(0.100765\pi\)
\(972\) 0 0
\(973\) −42.6032 + 30.9531i −1.36580 + 0.992310i
\(974\) 0.411225 0.298773i 0.0131765 0.00957330i
\(975\) 0 0
\(976\) −1.15753 + 3.56251i −0.0370517 + 0.114033i
\(977\) −15.4833 11.2493i −0.495355 0.359897i 0.311885 0.950120i \(-0.399040\pi\)
−0.807240 + 0.590223i \(0.799040\pi\)
\(978\) 0 0
\(979\) −14.0462 + 28.8626i −0.448918 + 0.922452i
\(980\) 19.1018 0.610185
\(981\) 0 0
\(982\) −12.1735 + 37.4662i −0.388473 + 1.19560i
\(983\) −2.65314 8.16553i −0.0846221 0.260440i 0.899788 0.436327i \(-0.143721\pi\)
−0.984410 + 0.175887i \(0.943721\pi\)
\(984\) 0 0
\(985\) −4.05427 + 2.94560i −0.129180 + 0.0938546i
\(986\) −0.483837 1.48910i −0.0154085 0.0474225i
\(987\) 0 0
\(988\) 0.0847231 + 0.0615549i 0.00269540 + 0.00195832i
\(989\) 39.9683 1.27092
\(990\) 0 0
\(991\) −11.3086 −0.359230 −0.179615 0.983737i \(-0.557485\pi\)
−0.179615 + 0.983737i \(0.557485\pi\)
\(992\) −6.86933 4.99086i −0.218101 0.158460i
\(993\) 0 0
\(994\) 3.65494 + 11.2487i 0.115928 + 0.356789i
\(995\) −18.8571 + 13.7005i −0.597809 + 0.434334i
\(996\) 0 0
\(997\) −11.4436 35.2196i −0.362421 1.11542i −0.951580 0.307400i \(-0.900541\pi\)
0.589159 0.808017i \(-0.299459\pi\)
\(998\) 6.63175 20.4104i 0.209924 0.646081i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.n.i.631.2 8
3.2 odd 2 330.2.m.f.301.2 yes 8
11.3 even 5 inner 990.2.n.i.91.2 8
33.5 odd 10 3630.2.a.bq.1.4 4
33.14 odd 10 330.2.m.f.91.2 8
33.17 even 10 3630.2.a.bs.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.m.f.91.2 8 33.14 odd 10
330.2.m.f.301.2 yes 8 3.2 odd 2
990.2.n.i.91.2 8 11.3 even 5 inner
990.2.n.i.631.2 8 1.1 even 1 trivial
3630.2.a.bq.1.4 4 33.5 odd 10
3630.2.a.bs.1.1 4 33.17 even 10