Properties

Label 990.4.c.i.199.8
Level $990$
Weight $4$
Character 990.199
Analytic conductor $58.412$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,4,Mod(199,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 990.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.4118909057\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.8
Root \(-4.82127i\) of defining polynomial
Character \(\chi\) \(=\) 990.199
Dual form 990.4.c.i.199.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(8.37442 + 7.40737i) q^{5} -13.6360i q^{7} -8.00000i q^{8} +(-14.8147 + 16.7488i) q^{10} +11.0000 q^{11} -66.9953i q^{13} +27.2720 q^{14} +16.0000 q^{16} +136.870i q^{17} -126.061 q^{19} +(-33.4977 - 29.6295i) q^{20} +22.0000i q^{22} -62.5641i q^{23} +(15.2617 + 124.065i) q^{25} +133.991 q^{26} +54.5440i q^{28} +144.857 q^{29} +229.288 q^{31} +32.0000i q^{32} -273.740 q^{34} +(101.007 - 114.194i) q^{35} -6.56930i q^{37} -252.123i q^{38} +(59.2590 - 66.9953i) q^{40} +276.684 q^{41} -233.339i q^{43} -44.0000 q^{44} +125.128 q^{46} -381.735i q^{47} +157.059 q^{49} +(-248.130 + 30.5234i) q^{50} +267.981i q^{52} +182.225i q^{53} +(92.1186 + 81.4811i) q^{55} -109.088 q^{56} +289.714i q^{58} +111.466 q^{59} +116.977 q^{61} +458.575i q^{62} -64.0000 q^{64} +(496.259 - 561.047i) q^{65} -480.882i q^{67} -547.480i q^{68} +(228.387 + 202.014i) q^{70} +602.696 q^{71} +622.178i q^{73} +13.1386 q^{74} +504.245 q^{76} -149.996i q^{77} +768.900 q^{79} +(133.991 + 118.518i) q^{80} +553.369i q^{82} +953.137i q^{83} +(-1013.85 + 1146.21i) q^{85} +466.678 q^{86} -88.0000i q^{88} -757.114 q^{89} -913.549 q^{91} +250.256i q^{92} +763.469 q^{94} +(-1055.69 - 933.783i) q^{95} -1118.29i q^{97} +314.118i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} - 16 q^{5} - 28 q^{10} + 88 q^{11} - 44 q^{14} + 128 q^{16} - 302 q^{19} + 64 q^{20} - 162 q^{25} - 256 q^{26} + 58 q^{29} + 1022 q^{31} - 660 q^{34} + 1058 q^{35} + 112 q^{40} - 452 q^{41}+ \cdots - 1268 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 8.37442 + 7.40737i 0.749031 + 0.662535i
\(6\) 0 0
\(7\) 13.6360i 0.736275i −0.929771 0.368138i \(-0.879995\pi\)
0.929771 0.368138i \(-0.120005\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) −14.8147 + 16.7488i −0.468483 + 0.529645i
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 66.9953i 1.42932i −0.699472 0.714660i \(-0.746581\pi\)
0.699472 0.714660i \(-0.253419\pi\)
\(14\) 27.2720 0.520625
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 136.870i 1.95270i 0.216201 + 0.976349i \(0.430633\pi\)
−0.216201 + 0.976349i \(0.569367\pi\)
\(18\) 0 0
\(19\) −126.061 −1.52213 −0.761064 0.648676i \(-0.775323\pi\)
−0.761064 + 0.648676i \(0.775323\pi\)
\(20\) −33.4977 29.6295i −0.374515 0.331268i
\(21\) 0 0
\(22\) 22.0000i 0.213201i
\(23\) 62.5641i 0.567196i −0.958943 0.283598i \(-0.908472\pi\)
0.958943 0.283598i \(-0.0915281\pi\)
\(24\) 0 0
\(25\) 15.2617 + 124.065i 0.122094 + 0.992519i
\(26\) 133.991 1.01068
\(27\) 0 0
\(28\) 54.5440i 0.368138i
\(29\) 144.857 0.927562 0.463781 0.885950i \(-0.346493\pi\)
0.463781 + 0.885950i \(0.346493\pi\)
\(30\) 0 0
\(31\) 229.288 1.32843 0.664214 0.747543i \(-0.268766\pi\)
0.664214 + 0.747543i \(0.268766\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −273.740 −1.38077
\(35\) 101.007 114.194i 0.487809 0.551493i
\(36\) 0 0
\(37\) 6.56930i 0.0291888i −0.999893 0.0145944i \(-0.995354\pi\)
0.999893 0.0145944i \(-0.00464571\pi\)
\(38\) 252.123i 1.07631i
\(39\) 0 0
\(40\) 59.2590 66.9953i 0.234242 0.264822i
\(41\) 276.684 1.05392 0.526961 0.849889i \(-0.323331\pi\)
0.526961 + 0.849889i \(0.323331\pi\)
\(42\) 0 0
\(43\) 233.339i 0.827531i −0.910384 0.413765i \(-0.864213\pi\)
0.910384 0.413765i \(-0.135787\pi\)
\(44\) −44.0000 −0.150756
\(45\) 0 0
\(46\) 125.128 0.401068
\(47\) 381.735i 1.18472i −0.805674 0.592359i \(-0.798197\pi\)
0.805674 0.592359i \(-0.201803\pi\)
\(48\) 0 0
\(49\) 157.059 0.457898
\(50\) −248.130 + 30.5234i −0.701817 + 0.0863332i
\(51\) 0 0
\(52\) 267.981i 0.714660i
\(53\) 182.225i 0.472275i 0.971720 + 0.236137i \(0.0758815\pi\)
−0.971720 + 0.236137i \(0.924118\pi\)
\(54\) 0 0
\(55\) 92.1186 + 81.4811i 0.225841 + 0.199762i
\(56\) −109.088 −0.260313
\(57\) 0 0
\(58\) 289.714i 0.655885i
\(59\) 111.466 0.245961 0.122980 0.992409i \(-0.460755\pi\)
0.122980 + 0.992409i \(0.460755\pi\)
\(60\) 0 0
\(61\) 116.977 0.245530 0.122765 0.992436i \(-0.460824\pi\)
0.122765 + 0.992436i \(0.460824\pi\)
\(62\) 458.575i 0.939340i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 496.259 561.047i 0.946975 1.07060i
\(66\) 0 0
\(67\) 480.882i 0.876853i −0.898767 0.438426i \(-0.855536\pi\)
0.898767 0.438426i \(-0.144464\pi\)
\(68\) 547.480i 0.976349i
\(69\) 0 0
\(70\) 228.387 + 202.014i 0.389964 + 0.344933i
\(71\) 602.696 1.00742 0.503710 0.863873i \(-0.331968\pi\)
0.503710 + 0.863873i \(0.331968\pi\)
\(72\) 0 0
\(73\) 622.178i 0.997540i 0.866734 + 0.498770i \(0.166215\pi\)
−0.866734 + 0.498770i \(0.833785\pi\)
\(74\) 13.1386 0.0206396
\(75\) 0 0
\(76\) 504.245 0.761064
\(77\) 149.996i 0.221995i
\(78\) 0 0
\(79\) 768.900 1.09504 0.547519 0.836793i \(-0.315572\pi\)
0.547519 + 0.836793i \(0.315572\pi\)
\(80\) 133.991 + 118.518i 0.187258 + 0.165634i
\(81\) 0 0
\(82\) 553.369i 0.745236i
\(83\) 953.137i 1.26049i 0.776398 + 0.630243i \(0.217045\pi\)
−0.776398 + 0.630243i \(0.782955\pi\)
\(84\) 0 0
\(85\) −1013.85 + 1146.21i −1.29373 + 1.46263i
\(86\) 466.678 0.585153
\(87\) 0 0
\(88\) 88.0000i 0.106600i
\(89\) −757.114 −0.901730 −0.450865 0.892592i \(-0.648884\pi\)
−0.450865 + 0.892592i \(0.648884\pi\)
\(90\) 0 0
\(91\) −913.549 −1.05237
\(92\) 250.256i 0.283598i
\(93\) 0 0
\(94\) 763.469 0.837722
\(95\) −1055.69 933.783i −1.14012 1.00846i
\(96\) 0 0
\(97\) 1118.29i 1.17057i −0.810827 0.585285i \(-0.800982\pi\)
0.810827 0.585285i \(-0.199018\pi\)
\(98\) 314.118i 0.323783i
\(99\) 0 0
\(100\) −61.0468 496.259i −0.0610468 0.496259i
\(101\) 1053.05 1.03745 0.518723 0.854942i \(-0.326408\pi\)
0.518723 + 0.854942i \(0.326408\pi\)
\(102\) 0 0
\(103\) 728.192i 0.696610i −0.937381 0.348305i \(-0.886757\pi\)
0.937381 0.348305i \(-0.113243\pi\)
\(104\) −535.963 −0.505341
\(105\) 0 0
\(106\) −364.450 −0.333949
\(107\) 988.919i 0.893480i 0.894664 + 0.446740i \(0.147415\pi\)
−0.894664 + 0.446740i \(0.852585\pi\)
\(108\) 0 0
\(109\) 1736.51 1.52594 0.762970 0.646434i \(-0.223740\pi\)
0.762970 + 0.646434i \(0.223740\pi\)
\(110\) −162.962 + 184.237i −0.141253 + 0.159694i
\(111\) 0 0
\(112\) 218.176i 0.184069i
\(113\) 1115.15i 0.928360i −0.885741 0.464180i \(-0.846349\pi\)
0.885741 0.464180i \(-0.153651\pi\)
\(114\) 0 0
\(115\) 463.435 523.937i 0.375787 0.424847i
\(116\) −579.428 −0.463781
\(117\) 0 0
\(118\) 222.933i 0.173920i
\(119\) 1866.36 1.43772
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 233.954i 0.173616i
\(123\) 0 0
\(124\) −917.150 −0.664214
\(125\) −791.186 + 1152.02i −0.566127 + 0.824318i
\(126\) 0 0
\(127\) 1558.13i 1.08868i 0.838866 + 0.544338i \(0.183219\pi\)
−0.838866 + 0.544338i \(0.816781\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 1122.09 + 992.519i 0.757032 + 0.669613i
\(131\) 620.634 0.413932 0.206966 0.978348i \(-0.433641\pi\)
0.206966 + 0.978348i \(0.433641\pi\)
\(132\) 0 0
\(133\) 1718.97i 1.12071i
\(134\) 961.765 0.620028
\(135\) 0 0
\(136\) 1094.96 0.690383
\(137\) 1138.81i 0.710185i 0.934831 + 0.355093i \(0.115551\pi\)
−0.934831 + 0.355093i \(0.884449\pi\)
\(138\) 0 0
\(139\) 1363.18 0.831826 0.415913 0.909404i \(-0.363462\pi\)
0.415913 + 0.909404i \(0.363462\pi\)
\(140\) −404.028 + 456.775i −0.243904 + 0.275746i
\(141\) 0 0
\(142\) 1205.39i 0.712353i
\(143\) 736.949i 0.430956i
\(144\) 0 0
\(145\) 1213.09 + 1073.01i 0.694772 + 0.614542i
\(146\) −1244.36 −0.705367
\(147\) 0 0
\(148\) 26.2772i 0.0145944i
\(149\) 2823.58 1.55246 0.776232 0.630448i \(-0.217129\pi\)
0.776232 + 0.630448i \(0.217129\pi\)
\(150\) 0 0
\(151\) 975.281 0.525611 0.262806 0.964849i \(-0.415352\pi\)
0.262806 + 0.964849i \(0.415352\pi\)
\(152\) 1008.49i 0.538154i
\(153\) 0 0
\(154\) 299.992 0.156974
\(155\) 1920.15 + 1698.42i 0.995033 + 0.880130i
\(156\) 0 0
\(157\) 842.402i 0.428223i 0.976809 + 0.214111i \(0.0686856\pi\)
−0.976809 + 0.214111i \(0.931314\pi\)
\(158\) 1537.80i 0.774309i
\(159\) 0 0
\(160\) −237.036 + 267.981i −0.117121 + 0.132411i
\(161\) −853.124 −0.417612
\(162\) 0 0
\(163\) 376.648i 0.180990i 0.995897 + 0.0904950i \(0.0288449\pi\)
−0.995897 + 0.0904950i \(0.971155\pi\)
\(164\) −1106.74 −0.526961
\(165\) 0 0
\(166\) −1906.27 −0.891298
\(167\) 1298.93i 0.601882i 0.953643 + 0.300941i \(0.0973008\pi\)
−0.953643 + 0.300941i \(0.902699\pi\)
\(168\) 0 0
\(169\) −2291.37 −1.04296
\(170\) −2292.41 2027.69i −1.03424 0.914806i
\(171\) 0 0
\(172\) 933.355i 0.413765i
\(173\) 2066.43i 0.908138i 0.890967 + 0.454069i \(0.150028\pi\)
−0.890967 + 0.454069i \(0.849972\pi\)
\(174\) 0 0
\(175\) 1691.75 208.109i 0.730767 0.0898945i
\(176\) 176.000 0.0753778
\(177\) 0 0
\(178\) 1514.23i 0.637619i
\(179\) −2046.17 −0.854400 −0.427200 0.904157i \(-0.640500\pi\)
−0.427200 + 0.904157i \(0.640500\pi\)
\(180\) 0 0
\(181\) 2561.44 1.05188 0.525941 0.850521i \(-0.323713\pi\)
0.525941 + 0.850521i \(0.323713\pi\)
\(182\) 1827.10i 0.744140i
\(183\) 0 0
\(184\) −500.512 −0.200534
\(185\) 48.6613 55.0141i 0.0193386 0.0218633i
\(186\) 0 0
\(187\) 1505.57i 0.588761i
\(188\) 1526.94i 0.592359i
\(189\) 0 0
\(190\) 1867.57 2111.38i 0.713092 0.806187i
\(191\) −3474.08 −1.31610 −0.658051 0.752973i \(-0.728619\pi\)
−0.658051 + 0.752973i \(0.728619\pi\)
\(192\) 0 0
\(193\) 1741.67i 0.649577i −0.945787 0.324788i \(-0.894707\pi\)
0.945787 0.324788i \(-0.105293\pi\)
\(194\) 2236.58 0.827719
\(195\) 0 0
\(196\) −628.237 −0.228949
\(197\) 112.400i 0.0406507i 0.999793 + 0.0203253i \(0.00647020\pi\)
−0.999793 + 0.0203253i \(0.993530\pi\)
\(198\) 0 0
\(199\) 4526.79 1.61254 0.806270 0.591548i \(-0.201483\pi\)
0.806270 + 0.591548i \(0.201483\pi\)
\(200\) 992.519 122.094i 0.350908 0.0431666i
\(201\) 0 0
\(202\) 2106.09i 0.733585i
\(203\) 1975.27i 0.682941i
\(204\) 0 0
\(205\) 2317.07 + 2049.50i 0.789420 + 0.698261i
\(206\) 1456.38 0.492578
\(207\) 0 0
\(208\) 1071.93i 0.357330i
\(209\) −1386.67 −0.458939
\(210\) 0 0
\(211\) −3743.57 −1.22141 −0.610707 0.791857i \(-0.709115\pi\)
−0.610707 + 0.791857i \(0.709115\pi\)
\(212\) 728.901i 0.236137i
\(213\) 0 0
\(214\) −1977.84 −0.631786
\(215\) 1728.43 1954.08i 0.548269 0.619846i
\(216\) 0 0
\(217\) 3126.57i 0.978089i
\(218\) 3473.02i 1.07900i
\(219\) 0 0
\(220\) −368.474 325.924i −0.112921 0.0998810i
\(221\) 9169.65 2.79103
\(222\) 0 0
\(223\) 2773.89i 0.832975i −0.909141 0.416487i \(-0.863261\pi\)
0.909141 0.416487i \(-0.136739\pi\)
\(224\) 436.352 0.130156
\(225\) 0 0
\(226\) 2230.30 0.656450
\(227\) 175.125i 0.0512046i 0.999672 + 0.0256023i \(0.00815036\pi\)
−0.999672 + 0.0256023i \(0.991850\pi\)
\(228\) 0 0
\(229\) −2789.77 −0.805035 −0.402518 0.915412i \(-0.631865\pi\)
−0.402518 + 0.915412i \(0.631865\pi\)
\(230\) 1047.87 + 926.870i 0.300412 + 0.265722i
\(231\) 0 0
\(232\) 1158.86i 0.327943i
\(233\) 3107.83i 0.873822i −0.899505 0.436911i \(-0.856072\pi\)
0.899505 0.436911i \(-0.143928\pi\)
\(234\) 0 0
\(235\) 2827.65 3196.80i 0.784917 0.887389i
\(236\) −445.865 −0.122980
\(237\) 0 0
\(238\) 3732.72i 1.01662i
\(239\) −5263.47 −1.42454 −0.712271 0.701904i \(-0.752333\pi\)
−0.712271 + 0.701904i \(0.752333\pi\)
\(240\) 0 0
\(241\) −2063.46 −0.551533 −0.275767 0.961225i \(-0.588932\pi\)
−0.275767 + 0.961225i \(0.588932\pi\)
\(242\) 242.000i 0.0642824i
\(243\) 0 0
\(244\) −467.908 −0.122765
\(245\) 1315.28 + 1163.40i 0.342980 + 0.303374i
\(246\) 0 0
\(247\) 8445.52i 2.17561i
\(248\) 1834.30i 0.469670i
\(249\) 0 0
\(250\) −2304.04 1582.37i −0.582881 0.400312i
\(251\) −2087.66 −0.524988 −0.262494 0.964934i \(-0.584545\pi\)
−0.262494 + 0.964934i \(0.584545\pi\)
\(252\) 0 0
\(253\) 688.205i 0.171016i
\(254\) −3116.26 −0.769810
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4901.68i 1.18972i 0.803829 + 0.594861i \(0.202793\pi\)
−0.803829 + 0.594861i \(0.797207\pi\)
\(258\) 0 0
\(259\) −89.5791 −0.0214910
\(260\) −1985.04 + 2244.19i −0.473488 + 0.535302i
\(261\) 0 0
\(262\) 1241.27i 0.292694i
\(263\) 5075.49i 1.18999i −0.803728 0.594997i \(-0.797153\pi\)
0.803728 0.594997i \(-0.202847\pi\)
\(264\) 0 0
\(265\) −1349.81 + 1526.03i −0.312899 + 0.353748i
\(266\) −3437.95 −0.792459
\(267\) 0 0
\(268\) 1923.53i 0.438426i
\(269\) −3906.32 −0.885400 −0.442700 0.896670i \(-0.645979\pi\)
−0.442700 + 0.896670i \(0.645979\pi\)
\(270\) 0 0
\(271\) 2849.44 0.638714 0.319357 0.947635i \(-0.396533\pi\)
0.319357 + 0.947635i \(0.396533\pi\)
\(272\) 2189.92i 0.488174i
\(273\) 0 0
\(274\) −2277.63 −0.502177
\(275\) 167.879 + 1364.71i 0.0368126 + 0.299256i
\(276\) 0 0
\(277\) 5076.18i 1.10108i 0.834810 + 0.550539i \(0.185578\pi\)
−0.834810 + 0.550539i \(0.814422\pi\)
\(278\) 2726.37i 0.588190i
\(279\) 0 0
\(280\) −913.549 808.056i −0.194982 0.172466i
\(281\) 2815.17 0.597647 0.298823 0.954308i \(-0.403406\pi\)
0.298823 + 0.954308i \(0.403406\pi\)
\(282\) 0 0
\(283\) 2420.95i 0.508519i −0.967136 0.254259i \(-0.918168\pi\)
0.967136 0.254259i \(-0.0818317\pi\)
\(284\) −2410.78 −0.503710
\(285\) 0 0
\(286\) 1473.90 0.304732
\(287\) 3772.87i 0.775978i
\(288\) 0 0
\(289\) −13820.4 −2.81303
\(290\) −2146.02 + 2426.19i −0.434547 + 0.491278i
\(291\) 0 0
\(292\) 2488.71i 0.498770i
\(293\) 2429.28i 0.484370i 0.970230 + 0.242185i \(0.0778640\pi\)
−0.970230 + 0.242185i \(0.922136\pi\)
\(294\) 0 0
\(295\) 933.465 + 825.672i 0.184232 + 0.162958i
\(296\) −52.5544 −0.0103198
\(297\) 0 0
\(298\) 5647.17i 1.09776i
\(299\) −4191.50 −0.810705
\(300\) 0 0
\(301\) −3181.81 −0.609291
\(302\) 1950.56i 0.371663i
\(303\) 0 0
\(304\) −2016.98 −0.380532
\(305\) 979.613 + 866.491i 0.183910 + 0.162673i
\(306\) 0 0
\(307\) 162.937i 0.0302910i 0.999885 + 0.0151455i \(0.00482114\pi\)
−0.999885 + 0.0151455i \(0.995179\pi\)
\(308\) 599.985i 0.110998i
\(309\) 0 0
\(310\) −3396.84 + 3840.30i −0.622346 + 0.703594i
\(311\) 6155.28 1.12230 0.561148 0.827715i \(-0.310360\pi\)
0.561148 + 0.827715i \(0.310360\pi\)
\(312\) 0 0
\(313\) 6165.59i 1.11342i 0.830708 + 0.556709i \(0.187936\pi\)
−0.830708 + 0.556709i \(0.812064\pi\)
\(314\) −1684.80 −0.302799
\(315\) 0 0
\(316\) −3075.60 −0.547519
\(317\) 3099.89i 0.549234i 0.961554 + 0.274617i \(0.0885510\pi\)
−0.961554 + 0.274617i \(0.911449\pi\)
\(318\) 0 0
\(319\) 1593.43 0.279670
\(320\) −535.963 474.072i −0.0936288 0.0828169i
\(321\) 0 0
\(322\) 1706.25i 0.295297i
\(323\) 17254.0i 2.97226i
\(324\) 0 0
\(325\) 8311.76 1022.46i 1.41863 0.174511i
\(326\) −753.296 −0.127979
\(327\) 0 0
\(328\) 2213.47i 0.372618i
\(329\) −5205.34 −0.872278
\(330\) 0 0
\(331\) −7423.91 −1.23279 −0.616397 0.787436i \(-0.711408\pi\)
−0.616397 + 0.787436i \(0.711408\pi\)
\(332\) 3812.55i 0.630243i
\(333\) 0 0
\(334\) −2597.86 −0.425595
\(335\) 3562.07 4027.11i 0.580946 0.656789i
\(336\) 0 0
\(337\) 1808.87i 0.292391i −0.989256 0.146195i \(-0.953297\pi\)
0.989256 0.146195i \(-0.0467028\pi\)
\(338\) 4582.75i 0.737481i
\(339\) 0 0
\(340\) 4055.39 4584.83i 0.646866 0.731315i
\(341\) 2522.16 0.400536
\(342\) 0 0
\(343\) 6818.81i 1.07341i
\(344\) −1866.71 −0.292576
\(345\) 0 0
\(346\) −4132.86 −0.642150
\(347\) 5850.60i 0.905120i −0.891734 0.452560i \(-0.850511\pi\)
0.891734 0.452560i \(-0.149489\pi\)
\(348\) 0 0
\(349\) 10231.6 1.56930 0.784648 0.619941i \(-0.212844\pi\)
0.784648 + 0.619941i \(0.212844\pi\)
\(350\) 416.218 + 3383.50i 0.0635650 + 0.516730i
\(351\) 0 0
\(352\) 352.000i 0.0533002i
\(353\) 438.848i 0.0661687i 0.999453 + 0.0330843i \(0.0105330\pi\)
−0.999453 + 0.0330843i \(0.989467\pi\)
\(354\) 0 0
\(355\) 5047.22 + 4464.39i 0.754588 + 0.667451i
\(356\) 3028.46 0.450865
\(357\) 0 0
\(358\) 4092.33i 0.604152i
\(359\) 9743.06 1.43236 0.716182 0.697913i \(-0.245888\pi\)
0.716182 + 0.697913i \(0.245888\pi\)
\(360\) 0 0
\(361\) 9032.45 1.31688
\(362\) 5122.88i 0.743792i
\(363\) 0 0
\(364\) 3654.20 0.526187
\(365\) −4608.70 + 5210.38i −0.660905 + 0.747188i
\(366\) 0 0
\(367\) 11674.8i 1.66054i −0.557363 0.830269i \(-0.688187\pi\)
0.557363 0.830269i \(-0.311813\pi\)
\(368\) 1001.02i 0.141799i
\(369\) 0 0
\(370\) 110.028 + 97.3225i 0.0154597 + 0.0136745i
\(371\) 2484.82 0.347724
\(372\) 0 0
\(373\) 537.719i 0.0746435i 0.999303 + 0.0373218i \(0.0118826\pi\)
−0.999303 + 0.0373218i \(0.988117\pi\)
\(374\) −3011.14 −0.416317
\(375\) 0 0
\(376\) −3053.88 −0.418861
\(377\) 9704.75i 1.32578i
\(378\) 0 0
\(379\) −9268.43 −1.25617 −0.628084 0.778146i \(-0.716160\pi\)
−0.628084 + 0.778146i \(0.716160\pi\)
\(380\) 4222.76 + 3735.13i 0.570060 + 0.504232i
\(381\) 0 0
\(382\) 6948.16i 0.930625i
\(383\) 5038.62i 0.672223i −0.941822 0.336111i \(-0.890888\pi\)
0.941822 0.336111i \(-0.109112\pi\)
\(384\) 0 0
\(385\) 1111.08 1256.13i 0.147080 0.166281i
\(386\) 3483.35 0.459320
\(387\) 0 0
\(388\) 4473.17i 0.585285i
\(389\) 12545.6 1.63518 0.817590 0.575800i \(-0.195309\pi\)
0.817590 + 0.575800i \(0.195309\pi\)
\(390\) 0 0
\(391\) 8563.14 1.10756
\(392\) 1256.47i 0.161892i
\(393\) 0 0
\(394\) −224.800 −0.0287444
\(395\) 6439.09 + 5695.53i 0.820217 + 0.725502i
\(396\) 0 0
\(397\) 9116.35i 1.15248i −0.817279 0.576242i \(-0.804518\pi\)
0.817279 0.576242i \(-0.195482\pi\)
\(398\) 9053.58i 1.14024i
\(399\) 0 0
\(400\) 244.187 + 1985.04i 0.0305234 + 0.248130i
\(401\) 3052.85 0.380179 0.190090 0.981767i \(-0.439122\pi\)
0.190090 + 0.981767i \(0.439122\pi\)
\(402\) 0 0
\(403\) 15361.2i 1.89875i
\(404\) −4212.19 −0.518723
\(405\) 0 0
\(406\) 3950.55 0.482912
\(407\) 72.2623i 0.00880077i
\(408\) 0 0
\(409\) 4417.02 0.534004 0.267002 0.963696i \(-0.413967\pi\)
0.267002 + 0.963696i \(0.413967\pi\)
\(410\) −4099.01 + 4634.14i −0.493745 + 0.558205i
\(411\) 0 0
\(412\) 2912.77i 0.348305i
\(413\) 1519.96i 0.181095i
\(414\) 0 0
\(415\) −7060.24 + 7981.96i −0.835117 + 0.944143i
\(416\) 2143.85 0.252670
\(417\) 0 0
\(418\) 2773.35i 0.324519i
\(419\) 6184.20 0.721045 0.360522 0.932751i \(-0.382598\pi\)
0.360522 + 0.932751i \(0.382598\pi\)
\(420\) 0 0
\(421\) −14153.4 −1.63846 −0.819231 0.573464i \(-0.805599\pi\)
−0.819231 + 0.573464i \(0.805599\pi\)
\(422\) 7487.15i 0.863670i
\(423\) 0 0
\(424\) 1457.80 0.166974
\(425\) −16980.8 + 2088.87i −1.93809 + 0.238412i
\(426\) 0 0
\(427\) 1595.10i 0.180778i
\(428\) 3955.68i 0.446740i
\(429\) 0 0
\(430\) 3908.15 + 3456.85i 0.438297 + 0.387684i
\(431\) −539.740 −0.0603210 −0.0301605 0.999545i \(-0.509602\pi\)
−0.0301605 + 0.999545i \(0.509602\pi\)
\(432\) 0 0
\(433\) 13447.3i 1.49246i −0.665687 0.746231i \(-0.731861\pi\)
0.665687 0.746231i \(-0.268139\pi\)
\(434\) 6253.13 0.691613
\(435\) 0 0
\(436\) −6946.04 −0.762970
\(437\) 7886.91i 0.863345i
\(438\) 0 0
\(439\) −9970.49 −1.08398 −0.541988 0.840386i \(-0.682328\pi\)
−0.541988 + 0.840386i \(0.682328\pi\)
\(440\) 651.849 736.949i 0.0706265 0.0798469i
\(441\) 0 0
\(442\) 18339.3i 1.97356i
\(443\) 11600.7i 1.24416i −0.782952 0.622082i \(-0.786287\pi\)
0.782952 0.622082i \(-0.213713\pi\)
\(444\) 0 0
\(445\) −6340.39 5608.23i −0.675423 0.597428i
\(446\) 5547.78 0.589002
\(447\) 0 0
\(448\) 872.705i 0.0920344i
\(449\) −12957.9 −1.36196 −0.680982 0.732300i \(-0.738447\pi\)
−0.680982 + 0.732300i \(0.738447\pi\)
\(450\) 0 0
\(451\) 3043.53 0.317770
\(452\) 4460.61i 0.464180i
\(453\) 0 0
\(454\) −350.250 −0.0362071
\(455\) −7650.44 6767.00i −0.788260 0.697235i
\(456\) 0 0
\(457\) 16667.8i 1.70610i −0.521831 0.853049i \(-0.674751\pi\)
0.521831 0.853049i \(-0.325249\pi\)
\(458\) 5579.54i 0.569246i
\(459\) 0 0
\(460\) −1853.74 + 2095.75i −0.187894 + 0.212424i
\(461\) −5625.88 −0.568380 −0.284190 0.958768i \(-0.591725\pi\)
−0.284190 + 0.958768i \(0.591725\pi\)
\(462\) 0 0
\(463\) 3395.81i 0.340857i −0.985370 0.170429i \(-0.945485\pi\)
0.985370 0.170429i \(-0.0545152\pi\)
\(464\) 2317.71 0.231890
\(465\) 0 0
\(466\) 6215.65 0.617885
\(467\) 12556.6i 1.24422i 0.782930 + 0.622110i \(0.213724\pi\)
−0.782930 + 0.622110i \(0.786276\pi\)
\(468\) 0 0
\(469\) −6557.32 −0.645605
\(470\) 6393.61 + 5655.30i 0.627479 + 0.555020i
\(471\) 0 0
\(472\) 891.730i 0.0869602i
\(473\) 2566.73i 0.249510i
\(474\) 0 0
\(475\) −1923.91 15639.8i −0.185842 1.51074i
\(476\) −7465.45 −0.718862
\(477\) 0 0
\(478\) 10526.9i 1.00730i
\(479\) 7841.71 0.748010 0.374005 0.927427i \(-0.377984\pi\)
0.374005 + 0.927427i \(0.377984\pi\)
\(480\) 0 0
\(481\) −440.113 −0.0417202
\(482\) 4126.93i 0.389993i
\(483\) 0 0
\(484\) −484.000 −0.0454545
\(485\) 8283.61 9365.05i 0.775545 0.876793i
\(486\) 0 0
\(487\) 1205.34i 0.112154i −0.998426 0.0560772i \(-0.982141\pi\)
0.998426 0.0560772i \(-0.0178593\pi\)
\(488\) 935.815i 0.0868081i
\(489\) 0 0
\(490\) −2326.79 + 2630.56i −0.214518 + 0.242523i
\(491\) 2708.46 0.248944 0.124472 0.992223i \(-0.460276\pi\)
0.124472 + 0.992223i \(0.460276\pi\)
\(492\) 0 0
\(493\) 19826.6i 1.81125i
\(494\) −16891.0 −1.53839
\(495\) 0 0
\(496\) 3668.60 0.332107
\(497\) 8218.36i 0.741739i
\(498\) 0 0
\(499\) 17160.4 1.53949 0.769745 0.638351i \(-0.220383\pi\)
0.769745 + 0.638351i \(0.220383\pi\)
\(500\) 3164.75 4608.08i 0.283063 0.412159i
\(501\) 0 0
\(502\) 4175.32i 0.371222i
\(503\) 263.269i 0.0233371i 0.999932 + 0.0116686i \(0.00371431\pi\)
−0.999932 + 0.0116686i \(0.996286\pi\)
\(504\) 0 0
\(505\) 8818.65 + 7800.31i 0.777079 + 0.687345i
\(506\) 1376.41 0.120927
\(507\) 0 0
\(508\) 6232.52i 0.544338i
\(509\) −21083.7 −1.83599 −0.917997 0.396588i \(-0.870194\pi\)
−0.917997 + 0.396588i \(0.870194\pi\)
\(510\) 0 0
\(511\) 8484.02 0.734464
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −9803.37 −0.841261
\(515\) 5393.99 6098.18i 0.461529 0.521782i
\(516\) 0 0
\(517\) 4199.08i 0.357206i
\(518\) 179.158i 0.0151964i
\(519\) 0 0
\(520\) −4488.37 3970.07i −0.378516 0.334806i
\(521\) −20745.1 −1.74445 −0.872226 0.489102i \(-0.837324\pi\)
−0.872226 + 0.489102i \(0.837324\pi\)
\(522\) 0 0
\(523\) 19060.9i 1.59364i 0.604214 + 0.796822i \(0.293487\pi\)
−0.604214 + 0.796822i \(0.706513\pi\)
\(524\) −2482.54 −0.206966
\(525\) 0 0
\(526\) 10151.0 0.841452
\(527\) 31382.6i 2.59402i
\(528\) 0 0
\(529\) 8252.74 0.678289
\(530\) −3052.06 2699.62i −0.250138 0.221253i
\(531\) 0 0
\(532\) 6875.89i 0.560353i
\(533\) 18536.6i 1.50639i
\(534\) 0 0
\(535\) −7325.29 + 8281.62i −0.591962 + 0.669244i
\(536\) −3847.06 −0.310014
\(537\) 0 0
\(538\) 7812.64i 0.626072i
\(539\) 1727.65 0.138062
\(540\) 0 0
\(541\) −3953.81 −0.314210 −0.157105 0.987582i \(-0.550216\pi\)
−0.157105 + 0.987582i \(0.550216\pi\)
\(542\) 5698.89i 0.451639i
\(543\) 0 0
\(544\) −4379.84 −0.345191
\(545\) 14542.3 + 12863.0i 1.14298 + 1.01099i
\(546\) 0 0
\(547\) 10226.2i 0.799340i 0.916659 + 0.399670i \(0.130875\pi\)
−0.916659 + 0.399670i \(0.869125\pi\)
\(548\) 4555.25i 0.355093i
\(549\) 0 0
\(550\) −2729.43 + 335.757i −0.211606 + 0.0260304i
\(551\) −18260.9 −1.41187
\(552\) 0 0
\(553\) 10484.7i 0.806250i
\(554\) −10152.4 −0.778579
\(555\) 0 0
\(556\) −5452.74 −0.415913
\(557\) 17378.7i 1.32201i −0.750381 0.661005i \(-0.770130\pi\)
0.750381 0.661005i \(-0.229870\pi\)
\(558\) 0 0
\(559\) −15632.6 −1.18281
\(560\) 1616.11 1827.10i 0.121952 0.137873i
\(561\) 0 0
\(562\) 5630.33i 0.422600i
\(563\) 12073.4i 0.903791i −0.892071 0.451895i \(-0.850748\pi\)
0.892071 0.451895i \(-0.149252\pi\)
\(564\) 0 0
\(565\) 8260.35 9338.75i 0.615072 0.695370i
\(566\) 4841.91 0.359577
\(567\) 0 0
\(568\) 4821.56i 0.356177i
\(569\) 11995.8 0.883811 0.441906 0.897062i \(-0.354303\pi\)
0.441906 + 0.897062i \(0.354303\pi\)
\(570\) 0 0
\(571\) −6422.26 −0.470688 −0.235344 0.971912i \(-0.575622\pi\)
−0.235344 + 0.971912i \(0.575622\pi\)
\(572\) 2947.79i 0.215478i
\(573\) 0 0
\(574\) 7545.74 0.548699
\(575\) 7762.00 954.834i 0.562953 0.0692510i
\(576\) 0 0
\(577\) 21036.3i 1.51777i −0.651227 0.758883i \(-0.725745\pi\)
0.651227 0.758883i \(-0.274255\pi\)
\(578\) 27640.8i 1.98911i
\(579\) 0 0
\(580\) −4852.37 4292.04i −0.347386 0.307271i
\(581\) 12997.0 0.928065
\(582\) 0 0
\(583\) 2004.48i 0.142396i
\(584\) 4977.42 0.352684
\(585\) 0 0
\(586\) −4858.57 −0.342501
\(587\) 5970.28i 0.419795i 0.977723 + 0.209898i \(0.0673131\pi\)
−0.977723 + 0.209898i \(0.932687\pi\)
\(588\) 0 0
\(589\) −28904.3 −2.02204
\(590\) −1651.34 + 1866.93i −0.115228 + 0.130272i
\(591\) 0 0
\(592\) 105.109i 0.00729721i
\(593\) 25442.7i 1.76190i 0.473209 + 0.880950i \(0.343096\pi\)
−0.473209 + 0.880950i \(0.656904\pi\)
\(594\) 0 0
\(595\) 15629.7 + 13824.8i 1.07690 + 0.952543i
\(596\) −11294.3 −0.776232
\(597\) 0 0
\(598\) 8383.00i 0.573255i
\(599\) 15519.2 1.05860 0.529298 0.848436i \(-0.322456\pi\)
0.529298 + 0.848436i \(0.322456\pi\)
\(600\) 0 0
\(601\) −12438.2 −0.844203 −0.422102 0.906549i \(-0.638707\pi\)
−0.422102 + 0.906549i \(0.638707\pi\)
\(602\) 6363.62i 0.430834i
\(603\) 0 0
\(604\) −3901.13 −0.262806
\(605\) 1013.30 + 896.292i 0.0680937 + 0.0602305i
\(606\) 0 0
\(607\) 16809.7i 1.12403i 0.827128 + 0.562014i \(0.189973\pi\)
−0.827128 + 0.562014i \(0.810027\pi\)
\(608\) 4033.96i 0.269077i
\(609\) 0 0
\(610\) −1732.98 + 1959.23i −0.115027 + 0.130044i
\(611\) −25574.4 −1.69334
\(612\) 0 0
\(613\) 18549.3i 1.22218i −0.791560 0.611092i \(-0.790731\pi\)
0.791560 0.611092i \(-0.209269\pi\)
\(614\) −325.875 −0.0214190
\(615\) 0 0
\(616\) −1199.97 −0.0784872
\(617\) 21973.9i 1.43377i 0.697191 + 0.716885i \(0.254433\pi\)
−0.697191 + 0.716885i \(0.745567\pi\)
\(618\) 0 0
\(619\) −3457.29 −0.224492 −0.112246 0.993680i \(-0.535804\pi\)
−0.112246 + 0.993680i \(0.535804\pi\)
\(620\) −7680.60 6793.67i −0.497516 0.440065i
\(621\) 0 0
\(622\) 12310.6i 0.793583i
\(623\) 10324.0i 0.663922i
\(624\) 0 0
\(625\) −15159.2 + 3786.88i −0.970186 + 0.242360i
\(626\) −12331.2 −0.787305
\(627\) 0 0
\(628\) 3369.61i 0.214111i
\(629\) 899.141 0.0569970
\(630\) 0 0
\(631\) 4266.16 0.269149 0.134575 0.990903i \(-0.457033\pi\)
0.134575 + 0.990903i \(0.457033\pi\)
\(632\) 6151.20i 0.387155i
\(633\) 0 0
\(634\) −6199.78 −0.388367
\(635\) −11541.7 + 13048.4i −0.721286 + 0.815451i
\(636\) 0 0
\(637\) 10522.2i 0.654484i
\(638\) 3186.86i 0.197757i
\(639\) 0 0
\(640\) 948.144 1071.93i 0.0585604 0.0662056i
\(641\) 4556.59 0.280771 0.140386 0.990097i \(-0.455166\pi\)
0.140386 + 0.990097i \(0.455166\pi\)
\(642\) 0 0
\(643\) 4616.92i 0.283162i 0.989927 + 0.141581i \(0.0452186\pi\)
−0.989927 + 0.141581i \(0.954781\pi\)
\(644\) 3412.50 0.208806
\(645\) 0 0
\(646\) 34508.0 2.10170
\(647\) 1201.79i 0.0730252i −0.999333 0.0365126i \(-0.988375\pi\)
0.999333 0.0365126i \(-0.0116249\pi\)
\(648\) 0 0
\(649\) 1226.13 0.0741599
\(650\) 2044.93 + 16623.5i 0.123398 + 1.00312i
\(651\) 0 0
\(652\) 1506.59i 0.0904950i
\(653\) 8658.24i 0.518871i 0.965760 + 0.259436i \(0.0835366\pi\)
−0.965760 + 0.259436i \(0.916463\pi\)
\(654\) 0 0
\(655\) 5197.45 + 4597.27i 0.310047 + 0.274244i
\(656\) 4426.95 0.263481
\(657\) 0 0
\(658\) 10410.7i 0.616794i
\(659\) 15311.7 0.905096 0.452548 0.891740i \(-0.350515\pi\)
0.452548 + 0.891740i \(0.350515\pi\)
\(660\) 0 0
\(661\) −24981.1 −1.46997 −0.734987 0.678081i \(-0.762812\pi\)
−0.734987 + 0.678081i \(0.762812\pi\)
\(662\) 14847.8i 0.871717i
\(663\) 0 0
\(664\) 7625.09 0.445649
\(665\) −12733.1 + 14395.4i −0.742507 + 0.839443i
\(666\) 0 0
\(667\) 9062.85i 0.526109i
\(668\) 5195.73i 0.300941i
\(669\) 0 0
\(670\) 8054.22 + 7124.15i 0.464420 + 0.410791i
\(671\) 1286.75 0.0740302
\(672\) 0 0
\(673\) 7248.66i 0.415179i 0.978216 + 0.207589i \(0.0665618\pi\)
−0.978216 + 0.207589i \(0.933438\pi\)
\(674\) 3617.75 0.206752
\(675\) 0 0
\(676\) 9165.50 0.521478
\(677\) 10382.1i 0.589388i −0.955592 0.294694i \(-0.904782\pi\)
0.955592 0.294694i \(-0.0952178\pi\)
\(678\) 0 0
\(679\) −15249.0 −0.861863
\(680\) 9169.65 + 8110.78i 0.517118 + 0.457403i
\(681\) 0 0
\(682\) 5044.33i 0.283222i
\(683\) 32874.9i 1.84176i −0.389844 0.920881i \(-0.627471\pi\)
0.389844 0.920881i \(-0.372529\pi\)
\(684\) 0 0
\(685\) −8435.61 + 9536.89i −0.470523 + 0.531950i
\(686\) 13637.6 0.759019
\(687\) 0 0
\(688\) 3733.42i 0.206883i
\(689\) 12208.2 0.675032
\(690\) 0 0
\(691\) 20337.8 1.11966 0.559830 0.828607i \(-0.310866\pi\)
0.559830 + 0.828607i \(0.310866\pi\)
\(692\) 8265.72i 0.454069i
\(693\) 0 0
\(694\) 11701.2 0.640016
\(695\) 11415.9 + 10097.6i 0.623063 + 0.551114i
\(696\) 0 0
\(697\) 37869.8i 2.05799i
\(698\) 20463.2i 1.10966i
\(699\) 0 0
\(700\) −6767.00 + 832.435i −0.365384 + 0.0449473i
\(701\) −12930.7 −0.696699 −0.348349 0.937365i \(-0.613258\pi\)
−0.348349 + 0.937365i \(0.613258\pi\)
\(702\) 0 0
\(703\) 828.135i 0.0444292i
\(704\) −704.000 −0.0376889
\(705\) 0 0
\(706\) −877.696 −0.0467883
\(707\) 14359.4i 0.763846i
\(708\) 0 0
\(709\) −7078.40 −0.374944 −0.187472 0.982270i \(-0.560029\pi\)
−0.187472 + 0.982270i \(0.560029\pi\)
\(710\) −8928.78 + 10094.4i −0.471959 + 0.533575i
\(711\) 0 0
\(712\) 6056.91i 0.318810i
\(713\) 14345.2i 0.753479i
\(714\) 0 0
\(715\) 5458.85 6171.51i 0.285524 0.322799i
\(716\) 8184.67 0.427200
\(717\) 0 0
\(718\) 19486.1i 1.01283i
\(719\) −9201.25 −0.477258 −0.238629 0.971111i \(-0.576698\pi\)
−0.238629 + 0.971111i \(0.576698\pi\)
\(720\) 0 0
\(721\) −9929.63 −0.512897
\(722\) 18064.9i 0.931172i
\(723\) 0 0
\(724\) −10245.8 −0.525941
\(725\) 2210.77 + 17971.7i 0.113249 + 0.920622i
\(726\) 0 0
\(727\) 1522.05i 0.0776477i −0.999246 0.0388239i \(-0.987639\pi\)
0.999246 0.0388239i \(-0.0123611\pi\)
\(728\) 7308.39i 0.372070i
\(729\) 0 0
\(730\) −10420.8 9217.40i −0.528342 0.467331i
\(731\) 31937.1 1.61592
\(732\) 0 0
\(733\) 21264.1i 1.07150i 0.844377 + 0.535749i \(0.179971\pi\)
−0.844377 + 0.535749i \(0.820029\pi\)
\(734\) 23349.5 1.17418
\(735\) 0 0
\(736\) 2002.05 0.100267
\(737\) 5289.71i 0.264381i
\(738\) 0 0
\(739\) −21555.5 −1.07298 −0.536490 0.843907i \(-0.680250\pi\)
−0.536490 + 0.843907i \(0.680250\pi\)
\(740\) −194.645 + 220.056i −0.00966932 + 0.0109317i
\(741\) 0 0
\(742\) 4969.65i 0.245878i
\(743\) 18974.7i 0.936895i 0.883491 + 0.468447i \(0.155186\pi\)
−0.883491 + 0.468447i \(0.844814\pi\)
\(744\) 0 0
\(745\) 23645.9 + 20915.3i 1.16284 + 1.02856i
\(746\) −1075.44 −0.0527810
\(747\) 0 0
\(748\) 6022.28i 0.294380i
\(749\) 13484.9 0.657848
\(750\) 0 0
\(751\) 24260.6 1.17880 0.589402 0.807840i \(-0.299363\pi\)
0.589402 + 0.807840i \(0.299363\pi\)
\(752\) 6107.75i 0.296179i
\(753\) 0 0
\(754\) 19409.5 0.937470
\(755\) 8167.41 + 7224.27i 0.393699 + 0.348236i
\(756\) 0 0
\(757\) 14128.2i 0.678333i −0.940726 0.339166i \(-0.889855\pi\)
0.940726 0.339166i \(-0.110145\pi\)
\(758\) 18536.9i 0.888244i
\(759\) 0 0
\(760\) −7470.26 + 8445.52i −0.356546 + 0.403094i
\(761\) 917.035 0.0436826 0.0218413 0.999761i \(-0.493047\pi\)
0.0218413 + 0.999761i \(0.493047\pi\)
\(762\) 0 0
\(763\) 23679.1i 1.12351i
\(764\) 13896.3 0.658051
\(765\) 0 0
\(766\) 10077.2 0.475333
\(767\) 7467.72i 0.351556i
\(768\) 0 0
\(769\) 21609.1 1.01332 0.506661 0.862145i \(-0.330880\pi\)
0.506661 + 0.862145i \(0.330880\pi\)
\(770\) 2512.26 + 2222.15i 0.117579 + 0.104001i
\(771\) 0 0
\(772\) 6966.69i 0.324788i
\(773\) 16205.3i 0.754029i −0.926207 0.377014i \(-0.876951\pi\)
0.926207 0.377014i \(-0.123049\pi\)
\(774\) 0 0
\(775\) 3499.32 + 28446.5i 0.162193 + 1.31849i
\(776\) −8946.34 −0.413859
\(777\) 0 0
\(778\) 25091.1i 1.15625i
\(779\) −34879.2 −1.60421
\(780\) 0 0
\(781\) 6629.65 0.303749
\(782\) 17126.3i 0.783165i
\(783\) 0 0
\(784\) 2512.95 0.114475
\(785\) −6239.98 + 7054.63i −0.283713 + 0.320752i
\(786\) 0 0
\(787\) 6106.91i 0.276605i 0.990390 + 0.138302i \(0.0441645\pi\)
−0.990390 + 0.138302i \(0.955835\pi\)
\(788\) 449.601i 0.0203253i
\(789\) 0 0
\(790\) −11391.1 + 12878.2i −0.513007 + 0.579981i
\(791\) −15206.2 −0.683529
\(792\) 0 0
\(793\) 7836.91i 0.350942i
\(794\) 18232.7 0.814930
\(795\) 0 0
\(796\) −18107.2 −0.806270
\(797\) 1702.01i 0.0756442i 0.999284 + 0.0378221i \(0.0120420\pi\)
−0.999284 + 0.0378221i \(0.987958\pi\)
\(798\) 0 0
\(799\) 52248.0 2.31339
\(800\) −3970.07 + 488.374i −0.175454 + 0.0215833i
\(801\) 0 0
\(802\) 6105.69i 0.268827i
\(803\) 6843.96i 0.300770i
\(804\) 0 0
\(805\) −7144.42 6319.41i −0.312804 0.276683i
\(806\) 30722.4 1.34262
\(807\) 0 0
\(808\) 8424.37i 0.366793i
\(809\) −22987.7 −0.999016 −0.499508 0.866309i \(-0.666486\pi\)
−0.499508 + 0.866309i \(0.666486\pi\)
\(810\) 0 0
\(811\) 24705.7 1.06971 0.534855 0.844944i \(-0.320366\pi\)
0.534855 + 0.844944i \(0.320366\pi\)
\(812\) 7901.09i 0.341470i
\(813\) 0 0
\(814\) 144.525 0.00622308
\(815\) −2789.97 + 3154.21i −0.119912 + 0.135567i
\(816\) 0 0
\(817\) 29415.0i 1.25961i
\(818\) 8834.04i 0.377598i
\(819\) 0 0
\(820\) −9268.28 8198.02i −0.394710 0.349131i
\(821\) −37165.6 −1.57989 −0.789945 0.613178i \(-0.789891\pi\)
−0.789945 + 0.613178i \(0.789891\pi\)
\(822\) 0 0
\(823\) 1333.29i 0.0564707i −0.999601 0.0282354i \(-0.991011\pi\)
0.999601 0.0282354i \(-0.00898879\pi\)
\(824\) −5825.53 −0.246289
\(825\) 0 0
\(826\) 3039.91 0.128053
\(827\) 19441.3i 0.817459i 0.912656 + 0.408729i \(0.134028\pi\)
−0.912656 + 0.408729i \(0.865972\pi\)
\(828\) 0 0
\(829\) 30978.1 1.29785 0.648923 0.760854i \(-0.275220\pi\)
0.648923 + 0.760854i \(0.275220\pi\)
\(830\) −15963.9 14120.5i −0.667610 0.590517i
\(831\) 0 0
\(832\) 4287.70i 0.178665i
\(833\) 21496.7i 0.894137i
\(834\) 0 0
\(835\) −9621.67 + 10877.8i −0.398768 + 0.450828i
\(836\) 5546.70 0.229470
\(837\) 0 0
\(838\) 12368.4i 0.509856i
\(839\) −19548.7 −0.804406 −0.402203 0.915551i \(-0.631755\pi\)
−0.402203 + 0.915551i \(0.631755\pi\)
\(840\) 0 0
\(841\) −3405.42 −0.139629
\(842\) 28306.7i 1.15857i
\(843\) 0 0
\(844\) 14974.3 0.610707
\(845\) −19188.9 16973.1i −0.781206 0.690995i
\(846\) 0 0
\(847\) 1649.96i 0.0669341i
\(848\) 2915.60i 0.118069i
\(849\) 0 0
\(850\) −4177.74 33961.5i −0.168583 1.37044i
\(851\) −411.002 −0.0165558
\(852\) 0 0
\(853\) 27242.9i 1.09353i −0.837287 0.546764i \(-0.815860\pi\)
0.837287 0.546764i \(-0.184140\pi\)
\(854\) 3190.20 0.127829
\(855\) 0 0
\(856\) 7911.35 0.315893
\(857\) 16567.2i 0.660356i 0.943919 + 0.330178i \(0.107109\pi\)
−0.943919 + 0.330178i \(0.892891\pi\)
\(858\) 0 0
\(859\) 2689.42 0.106824 0.0534121 0.998573i \(-0.482990\pi\)
0.0534121 + 0.998573i \(0.482990\pi\)
\(860\) −6913.71 + 7816.30i −0.274134 + 0.309923i
\(861\) 0 0
\(862\) 1079.48i 0.0426534i
\(863\) 17196.1i 0.678289i −0.940734 0.339144i \(-0.889862\pi\)
0.940734 0.339144i \(-0.110138\pi\)
\(864\) 0 0
\(865\) −15306.8 + 17305.2i −0.601673 + 0.680223i
\(866\) 26894.6 1.05533
\(867\) 0 0
\(868\) 12506.3i 0.489044i
\(869\) 8457.90 0.330167
\(870\) 0 0
\(871\) −32216.9 −1.25330
\(872\) 13892.1i 0.539501i
\(873\) 0 0
\(874\) −15773.8 −0.610477
\(875\) 15709.0 + 10788.6i 0.606925 + 0.416825i
\(876\) 0 0
\(877\) 43591.8i 1.67844i 0.543794 + 0.839219i \(0.316987\pi\)
−0.543794 + 0.839219i \(0.683013\pi\)
\(878\) 19941.0i 0.766487i
\(879\) 0 0
\(880\) 1473.90 + 1303.70i 0.0564603 + 0.0499405i
\(881\) 28746.0 1.09929 0.549646 0.835398i \(-0.314763\pi\)
0.549646 + 0.835398i \(0.314763\pi\)
\(882\) 0 0
\(883\) 2883.18i 0.109883i −0.998490 0.0549415i \(-0.982503\pi\)
0.998490 0.0549415i \(-0.0174972\pi\)
\(884\) −36678.6 −1.39552
\(885\) 0 0
\(886\) 23201.3 0.879757
\(887\) 10797.1i 0.408718i −0.978896 0.204359i \(-0.934489\pi\)
0.978896 0.204359i \(-0.0655109\pi\)
\(888\) 0 0
\(889\) 21246.7 0.801565
\(890\) 11216.5 12680.8i 0.422445 0.477596i
\(891\) 0 0
\(892\) 11095.6i 0.416487i
\(893\) 48122.0i 1.80329i
\(894\) 0 0
\(895\) −17135.5 15156.7i −0.639972 0.566071i
\(896\) −1745.41 −0.0650782
\(897\) 0 0
\(898\) 25915.8i 0.963054i
\(899\) 33213.9 1.23220
\(900\) 0 0
\(901\) −24941.2 −0.922209
\(902\) 6087.06i 0.224697i
\(903\) 0 0
\(904\) −8921.22 −0.328225
\(905\) 21450.6 + 18973.6i 0.787891 + 0.696909i
\(906\) 0 0
\(907\) 6158.05i 0.225441i 0.993627 + 0.112720i \(0.0359564\pi\)
−0.993627 + 0.112720i \(0.964044\pi\)
\(908\) 700.500i 0.0256023i
\(909\) 0 0
\(910\) 13534.0 15300.9i 0.493019 0.557384i
\(911\) −8119.84 −0.295304 −0.147652 0.989039i \(-0.547172\pi\)
−0.147652 + 0.989039i \(0.547172\pi\)
\(912\) 0 0
\(913\) 10484.5i 0.380051i
\(914\) 33335.6 1.20639
\(915\) 0 0
\(916\) 11159.1 0.402518
\(917\) 8462.97i 0.304768i
\(918\) 0 0
\(919\) 20945.0 0.751807 0.375904 0.926659i \(-0.377332\pi\)
0.375904 + 0.926659i \(0.377332\pi\)
\(920\) −4191.50 3707.48i −0.150206 0.132861i
\(921\) 0 0
\(922\) 11251.8i 0.401906i
\(923\) 40377.8i 1.43993i
\(924\) 0 0
\(925\) 815.020 100.259i 0.0289705 0.00356377i
\(926\) 6791.63 0.241022
\(927\) 0 0
\(928\) 4635.43i 0.163971i
\(929\) −34175.1 −1.20694 −0.603470 0.797386i \(-0.706216\pi\)
−0.603470 + 0.797386i \(0.706216\pi\)
\(930\) 0 0
\(931\) −19799.1 −0.696980
\(932\) 12431.3i 0.436911i
\(933\) 0 0
\(934\) −25113.2 −0.879796
\(935\) −11152.3 + 12608.3i −0.390075 + 0.441000i
\(936\) 0 0
\(937\) 41106.5i 1.43318i 0.697494 + 0.716591i \(0.254298\pi\)
−0.697494 + 0.716591i \(0.745702\pi\)
\(938\) 13114.6i 0.456512i
\(939\) 0 0
\(940\) −11310.6 + 12787.2i −0.392459 + 0.443695i
\(941\) −32287.7 −1.11854 −0.559271 0.828985i \(-0.688919\pi\)
−0.559271 + 0.828985i \(0.688919\pi\)
\(942\) 0 0
\(943\) 17310.5i 0.597781i
\(944\) 1783.46 0.0614902
\(945\) 0 0
\(946\) 5133.45 0.176430
\(947\) 57062.9i 1.95807i 0.203683 + 0.979037i \(0.434709\pi\)
−0.203683 + 0.979037i \(0.565291\pi\)
\(948\) 0 0
\(949\) 41683.0 1.42580
\(950\) 31279.5 3847.82i 1.06826 0.131410i
\(951\) 0 0
\(952\) 14930.9i 0.508312i
\(953\) 51251.6i 1.74208i −0.491211 0.871040i \(-0.663446\pi\)
0.491211 0.871040i \(-0.336554\pi\)
\(954\) 0 0
\(955\) −29093.4 25733.8i −0.985801 0.871964i
\(956\) 21053.9 0.712271
\(957\) 0 0
\(958\) 15683.4i 0.528923i
\(959\) 15528.9 0.522892
\(960\) 0 0
\(961\) 22781.8 0.764720
\(962\) 880.225i 0.0295006i
\(963\) 0 0
\(964\) 8253.86 0.275767
\(965\) 12901.2 14585.5i 0.430368 0.486553i
\(966\) 0 0
\(967\) 23103.2i 0.768303i −0.923270 0.384151i \(-0.874494\pi\)
0.923270 0.384151i \(-0.125506\pi\)
\(968\) 968.000i 0.0321412i
\(969\) 0 0
\(970\) 18730.1 + 16567.2i 0.619987 + 0.548393i
\(971\) −27006.6 −0.892566 −0.446283 0.894892i \(-0.647253\pi\)
−0.446283 + 0.894892i \(0.647253\pi\)
\(972\) 0 0
\(973\) 18588.4i 0.612453i
\(974\) 2410.68 0.0793052
\(975\) 0 0
\(976\) 1871.63 0.0613826
\(977\) 50695.2i 1.66006i 0.557715 + 0.830032i \(0.311678\pi\)
−0.557715 + 0.830032i \(0.688322\pi\)
\(978\) 0 0
\(979\) −8328.26 −0.271882
\(980\) −5261.12 4653.58i −0.171490 0.151687i
\(981\) 0 0
\(982\) 5416.93i 0.176030i
\(983\) 34483.1i 1.11886i −0.828877 0.559431i \(-0.811020\pi\)
0.828877 0.559431i \(-0.188980\pi\)
\(984\) 0 0
\(985\) −832.590 + 941.286i −0.0269325 + 0.0304486i
\(986\) −39653.2 −1.28075
\(987\) 0 0
\(988\) 33782.1i 1.08780i
\(989\) −14598.6 −0.469372
\(990\) 0 0
\(991\) 22631.4 0.725439 0.362719 0.931898i \(-0.381848\pi\)
0.362719 + 0.931898i \(0.381848\pi\)
\(992\) 7337.20i 0.234835i
\(993\) 0 0
\(994\) 16436.7 0.524488
\(995\) 37909.2 + 33531.6i 1.20784 + 1.06836i
\(996\) 0 0
\(997\) 14507.6i 0.460844i 0.973091 + 0.230422i \(0.0740107\pi\)
−0.973091 + 0.230422i \(0.925989\pi\)
\(998\) 34320.8i 1.08858i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.4.c.i.199.8 8
3.2 odd 2 110.4.b.c.89.3 8
5.4 even 2 inner 990.4.c.i.199.4 8
12.11 even 2 880.4.b.h.529.2 8
15.2 even 4 550.4.a.bb.1.3 4
15.8 even 4 550.4.a.ba.1.2 4
15.14 odd 2 110.4.b.c.89.6 yes 8
60.59 even 2 880.4.b.h.529.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.b.c.89.3 8 3.2 odd 2
110.4.b.c.89.6 yes 8 15.14 odd 2
550.4.a.ba.1.2 4 15.8 even 4
550.4.a.bb.1.3 4 15.2 even 4
880.4.b.h.529.2 8 12.11 even 2
880.4.b.h.529.7 8 60.59 even 2
990.4.c.i.199.4 8 5.4 even 2 inner
990.4.c.i.199.8 8 1.1 even 1 trivial