Properties

Label 880.4.b.h.529.7
Level $880$
Weight $4$
Character 880.529
Analytic conductor $51.922$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,4,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.9216808051\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.7
Root \(4.82127i\) of defining polynomial
Character \(\chi\) \(=\) 880.529
Dual form 880.4.b.h.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.82127i q^{3} +(-8.37442 + 7.40737i) q^{5} -13.6360i q^{7} -19.5297 q^{9} +11.0000 q^{11} +66.9953i q^{13} +(-50.5277 - 57.1242i) q^{15} +136.870i q^{17} +126.061 q^{19} +93.0149 q^{21} +62.5641i q^{23} +(15.2617 - 124.065i) q^{25} +50.9568i q^{27} -144.857 q^{29} -229.288 q^{31} +75.0340i q^{33} +(101.007 + 114.194i) q^{35} +6.56930i q^{37} -456.993 q^{39} -276.684 q^{41} -233.339i q^{43} +(163.550 - 144.664i) q^{45} +381.735i q^{47} +157.059 q^{49} -933.627 q^{51} +182.225i q^{53} +(-92.1186 + 81.4811i) q^{55} +859.898i q^{57} +111.466 q^{59} +116.977 q^{61} +266.307i q^{63} +(-496.259 - 561.047i) q^{65} -480.882i q^{67} -426.766 q^{69} +602.696 q^{71} -622.178i q^{73} +(846.280 + 104.104i) q^{75} -149.996i q^{77} -768.900 q^{79} -874.892 q^{81} -953.137i q^{83} +(-1013.85 - 1146.21i) q^{85} -988.109i q^{87} +757.114 q^{89} +913.549 q^{91} -1564.03i q^{93} +(-1055.69 + 933.783i) q^{95} +1118.29i q^{97} -214.827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 110 q^{9} + 88 q^{11} - 8 q^{15} + 302 q^{19} + 230 q^{21} - 162 q^{25} - 58 q^{29} - 1022 q^{31} + 1058 q^{35} + 320 q^{39} + 452 q^{41} - 622 q^{45} + 222 q^{49} - 834 q^{51} + 176 q^{55}+ \cdots - 1210 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.82127i 1.31275i 0.754433 + 0.656377i \(0.227912\pi\)
−0.754433 + 0.656377i \(0.772088\pi\)
\(4\) 0 0
\(5\) −8.37442 + 7.40737i −0.749031 + 0.662535i
\(6\) 0 0
\(7\) 13.6360i 0.736275i −0.929771 0.368138i \(-0.879995\pi\)
0.929771 0.368138i \(-0.120005\pi\)
\(8\) 0 0
\(9\) −19.5297 −0.723323
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 66.9953i 1.42932i 0.699472 + 0.714660i \(0.253419\pi\)
−0.699472 + 0.714660i \(0.746581\pi\)
\(14\) 0 0
\(15\) −50.5277 57.1242i −0.869746 0.983293i
\(16\) 0 0
\(17\) 136.870i 1.95270i 0.216201 + 0.976349i \(0.430633\pi\)
−0.216201 + 0.976349i \(0.569367\pi\)
\(18\) 0 0
\(19\) 126.061 1.52213 0.761064 0.648676i \(-0.224677\pi\)
0.761064 + 0.648676i \(0.224677\pi\)
\(20\) 0 0
\(21\) 93.0149 0.966548
\(22\) 0 0
\(23\) 62.5641i 0.567196i 0.958943 + 0.283598i \(0.0915281\pi\)
−0.958943 + 0.283598i \(0.908472\pi\)
\(24\) 0 0
\(25\) 15.2617 124.065i 0.122094 0.992519i
\(26\) 0 0
\(27\) 50.9568i 0.363209i
\(28\) 0 0
\(29\) −144.857 −0.927562 −0.463781 0.885950i \(-0.653507\pi\)
−0.463781 + 0.885950i \(0.653507\pi\)
\(30\) 0 0
\(31\) −229.288 −1.32843 −0.664214 0.747543i \(-0.731234\pi\)
−0.664214 + 0.747543i \(0.731234\pi\)
\(32\) 0 0
\(33\) 75.0340i 0.395810i
\(34\) 0 0
\(35\) 101.007 + 114.194i 0.487809 + 0.551493i
\(36\) 0 0
\(37\) 6.56930i 0.0291888i 0.999893 + 0.0145944i \(0.00464571\pi\)
−0.999893 + 0.0145944i \(0.995354\pi\)
\(38\) 0 0
\(39\) −456.993 −1.87635
\(40\) 0 0
\(41\) −276.684 −1.05392 −0.526961 0.849889i \(-0.676669\pi\)
−0.526961 + 0.849889i \(0.676669\pi\)
\(42\) 0 0
\(43\) 233.339i 0.827531i −0.910384 0.413765i \(-0.864213\pi\)
0.910384 0.413765i \(-0.135787\pi\)
\(44\) 0 0
\(45\) 163.550 144.664i 0.541791 0.479227i
\(46\) 0 0
\(47\) 381.735i 1.18472i 0.805674 + 0.592359i \(0.201803\pi\)
−0.805674 + 0.592359i \(0.798197\pi\)
\(48\) 0 0
\(49\) 157.059 0.457898
\(50\) 0 0
\(51\) −933.627 −2.56341
\(52\) 0 0
\(53\) 182.225i 0.472275i 0.971720 + 0.236137i \(0.0758815\pi\)
−0.971720 + 0.236137i \(0.924118\pi\)
\(54\) 0 0
\(55\) −92.1186 + 81.4811i −0.225841 + 0.199762i
\(56\) 0 0
\(57\) 859.898i 1.99818i
\(58\) 0 0
\(59\) 111.466 0.245961 0.122980 0.992409i \(-0.460755\pi\)
0.122980 + 0.992409i \(0.460755\pi\)
\(60\) 0 0
\(61\) 116.977 0.245530 0.122765 0.992436i \(-0.460824\pi\)
0.122765 + 0.992436i \(0.460824\pi\)
\(62\) 0 0
\(63\) 266.307i 0.532565i
\(64\) 0 0
\(65\) −496.259 561.047i −0.946975 1.07060i
\(66\) 0 0
\(67\) 480.882i 0.876853i −0.898767 0.438426i \(-0.855536\pi\)
0.898767 0.438426i \(-0.144464\pi\)
\(68\) 0 0
\(69\) −426.766 −0.744589
\(70\) 0 0
\(71\) 602.696 1.00742 0.503710 0.863873i \(-0.331968\pi\)
0.503710 + 0.863873i \(0.331968\pi\)
\(72\) 0 0
\(73\) 622.178i 0.997540i −0.866734 0.498770i \(-0.833785\pi\)
0.866734 0.498770i \(-0.166215\pi\)
\(74\) 0 0
\(75\) 846.280 + 104.104i 1.30293 + 0.160279i
\(76\) 0 0
\(77\) 149.996i 0.221995i
\(78\) 0 0
\(79\) −768.900 −1.09504 −0.547519 0.836793i \(-0.684428\pi\)
−0.547519 + 0.836793i \(0.684428\pi\)
\(80\) 0 0
\(81\) −874.892 −1.20013
\(82\) 0 0
\(83\) 953.137i 1.26049i −0.776398 0.630243i \(-0.782955\pi\)
0.776398 0.630243i \(-0.217045\pi\)
\(84\) 0 0
\(85\) −1013.85 1146.21i −1.29373 1.46263i
\(86\) 0 0
\(87\) 988.109i 1.21766i
\(88\) 0 0
\(89\) 757.114 0.901730 0.450865 0.892592i \(-0.351116\pi\)
0.450865 + 0.892592i \(0.351116\pi\)
\(90\) 0 0
\(91\) 913.549 1.05237
\(92\) 0 0
\(93\) 1564.03i 1.74390i
\(94\) 0 0
\(95\) −1055.69 + 933.783i −1.14012 + 1.00846i
\(96\) 0 0
\(97\) 1118.29i 1.17057i 0.810827 + 0.585285i \(0.199018\pi\)
−0.810827 + 0.585285i \(0.800982\pi\)
\(98\) 0 0
\(99\) −214.827 −0.218090
\(100\) 0 0
\(101\) −1053.05 −1.03745 −0.518723 0.854942i \(-0.673592\pi\)
−0.518723 + 0.854942i \(0.673592\pi\)
\(102\) 0 0
\(103\) 728.192i 0.696610i −0.937381 0.348305i \(-0.886757\pi\)
0.937381 0.348305i \(-0.113243\pi\)
\(104\) 0 0
\(105\) −778.946 + 688.996i −0.723974 + 0.640373i
\(106\) 0 0
\(107\) 988.919i 0.893480i −0.894664 0.446740i \(-0.852585\pi\)
0.894664 0.446740i \(-0.147415\pi\)
\(108\) 0 0
\(109\) 1736.51 1.52594 0.762970 0.646434i \(-0.223740\pi\)
0.762970 + 0.646434i \(0.223740\pi\)
\(110\) 0 0
\(111\) −44.8110 −0.0383178
\(112\) 0 0
\(113\) 1115.15i 0.928360i −0.885741 0.464180i \(-0.846349\pi\)
0.885741 0.464180i \(-0.153651\pi\)
\(114\) 0 0
\(115\) −463.435 523.937i −0.375787 0.424847i
\(116\) 0 0
\(117\) 1308.40i 1.03386i
\(118\) 0 0
\(119\) 1866.36 1.43772
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1887.34i 1.38354i
\(124\) 0 0
\(125\) 791.186 + 1152.02i 0.566127 + 0.824318i
\(126\) 0 0
\(127\) 1558.13i 1.08868i 0.838866 + 0.544338i \(0.183219\pi\)
−0.838866 + 0.544338i \(0.816781\pi\)
\(128\) 0 0
\(129\) 1591.67 1.08634
\(130\) 0 0
\(131\) 620.634 0.413932 0.206966 0.978348i \(-0.433641\pi\)
0.206966 + 0.978348i \(0.433641\pi\)
\(132\) 0 0
\(133\) 1718.97i 1.12071i
\(134\) 0 0
\(135\) −377.456 426.734i −0.240639 0.272055i
\(136\) 0 0
\(137\) 1138.81i 0.710185i 0.934831 + 0.355093i \(0.115551\pi\)
−0.934831 + 0.355093i \(0.884449\pi\)
\(138\) 0 0
\(139\) −1363.18 −0.831826 −0.415913 0.909404i \(-0.636538\pi\)
−0.415913 + 0.909404i \(0.636538\pi\)
\(140\) 0 0
\(141\) −2603.91 −1.55524
\(142\) 0 0
\(143\) 736.949i 0.430956i
\(144\) 0 0
\(145\) 1213.09 1073.01i 0.694772 0.614542i
\(146\) 0 0
\(147\) 1071.34i 0.601108i
\(148\) 0 0
\(149\) −2823.58 −1.55246 −0.776232 0.630448i \(-0.782871\pi\)
−0.776232 + 0.630448i \(0.782871\pi\)
\(150\) 0 0
\(151\) −975.281 −0.525611 −0.262806 0.964849i \(-0.584648\pi\)
−0.262806 + 0.964849i \(0.584648\pi\)
\(152\) 0 0
\(153\) 2673.03i 1.41243i
\(154\) 0 0
\(155\) 1920.15 1698.42i 0.995033 0.880130i
\(156\) 0 0
\(157\) 842.402i 0.428223i −0.976809 0.214111i \(-0.931314\pi\)
0.976809 0.214111i \(-0.0686856\pi\)
\(158\) 0 0
\(159\) −1243.01 −0.619980
\(160\) 0 0
\(161\) 853.124 0.417612
\(162\) 0 0
\(163\) 376.648i 0.180990i 0.995897 + 0.0904950i \(0.0288449\pi\)
−0.995897 + 0.0904950i \(0.971155\pi\)
\(164\) 0 0
\(165\) −555.804 628.366i −0.262238 0.296474i
\(166\) 0 0
\(167\) 1298.93i 0.601882i −0.953643 0.300941i \(-0.902699\pi\)
0.953643 0.300941i \(-0.0973008\pi\)
\(168\) 0 0
\(169\) −2291.37 −1.04296
\(170\) 0 0
\(171\) −2461.94 −1.10099
\(172\) 0 0
\(173\) 2066.43i 0.908138i 0.890967 + 0.454069i \(0.150028\pi\)
−0.890967 + 0.454069i \(0.849972\pi\)
\(174\) 0 0
\(175\) −1691.75 208.109i −0.730767 0.0898945i
\(176\) 0 0
\(177\) 760.342i 0.322886i
\(178\) 0 0
\(179\) −2046.17 −0.854400 −0.427200 0.904157i \(-0.640500\pi\)
−0.427200 + 0.904157i \(0.640500\pi\)
\(180\) 0 0
\(181\) 2561.44 1.05188 0.525941 0.850521i \(-0.323713\pi\)
0.525941 + 0.850521i \(0.323713\pi\)
\(182\) 0 0
\(183\) 797.931i 0.322321i
\(184\) 0 0
\(185\) −48.6613 55.0141i −0.0193386 0.0218633i
\(186\) 0 0
\(187\) 1505.57i 0.588761i
\(188\) 0 0
\(189\) 694.848 0.267422
\(190\) 0 0
\(191\) −3474.08 −1.31610 −0.658051 0.752973i \(-0.728619\pi\)
−0.658051 + 0.752973i \(0.728619\pi\)
\(192\) 0 0
\(193\) 1741.67i 0.649577i 0.945787 + 0.324788i \(0.105293\pi\)
−0.945787 + 0.324788i \(0.894707\pi\)
\(194\) 0 0
\(195\) 3827.05 3385.12i 1.40544 1.24315i
\(196\) 0 0
\(197\) 112.400i 0.0406507i 0.999793 + 0.0203253i \(0.00647020\pi\)
−0.999793 + 0.0203253i \(0.993530\pi\)
\(198\) 0 0
\(199\) −4526.79 −1.61254 −0.806270 0.591548i \(-0.798517\pi\)
−0.806270 + 0.591548i \(0.798517\pi\)
\(200\) 0 0
\(201\) 3280.23 1.15109
\(202\) 0 0
\(203\) 1975.27i 0.682941i
\(204\) 0 0
\(205\) 2317.07 2049.50i 0.789420 0.698261i
\(206\) 0 0
\(207\) 1221.86i 0.410266i
\(208\) 0 0
\(209\) 1386.67 0.458939
\(210\) 0 0
\(211\) 3743.57 1.22141 0.610707 0.791857i \(-0.290885\pi\)
0.610707 + 0.791857i \(0.290885\pi\)
\(212\) 0 0
\(213\) 4111.15i 1.32249i
\(214\) 0 0
\(215\) 1728.43 + 1954.08i 0.548269 + 0.619846i
\(216\) 0 0
\(217\) 3126.57i 0.978089i
\(218\) 0 0
\(219\) 4244.04 1.30952
\(220\) 0 0
\(221\) −9169.65 −2.79103
\(222\) 0 0
\(223\) 2773.89i 0.832975i −0.909141 0.416487i \(-0.863261\pi\)
0.909141 0.416487i \(-0.136739\pi\)
\(224\) 0 0
\(225\) −298.057 + 2422.95i −0.0883131 + 0.717911i
\(226\) 0 0
\(227\) 175.125i 0.0512046i −0.999672 0.0256023i \(-0.991850\pi\)
0.999672 0.0256023i \(-0.00815036\pi\)
\(228\) 0 0
\(229\) −2789.77 −0.805035 −0.402518 0.915412i \(-0.631865\pi\)
−0.402518 + 0.915412i \(0.631865\pi\)
\(230\) 0 0
\(231\) 1023.16 0.291425
\(232\) 0 0
\(233\) 3107.83i 0.873822i −0.899505 0.436911i \(-0.856072\pi\)
0.899505 0.436911i \(-0.143928\pi\)
\(234\) 0 0
\(235\) −2827.65 3196.80i −0.784917 0.887389i
\(236\) 0 0
\(237\) 5244.88i 1.43752i
\(238\) 0 0
\(239\) −5263.47 −1.42454 −0.712271 0.701904i \(-0.752333\pi\)
−0.712271 + 0.701904i \(0.752333\pi\)
\(240\) 0 0
\(241\) −2063.46 −0.551533 −0.275767 0.961225i \(-0.588932\pi\)
−0.275767 + 0.961225i \(0.588932\pi\)
\(242\) 0 0
\(243\) 4592.04i 1.21226i
\(244\) 0 0
\(245\) −1315.28 + 1163.40i −0.342980 + 0.303374i
\(246\) 0 0
\(247\) 8445.52i 2.17561i
\(248\) 0 0
\(249\) 6501.60 1.65471
\(250\) 0 0
\(251\) −2087.66 −0.524988 −0.262494 0.964934i \(-0.584545\pi\)
−0.262494 + 0.964934i \(0.584545\pi\)
\(252\) 0 0
\(253\) 688.205i 0.171016i
\(254\) 0 0
\(255\) 7818.58 6915.72i 1.92007 1.69835i
\(256\) 0 0
\(257\) 4901.68i 1.18972i 0.803829 + 0.594861i \(0.202793\pi\)
−0.803829 + 0.594861i \(0.797207\pi\)
\(258\) 0 0
\(259\) 89.5791 0.0214910
\(260\) 0 0
\(261\) 2829.02 0.670927
\(262\) 0 0
\(263\) 5075.49i 1.18999i 0.803728 + 0.594997i \(0.202847\pi\)
−0.803728 + 0.594997i \(0.797153\pi\)
\(264\) 0 0
\(265\) −1349.81 1526.03i −0.312899 0.353748i
\(266\) 0 0
\(267\) 5164.48i 1.18375i
\(268\) 0 0
\(269\) 3906.32 0.885400 0.442700 0.896670i \(-0.354021\pi\)
0.442700 + 0.896670i \(0.354021\pi\)
\(270\) 0 0
\(271\) −2849.44 −0.638714 −0.319357 0.947635i \(-0.603467\pi\)
−0.319357 + 0.947635i \(0.603467\pi\)
\(272\) 0 0
\(273\) 6231.56i 1.38151i
\(274\) 0 0
\(275\) 167.879 1364.71i 0.0368126 0.299256i
\(276\) 0 0
\(277\) 5076.18i 1.10108i −0.834810 0.550539i \(-0.814422\pi\)
0.834810 0.550539i \(-0.185578\pi\)
\(278\) 0 0
\(279\) 4477.92 0.960882
\(280\) 0 0
\(281\) −2815.17 −0.597647 −0.298823 0.954308i \(-0.596594\pi\)
−0.298823 + 0.954308i \(0.596594\pi\)
\(282\) 0 0
\(283\) 2420.95i 0.508519i −0.967136 0.254259i \(-0.918168\pi\)
0.967136 0.254259i \(-0.0818317\pi\)
\(284\) 0 0
\(285\) −6369.58 7201.14i −1.32387 1.49670i
\(286\) 0 0
\(287\) 3772.87i 0.775978i
\(288\) 0 0
\(289\) −13820.4 −2.81303
\(290\) 0 0
\(291\) −7628.17 −1.53667
\(292\) 0 0
\(293\) 2429.28i 0.484370i 0.970230 + 0.242185i \(0.0778640\pi\)
−0.970230 + 0.242185i \(0.922136\pi\)
\(294\) 0 0
\(295\) −933.465 + 825.672i −0.184232 + 0.162958i
\(296\) 0 0
\(297\) 560.525i 0.109512i
\(298\) 0 0
\(299\) −4191.50 −0.810705
\(300\) 0 0
\(301\) −3181.81 −0.609291
\(302\) 0 0
\(303\) 7183.12i 1.36191i
\(304\) 0 0
\(305\) −979.613 + 866.491i −0.183910 + 0.162673i
\(306\) 0 0
\(307\) 162.937i 0.0302910i 0.999885 + 0.0151455i \(0.00482114\pi\)
−0.999885 + 0.0151455i \(0.995179\pi\)
\(308\) 0 0
\(309\) 4967.19 0.914478
\(310\) 0 0
\(311\) 6155.28 1.12230 0.561148 0.827715i \(-0.310360\pi\)
0.561148 + 0.827715i \(0.310360\pi\)
\(312\) 0 0
\(313\) 6165.59i 1.11342i −0.830708 0.556709i \(-0.812064\pi\)
0.830708 0.556709i \(-0.187936\pi\)
\(314\) 0 0
\(315\) −1972.64 2230.17i −0.352843 0.398907i
\(316\) 0 0
\(317\) 3099.89i 0.549234i 0.961554 + 0.274617i \(0.0885510\pi\)
−0.961554 + 0.274617i \(0.911449\pi\)
\(318\) 0 0
\(319\) −1593.43 −0.279670
\(320\) 0 0
\(321\) 6745.68 1.17292
\(322\) 0 0
\(323\) 17254.0i 2.97226i
\(324\) 0 0
\(325\) 8311.76 + 1022.46i 1.41863 + 0.174511i
\(326\) 0 0
\(327\) 11845.2i 2.00318i
\(328\) 0 0
\(329\) 5205.34 0.872278
\(330\) 0 0
\(331\) 7423.91 1.23279 0.616397 0.787436i \(-0.288592\pi\)
0.616397 + 0.787436i \(0.288592\pi\)
\(332\) 0 0
\(333\) 128.297i 0.0211130i
\(334\) 0 0
\(335\) 3562.07 + 4027.11i 0.580946 + 0.656789i
\(336\) 0 0
\(337\) 1808.87i 0.292391i 0.989256 + 0.146195i \(0.0467028\pi\)
−0.989256 + 0.146195i \(0.953297\pi\)
\(338\) 0 0
\(339\) 7606.76 1.21871
\(340\) 0 0
\(341\) −2522.16 −0.400536
\(342\) 0 0
\(343\) 6818.81i 1.07341i
\(344\) 0 0
\(345\) 3573.92 3161.22i 0.557720 0.493316i
\(346\) 0 0
\(347\) 5850.60i 0.905120i 0.891734 + 0.452560i \(0.149489\pi\)
−0.891734 + 0.452560i \(0.850511\pi\)
\(348\) 0 0
\(349\) 10231.6 1.56930 0.784648 0.619941i \(-0.212844\pi\)
0.784648 + 0.619941i \(0.212844\pi\)
\(350\) 0 0
\(351\) −3413.87 −0.519142
\(352\) 0 0
\(353\) 438.848i 0.0661687i 0.999453 + 0.0330843i \(0.0105330\pi\)
−0.999453 + 0.0330843i \(0.989467\pi\)
\(354\) 0 0
\(355\) −5047.22 + 4464.39i −0.754588 + 0.667451i
\(356\) 0 0
\(357\) 12731.0i 1.88738i
\(358\) 0 0
\(359\) 9743.06 1.43236 0.716182 0.697913i \(-0.245888\pi\)
0.716182 + 0.697913i \(0.245888\pi\)
\(360\) 0 0
\(361\) 9032.45 1.31688
\(362\) 0 0
\(363\) 825.374i 0.119341i
\(364\) 0 0
\(365\) 4608.70 + 5210.38i 0.660905 + 0.747188i
\(366\) 0 0
\(367\) 11674.8i 1.66054i −0.557363 0.830269i \(-0.688187\pi\)
0.557363 0.830269i \(-0.311813\pi\)
\(368\) 0 0
\(369\) 5403.57 0.762327
\(370\) 0 0
\(371\) 2484.82 0.347724
\(372\) 0 0
\(373\) 537.719i 0.0746435i −0.999303 0.0373218i \(-0.988117\pi\)
0.999303 0.0373218i \(-0.0118826\pi\)
\(374\) 0 0
\(375\) −7858.24 + 5396.90i −1.08213 + 0.743185i
\(376\) 0 0
\(377\) 9704.75i 1.32578i
\(378\) 0 0
\(379\) 9268.43 1.25617 0.628084 0.778146i \(-0.283840\pi\)
0.628084 + 0.778146i \(0.283840\pi\)
\(380\) 0 0
\(381\) −10628.4 −1.42916
\(382\) 0 0
\(383\) 5038.62i 0.672223i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(384\) 0 0
\(385\) 1111.08 + 1256.13i 0.147080 + 0.166281i
\(386\) 0 0
\(387\) 4557.04i 0.598572i
\(388\) 0 0
\(389\) −12545.6 −1.63518 −0.817590 0.575800i \(-0.804691\pi\)
−0.817590 + 0.575800i \(0.804691\pi\)
\(390\) 0 0
\(391\) −8563.14 −1.10756
\(392\) 0 0
\(393\) 4233.51i 0.543390i
\(394\) 0 0
\(395\) 6439.09 5695.53i 0.820217 0.725502i
\(396\) 0 0
\(397\) 9116.35i 1.15248i 0.817279 + 0.576242i \(0.195482\pi\)
−0.817279 + 0.576242i \(0.804518\pi\)
\(398\) 0 0
\(399\) 11725.6 1.47121
\(400\) 0 0
\(401\) −3052.85 −0.380179 −0.190090 0.981767i \(-0.560878\pi\)
−0.190090 + 0.981767i \(0.560878\pi\)
\(402\) 0 0
\(403\) 15361.2i 1.89875i
\(404\) 0 0
\(405\) 7326.71 6480.65i 0.898932 0.795127i
\(406\) 0 0
\(407\) 72.2623i 0.00880077i
\(408\) 0 0
\(409\) 4417.02 0.534004 0.267002 0.963696i \(-0.413967\pi\)
0.267002 + 0.963696i \(0.413967\pi\)
\(410\) 0 0
\(411\) −7768.15 −0.932298
\(412\) 0 0
\(413\) 1519.96i 0.181095i
\(414\) 0 0
\(415\) 7060.24 + 7981.96i 0.835117 + 0.944143i
\(416\) 0 0
\(417\) 9298.65i 1.09198i
\(418\) 0 0
\(419\) 6184.20 0.721045 0.360522 0.932751i \(-0.382598\pi\)
0.360522 + 0.932751i \(0.382598\pi\)
\(420\) 0 0
\(421\) −14153.4 −1.63846 −0.819231 0.573464i \(-0.805599\pi\)
−0.819231 + 0.573464i \(0.805599\pi\)
\(422\) 0 0
\(423\) 7455.17i 0.856933i
\(424\) 0 0
\(425\) 16980.8 + 2088.87i 1.93809 + 0.238412i
\(426\) 0 0
\(427\) 1595.10i 0.180778i
\(428\) 0 0
\(429\) −5026.93 −0.565739
\(430\) 0 0
\(431\) −539.740 −0.0603210 −0.0301605 0.999545i \(-0.509602\pi\)
−0.0301605 + 0.999545i \(0.509602\pi\)
\(432\) 0 0
\(433\) 13447.3i 1.49246i 0.665687 + 0.746231i \(0.268139\pi\)
−0.665687 + 0.746231i \(0.731861\pi\)
\(434\) 0 0
\(435\) 7319.29 + 8274.84i 0.806743 + 0.912065i
\(436\) 0 0
\(437\) 7886.91i 0.863345i
\(438\) 0 0
\(439\) 9970.49 1.08398 0.541988 0.840386i \(-0.317672\pi\)
0.541988 + 0.840386i \(0.317672\pi\)
\(440\) 0 0
\(441\) −3067.32 −0.331208
\(442\) 0 0
\(443\) 11600.7i 1.24416i 0.782952 + 0.622082i \(0.213713\pi\)
−0.782952 + 0.622082i \(0.786287\pi\)
\(444\) 0 0
\(445\) −6340.39 + 5608.23i −0.675423 + 0.597428i
\(446\) 0 0
\(447\) 19260.4i 2.03800i
\(448\) 0 0
\(449\) 12957.9 1.36196 0.680982 0.732300i \(-0.261553\pi\)
0.680982 + 0.732300i \(0.261553\pi\)
\(450\) 0 0
\(451\) −3043.53 −0.317770
\(452\) 0 0
\(453\) 6652.66i 0.689998i
\(454\) 0 0
\(455\) −7650.44 + 6767.00i −0.788260 + 0.697235i
\(456\) 0 0
\(457\) 16667.8i 1.70610i 0.521831 + 0.853049i \(0.325249\pi\)
−0.521831 + 0.853049i \(0.674751\pi\)
\(458\) 0 0
\(459\) −6974.46 −0.709237
\(460\) 0 0
\(461\) 5625.88 0.568380 0.284190 0.958768i \(-0.408275\pi\)
0.284190 + 0.958768i \(0.408275\pi\)
\(462\) 0 0
\(463\) 3395.81i 0.340857i −0.985370 0.170429i \(-0.945485\pi\)
0.985370 0.170429i \(-0.0545152\pi\)
\(464\) 0 0
\(465\) 11585.4 + 13097.9i 1.15539 + 1.30623i
\(466\) 0 0
\(467\) 12556.6i 1.24422i −0.782930 0.622110i \(-0.786276\pi\)
0.782930 0.622110i \(-0.213724\pi\)
\(468\) 0 0
\(469\) −6557.32 −0.645605
\(470\) 0 0
\(471\) 5746.25 0.562151
\(472\) 0 0
\(473\) 2566.73i 0.249510i
\(474\) 0 0
\(475\) 1923.91 15639.8i 0.185842 1.51074i
\(476\) 0 0
\(477\) 3558.81i 0.341607i
\(478\) 0 0
\(479\) 7841.71 0.748010 0.374005 0.927427i \(-0.377984\pi\)
0.374005 + 0.927427i \(0.377984\pi\)
\(480\) 0 0
\(481\) −440.113 −0.0417202
\(482\) 0 0
\(483\) 5819.39i 0.548222i
\(484\) 0 0
\(485\) −8283.61 9365.05i −0.775545 0.876793i
\(486\) 0 0
\(487\) 1205.34i 0.112154i −0.998426 0.0560772i \(-0.982141\pi\)
0.998426 0.0560772i \(-0.0178593\pi\)
\(488\) 0 0
\(489\) −2569.22 −0.237595
\(490\) 0 0
\(491\) 2708.46 0.248944 0.124472 0.992223i \(-0.460276\pi\)
0.124472 + 0.992223i \(0.460276\pi\)
\(492\) 0 0
\(493\) 19826.6i 1.81125i
\(494\) 0 0
\(495\) 1799.05 1591.30i 0.163356 0.144492i
\(496\) 0 0
\(497\) 8218.36i 0.741739i
\(498\) 0 0
\(499\) −17160.4 −1.53949 −0.769745 0.638351i \(-0.779617\pi\)
−0.769745 + 0.638351i \(0.779617\pi\)
\(500\) 0 0
\(501\) 8860.36 0.790124
\(502\) 0 0
\(503\) 263.269i 0.0233371i −0.999932 0.0116686i \(-0.996286\pi\)
0.999932 0.0116686i \(-0.00371431\pi\)
\(504\) 0 0
\(505\) 8818.65 7800.31i 0.777079 0.687345i
\(506\) 0 0
\(507\) 15630.1i 1.36914i
\(508\) 0 0
\(509\) 21083.7 1.83599 0.917997 0.396588i \(-0.129806\pi\)
0.917997 + 0.396588i \(0.129806\pi\)
\(510\) 0 0
\(511\) −8484.02 −0.734464
\(512\) 0 0
\(513\) 6423.68i 0.552851i
\(514\) 0 0
\(515\) 5393.99 + 6098.18i 0.461529 + 0.521782i
\(516\) 0 0
\(517\) 4199.08i 0.357206i
\(518\) 0 0
\(519\) −14095.7 −1.19216
\(520\) 0 0
\(521\) 20745.1 1.74445 0.872226 0.489102i \(-0.162676\pi\)
0.872226 + 0.489102i \(0.162676\pi\)
\(522\) 0 0
\(523\) 19060.9i 1.59364i 0.604214 + 0.796822i \(0.293487\pi\)
−0.604214 + 0.796822i \(0.706513\pi\)
\(524\) 0 0
\(525\) 1419.57 11539.9i 0.118009 0.959317i
\(526\) 0 0
\(527\) 31382.6i 2.59402i
\(528\) 0 0
\(529\) 8252.74 0.678289
\(530\) 0 0
\(531\) −2176.91 −0.177909
\(532\) 0 0
\(533\) 18536.6i 1.50639i
\(534\) 0 0
\(535\) 7325.29 + 8281.62i 0.591962 + 0.669244i
\(536\) 0 0
\(537\) 13957.5i 1.12162i
\(538\) 0 0
\(539\) 1727.65 0.138062
\(540\) 0 0
\(541\) −3953.81 −0.314210 −0.157105 0.987582i \(-0.550216\pi\)
−0.157105 + 0.987582i \(0.550216\pi\)
\(542\) 0 0
\(543\) 17472.3i 1.38086i
\(544\) 0 0
\(545\) −14542.3 + 12863.0i −1.14298 + 1.01099i
\(546\) 0 0
\(547\) 10226.2i 0.799340i 0.916659 + 0.399670i \(0.130875\pi\)
−0.916659 + 0.399670i \(0.869125\pi\)
\(548\) 0 0
\(549\) −2284.53 −0.177598
\(550\) 0 0
\(551\) −18260.9 −1.41187
\(552\) 0 0
\(553\) 10484.7i 0.806250i
\(554\) 0 0
\(555\) 375.266 331.932i 0.0287012 0.0253869i
\(556\) 0 0
\(557\) 17378.7i 1.32201i −0.750381 0.661005i \(-0.770130\pi\)
0.750381 0.661005i \(-0.229870\pi\)
\(558\) 0 0
\(559\) 15632.6 1.18281
\(560\) 0 0
\(561\) −10269.9 −0.772898
\(562\) 0 0
\(563\) 12073.4i 0.903791i 0.892071 + 0.451895i \(0.149252\pi\)
−0.892071 + 0.451895i \(0.850748\pi\)
\(564\) 0 0
\(565\) 8260.35 + 9338.75i 0.615072 + 0.695370i
\(566\) 0 0
\(567\) 11930.0i 0.883624i
\(568\) 0 0
\(569\) −11995.8 −0.883811 −0.441906 0.897062i \(-0.645697\pi\)
−0.441906 + 0.897062i \(0.645697\pi\)
\(570\) 0 0
\(571\) 6422.26 0.470688 0.235344 0.971912i \(-0.424378\pi\)
0.235344 + 0.971912i \(0.424378\pi\)
\(572\) 0 0
\(573\) 23697.6i 1.72772i
\(574\) 0 0
\(575\) 7762.00 + 954.834i 0.562953 + 0.0692510i
\(576\) 0 0
\(577\) 21036.3i 1.51777i 0.651227 + 0.758883i \(0.274255\pi\)
−0.651227 + 0.758883i \(0.725745\pi\)
\(578\) 0 0
\(579\) −11880.4 −0.852735
\(580\) 0 0
\(581\) −12997.0 −0.928065
\(582\) 0 0
\(583\) 2004.48i 0.142396i
\(584\) 0 0
\(585\) 9691.80 + 10957.1i 0.684969 + 0.774393i
\(586\) 0 0
\(587\) 5970.28i 0.419795i −0.977723 0.209898i \(-0.932687\pi\)
0.977723 0.209898i \(-0.0673131\pi\)
\(588\) 0 0
\(589\) −28904.3 −2.02204
\(590\) 0 0
\(591\) −766.712 −0.0533643
\(592\) 0 0
\(593\) 25442.7i 1.76190i 0.473209 + 0.880950i \(0.343096\pi\)
−0.473209 + 0.880950i \(0.656904\pi\)
\(594\) 0 0
\(595\) −15629.7 + 13824.8i −1.07690 + 0.952543i
\(596\) 0 0
\(597\) 30878.4i 2.11687i
\(598\) 0 0
\(599\) 15519.2 1.05860 0.529298 0.848436i \(-0.322456\pi\)
0.529298 + 0.848436i \(0.322456\pi\)
\(600\) 0 0
\(601\) −12438.2 −0.844203 −0.422102 0.906549i \(-0.638707\pi\)
−0.422102 + 0.906549i \(0.638707\pi\)
\(602\) 0 0
\(603\) 9391.50i 0.634248i
\(604\) 0 0
\(605\) −1013.30 + 896.292i −0.0680937 + 0.0602305i
\(606\) 0 0
\(607\) 16809.7i 1.12403i 0.827128 + 0.562014i \(0.189973\pi\)
−0.827128 + 0.562014i \(0.810027\pi\)
\(608\) 0 0
\(609\) −13473.9 −0.896533
\(610\) 0 0
\(611\) −25574.4 −1.69334
\(612\) 0 0
\(613\) 18549.3i 1.22218i 0.791560 + 0.611092i \(0.209269\pi\)
−0.791560 + 0.611092i \(0.790731\pi\)
\(614\) 0 0
\(615\) 13980.2 + 15805.4i 0.916645 + 1.03631i
\(616\) 0 0
\(617\) 21973.9i 1.43377i 0.697191 + 0.716885i \(0.254433\pi\)
−0.697191 + 0.716885i \(0.745567\pi\)
\(618\) 0 0
\(619\) 3457.29 0.224492 0.112246 0.993680i \(-0.464196\pi\)
0.112246 + 0.993680i \(0.464196\pi\)
\(620\) 0 0
\(621\) −3188.06 −0.206011
\(622\) 0 0
\(623\) 10324.0i 0.663922i
\(624\) 0 0
\(625\) −15159.2 3786.88i −0.970186 0.242360i
\(626\) 0 0
\(627\) 9458.88i 0.602474i
\(628\) 0 0
\(629\) −899.141 −0.0569970
\(630\) 0 0
\(631\) −4266.16 −0.269149 −0.134575 0.990903i \(-0.542967\pi\)
−0.134575 + 0.990903i \(0.542967\pi\)
\(632\) 0 0
\(633\) 25535.9i 1.60342i
\(634\) 0 0
\(635\) −11541.7 13048.4i −0.721286 0.815451i
\(636\) 0 0
\(637\) 10522.2i 0.654484i
\(638\) 0 0
\(639\) −11770.5 −0.728690
\(640\) 0 0
\(641\) −4556.59 −0.280771 −0.140386 0.990097i \(-0.544834\pi\)
−0.140386 + 0.990097i \(0.544834\pi\)
\(642\) 0 0
\(643\) 4616.92i 0.283162i 0.989927 + 0.141581i \(0.0452186\pi\)
−0.989927 + 0.141581i \(0.954781\pi\)
\(644\) 0 0
\(645\) −13329.3 + 11790.1i −0.813705 + 0.719742i
\(646\) 0 0
\(647\) 1201.79i 0.0730252i 0.999333 + 0.0365126i \(0.0116249\pi\)
−0.999333 + 0.0365126i \(0.988375\pi\)
\(648\) 0 0
\(649\) 1226.13 0.0741599
\(650\) 0 0
\(651\) −21327.2 −1.28399
\(652\) 0 0
\(653\) 8658.24i 0.518871i 0.965760 + 0.259436i \(0.0835366\pi\)
−0.965760 + 0.259436i \(0.916463\pi\)
\(654\) 0 0
\(655\) −5197.45 + 4597.27i −0.310047 + 0.274244i
\(656\) 0 0
\(657\) 12151.0i 0.721543i
\(658\) 0 0
\(659\) 15311.7 0.905096 0.452548 0.891740i \(-0.350515\pi\)
0.452548 + 0.891740i \(0.350515\pi\)
\(660\) 0 0
\(661\) −24981.1 −1.46997 −0.734987 0.678081i \(-0.762812\pi\)
−0.734987 + 0.678081i \(0.762812\pi\)
\(662\) 0 0
\(663\) 62548.7i 3.66394i
\(664\) 0 0
\(665\) 12733.1 + 14395.4i 0.742507 + 0.839443i
\(666\) 0 0
\(667\) 9062.85i 0.526109i
\(668\) 0 0
\(669\) 18921.5 1.09349
\(670\) 0 0
\(671\) 1286.75 0.0740302
\(672\) 0 0
\(673\) 7248.66i 0.415179i −0.978216 0.207589i \(-0.933438\pi\)
0.978216 0.207589i \(-0.0665618\pi\)
\(674\) 0 0
\(675\) 6321.95 + 777.688i 0.360492 + 0.0443455i
\(676\) 0 0
\(677\) 10382.1i 0.589388i −0.955592 0.294694i \(-0.904782\pi\)
0.955592 0.294694i \(-0.0952178\pi\)
\(678\) 0 0
\(679\) 15249.0 0.861863
\(680\) 0 0
\(681\) 1194.57 0.0672191
\(682\) 0 0
\(683\) 32874.9i 1.84176i 0.389844 + 0.920881i \(0.372529\pi\)
−0.389844 + 0.920881i \(0.627471\pi\)
\(684\) 0 0
\(685\) −8435.61 9536.89i −0.470523 0.531950i
\(686\) 0 0
\(687\) 19029.8i 1.05681i
\(688\) 0 0
\(689\) −12208.2 −0.675032
\(690\) 0 0
\(691\) −20337.8 −1.11966 −0.559830 0.828607i \(-0.689134\pi\)
−0.559830 + 0.828607i \(0.689134\pi\)
\(692\) 0 0
\(693\) 2929.38i 0.160574i
\(694\) 0 0
\(695\) 11415.9 10097.6i 0.623063 0.551114i
\(696\) 0 0
\(697\) 37869.8i 2.05799i
\(698\) 0 0
\(699\) 21199.3 1.14711
\(700\) 0 0
\(701\) 12930.7 0.696699 0.348349 0.937365i \(-0.386742\pi\)
0.348349 + 0.937365i \(0.386742\pi\)
\(702\) 0 0
\(703\) 828.135i 0.0444292i
\(704\) 0 0
\(705\) 21806.3 19288.2i 1.16492 1.03040i
\(706\) 0 0
\(707\) 14359.4i 0.763846i
\(708\) 0 0
\(709\) −7078.40 −0.374944 −0.187472 0.982270i \(-0.560029\pi\)
−0.187472 + 0.982270i \(0.560029\pi\)
\(710\) 0 0
\(711\) 15016.4 0.792066
\(712\) 0 0
\(713\) 14345.2i 0.753479i
\(714\) 0 0
\(715\) −5458.85 6171.51i −0.285524 0.322799i
\(716\) 0 0
\(717\) 35903.6i 1.87007i
\(718\) 0 0
\(719\) −9201.25 −0.477258 −0.238629 0.971111i \(-0.576698\pi\)
−0.238629 + 0.971111i \(0.576698\pi\)
\(720\) 0 0
\(721\) −9929.63 −0.512897
\(722\) 0 0
\(723\) 14075.5i 0.724027i
\(724\) 0 0
\(725\) −2210.77 + 17971.7i −0.113249 + 0.920622i
\(726\) 0 0
\(727\) 1522.05i 0.0776477i −0.999246 0.0388239i \(-0.987639\pi\)
0.999246 0.0388239i \(-0.0123611\pi\)
\(728\) 0 0
\(729\) 7701.47 0.391275
\(730\) 0 0
\(731\) 31937.1 1.61592
\(732\) 0 0
\(733\) 21264.1i 1.07150i −0.844377 0.535749i \(-0.820029\pi\)
0.844377 0.535749i \(-0.179971\pi\)
\(734\) 0 0
\(735\) −7935.84 8971.87i −0.398255 0.450248i
\(736\) 0 0
\(737\) 5289.71i 0.264381i
\(738\) 0 0
\(739\) 21555.5 1.07298 0.536490 0.843907i \(-0.319750\pi\)
0.536490 + 0.843907i \(0.319750\pi\)
\(740\) 0 0
\(741\) −57609.2 −2.85604
\(742\) 0 0
\(743\) 18974.7i 0.936895i −0.883491 0.468447i \(-0.844814\pi\)
0.883491 0.468447i \(-0.155186\pi\)
\(744\) 0 0
\(745\) 23645.9 20915.3i 1.16284 1.02856i
\(746\) 0 0
\(747\) 18614.5i 0.911738i
\(748\) 0 0
\(749\) −13484.9 −0.657848
\(750\) 0 0
\(751\) −24260.6 −1.17880 −0.589402 0.807840i \(-0.700637\pi\)
−0.589402 + 0.807840i \(0.700637\pi\)
\(752\) 0 0
\(753\) 14240.5i 0.689180i
\(754\) 0 0
\(755\) 8167.41 7224.27i 0.393699 0.348236i
\(756\) 0 0
\(757\) 14128.2i 0.678333i 0.940726 + 0.339166i \(0.110145\pi\)
−0.940726 + 0.339166i \(0.889855\pi\)
\(758\) 0 0
\(759\) −4694.43 −0.224502
\(760\) 0 0
\(761\) −917.035 −0.0436826 −0.0218413 0.999761i \(-0.506953\pi\)
−0.0218413 + 0.999761i \(0.506953\pi\)
\(762\) 0 0
\(763\) 23679.1i 1.12351i
\(764\) 0 0
\(765\) 19800.1 + 22385.1i 0.935786 + 1.05795i
\(766\) 0 0
\(767\) 7467.72i 0.351556i
\(768\) 0 0
\(769\) 21609.1 1.01332 0.506661 0.862145i \(-0.330880\pi\)
0.506661 + 0.862145i \(0.330880\pi\)
\(770\) 0 0
\(771\) −33435.7 −1.56181
\(772\) 0 0
\(773\) 16205.3i 0.754029i −0.926207 0.377014i \(-0.876951\pi\)
0.926207 0.377014i \(-0.123049\pi\)
\(774\) 0 0
\(775\) −3499.32 + 28446.5i −0.162193 + 1.31849i
\(776\) 0 0
\(777\) 611.043i 0.0282124i
\(778\) 0 0
\(779\) −34879.2 −1.60421
\(780\) 0 0
\(781\) 6629.65 0.303749
\(782\) 0 0
\(783\) 7381.45i 0.336899i
\(784\) 0 0
\(785\) 6239.98 + 7054.63i 0.283713 + 0.320752i
\(786\) 0 0
\(787\) 6106.91i 0.276605i 0.990390 + 0.138302i \(0.0441645\pi\)
−0.990390 + 0.138302i \(0.955835\pi\)
\(788\) 0 0
\(789\) −34621.3 −1.56217
\(790\) 0 0
\(791\) −15206.2 −0.683529
\(792\) 0 0
\(793\) 7836.91i 0.350942i
\(794\) 0 0
\(795\) 10409.5 9207.41i 0.464384 0.410759i
\(796\) 0 0
\(797\) 1702.01i 0.0756442i 0.999284 + 0.0378221i \(0.0120420\pi\)
−0.999284 + 0.0378221i \(0.987958\pi\)
\(798\) 0 0
\(799\) −52248.0 −2.31339
\(800\) 0 0
\(801\) −14786.2 −0.652242
\(802\) 0 0
\(803\) 6843.96i 0.300770i
\(804\) 0 0
\(805\) −7144.42 + 6319.41i −0.312804 + 0.276683i
\(806\) 0 0
\(807\) 26646.1i 1.16231i
\(808\) 0 0
\(809\) 22987.7 0.999016 0.499508 0.866309i \(-0.333514\pi\)
0.499508 + 0.866309i \(0.333514\pi\)
\(810\) 0 0
\(811\) −24705.7 −1.06971 −0.534855 0.844944i \(-0.679634\pi\)
−0.534855 + 0.844944i \(0.679634\pi\)
\(812\) 0 0
\(813\) 19436.8i 0.838474i
\(814\) 0 0
\(815\) −2789.97 3154.21i −0.119912 0.135567i
\(816\) 0 0
\(817\) 29415.0i 1.25961i
\(818\) 0 0
\(819\) −17841.4 −0.761206
\(820\) 0 0
\(821\) 37165.6 1.57989 0.789945 0.613178i \(-0.210109\pi\)
0.789945 + 0.613178i \(0.210109\pi\)
\(822\) 0 0
\(823\) 1333.29i 0.0564707i −0.999601 0.0282354i \(-0.991011\pi\)
0.999601 0.0282354i \(-0.00898879\pi\)
\(824\) 0 0
\(825\) 9309.08 + 1145.15i 0.392849 + 0.0483259i
\(826\) 0 0
\(827\) 19441.3i 0.817459i −0.912656 0.408729i \(-0.865972\pi\)
0.912656 0.408729i \(-0.134028\pi\)
\(828\) 0 0
\(829\) 30978.1 1.29785 0.648923 0.760854i \(-0.275220\pi\)
0.648923 + 0.760854i \(0.275220\pi\)
\(830\) 0 0
\(831\) 34626.0 1.44544
\(832\) 0 0
\(833\) 21496.7i 0.894137i
\(834\) 0 0
\(835\) 9621.67 + 10877.8i 0.398768 + 0.450828i
\(836\) 0 0
\(837\) 11683.8i 0.482497i
\(838\) 0 0
\(839\) −19548.7 −0.804406 −0.402203 0.915551i \(-0.631755\pi\)
−0.402203 + 0.915551i \(0.631755\pi\)
\(840\) 0 0
\(841\) −3405.42 −0.139629
\(842\) 0 0
\(843\) 19203.0i 0.784563i
\(844\) 0 0
\(845\) 19188.9 16973.1i 0.781206 0.690995i
\(846\) 0 0
\(847\) 1649.96i 0.0669341i
\(848\) 0 0
\(849\) 16514.0 0.667560
\(850\) 0 0
\(851\) −411.002 −0.0165558
\(852\) 0 0
\(853\) 27242.9i 1.09353i 0.837287 + 0.546764i \(0.184140\pi\)
−0.837287 + 0.546764i \(0.815860\pi\)
\(854\) 0 0
\(855\) 20617.3 18236.5i 0.824676 0.729445i
\(856\) 0 0
\(857\) 16567.2i 0.660356i 0.943919 + 0.330178i \(0.107109\pi\)
−0.943919 + 0.330178i \(0.892891\pi\)
\(858\) 0 0
\(859\) −2689.42 −0.106824 −0.0534121 0.998573i \(-0.517010\pi\)
−0.0534121 + 0.998573i \(0.517010\pi\)
\(860\) 0 0
\(861\) −25735.8 −1.01867
\(862\) 0 0
\(863\) 17196.1i 0.678289i 0.940734 + 0.339144i \(0.110138\pi\)
−0.940734 + 0.339144i \(0.889862\pi\)
\(864\) 0 0
\(865\) −15306.8 17305.2i −0.601673 0.680223i
\(866\) 0 0
\(867\) 94272.7i 3.69281i
\(868\) 0 0
\(869\) −8457.90 −0.330167
\(870\) 0 0
\(871\) 32216.9 1.25330
\(872\) 0 0
\(873\) 21839.9i 0.846701i
\(874\) 0 0
\(875\) 15709.0 10788.6i 0.606925 0.416825i
\(876\) 0 0
\(877\) 43591.8i 1.67844i −0.543794 0.839219i \(-0.683013\pi\)
0.543794 0.839219i \(-0.316987\pi\)
\(878\) 0 0
\(879\) −16570.8 −0.635858
\(880\) 0 0
\(881\) −28746.0 −1.09929 −0.549646 0.835398i \(-0.685237\pi\)
−0.549646 + 0.835398i \(0.685237\pi\)
\(882\) 0 0
\(883\) 2883.18i 0.109883i −0.998490 0.0549415i \(-0.982503\pi\)
0.998490 0.0549415i \(-0.0174972\pi\)
\(884\) 0 0
\(885\) −5632.13 6367.42i −0.213923 0.241851i
\(886\) 0 0
\(887\) 10797.1i 0.408718i 0.978896 + 0.204359i \(0.0655109\pi\)
−0.978896 + 0.204359i \(0.934489\pi\)
\(888\) 0 0
\(889\) 21246.7 0.801565
\(890\) 0 0
\(891\) −9623.82 −0.361852
\(892\) 0 0
\(893\) 48122.0i 1.80329i
\(894\) 0 0
\(895\) 17135.5 15156.7i 0.639972 0.566071i
\(896\) 0 0
\(897\) 28591.3i 1.06426i
\(898\) 0 0
\(899\) 33213.9 1.23220
\(900\) 0 0
\(901\) −24941.2 −0.922209
\(902\) 0 0
\(903\) 21704.0i 0.799849i
\(904\) 0 0
\(905\) −21450.6 + 18973.6i −0.787891 + 0.696909i
\(906\) 0 0
\(907\) 6158.05i 0.225441i 0.993627 + 0.112720i \(0.0359564\pi\)
−0.993627 + 0.112720i \(0.964044\pi\)
\(908\) 0 0
\(909\) 20565.7 0.750409
\(910\) 0 0
\(911\) −8119.84 −0.295304 −0.147652 0.989039i \(-0.547172\pi\)
−0.147652 + 0.989039i \(0.547172\pi\)
\(912\) 0 0
\(913\) 10484.5i 0.380051i
\(914\) 0 0
\(915\) −5910.57 6682.21i −0.213549 0.241428i
\(916\) 0 0
\(917\) 8462.97i 0.304768i
\(918\) 0 0
\(919\) −20945.0 −0.751807 −0.375904 0.926659i \(-0.622668\pi\)
−0.375904 + 0.926659i \(0.622668\pi\)
\(920\) 0 0
\(921\) −1111.44 −0.0397646
\(922\) 0 0
\(923\) 40377.8i 1.43993i
\(924\) 0 0
\(925\) 815.020 + 100.259i 0.0289705 + 0.00356377i
\(926\) 0 0
\(927\) 14221.4i 0.503874i
\(928\) 0 0
\(929\) 34175.1 1.20694 0.603470 0.797386i \(-0.293784\pi\)
0.603470 + 0.797386i \(0.293784\pi\)
\(930\) 0 0
\(931\) 19799.1 0.696980
\(932\) 0 0
\(933\) 41986.8i 1.47330i
\(934\) 0 0
\(935\) −11152.3 12608.3i −0.390075 0.441000i
\(936\) 0 0
\(937\) 41106.5i 1.43318i −0.697494 0.716591i \(-0.745702\pi\)
0.697494 0.716591i \(-0.254298\pi\)
\(938\) 0 0
\(939\) 42057.1 1.46164
\(940\) 0 0
\(941\) 32287.7 1.11854 0.559271 0.828985i \(-0.311081\pi\)
0.559271 + 0.828985i \(0.311081\pi\)
\(942\) 0 0
\(943\) 17310.5i 0.597781i
\(944\) 0 0
\(945\) −5818.94 + 5146.99i −0.200307 + 0.177176i
\(946\) 0 0
\(947\) 57062.9i 1.95807i −0.203683 0.979037i \(-0.565291\pi\)
0.203683 0.979037i \(-0.434709\pi\)
\(948\) 0 0
\(949\) 41683.0 1.42580
\(950\) 0 0
\(951\) −21145.2 −0.721009
\(952\) 0 0
\(953\) 51251.6i 1.74208i −0.491211 0.871040i \(-0.663446\pi\)
0.491211 0.871040i \(-0.336554\pi\)
\(954\) 0 0
\(955\) 29093.4 25733.8i 0.985801 0.871964i
\(956\) 0 0
\(957\) 10869.2i 0.367138i
\(958\) 0 0
\(959\) 15528.9 0.522892
\(960\) 0 0
\(961\) 22781.8 0.764720
\(962\) 0 0
\(963\) 19313.3i 0.646275i
\(964\) 0 0
\(965\) −12901.2 14585.5i −0.430368 0.486553i
\(966\) 0 0
\(967\) 23103.2i 0.768303i −0.923270 0.384151i \(-0.874494\pi\)
0.923270 0.384151i \(-0.125506\pi\)
\(968\) 0 0
\(969\) −117694. −3.90184
\(970\) 0 0
\(971\) −27006.6 −0.892566 −0.446283 0.894892i \(-0.647253\pi\)
−0.446283 + 0.894892i \(0.647253\pi\)
\(972\) 0 0
\(973\) 18588.4i 0.612453i
\(974\) 0 0
\(975\) −6974.49 + 56696.8i −0.229090 + 1.86231i
\(976\) 0 0
\(977\) 50695.2i 1.66006i 0.557715 + 0.830032i \(0.311678\pi\)
−0.557715 + 0.830032i \(0.688322\pi\)
\(978\) 0 0
\(979\) 8328.26 0.271882
\(980\) 0 0
\(981\) −33913.5 −1.10375
\(982\) 0 0
\(983\) 34483.1i 1.11886i 0.828877 + 0.559431i \(0.188980\pi\)
−0.828877 + 0.559431i \(0.811020\pi\)
\(984\) 0 0
\(985\) −832.590 941.286i −0.0269325 0.0304486i
\(986\) 0 0
\(987\) 35507.0i 1.14509i
\(988\) 0 0
\(989\) 14598.6 0.469372
\(990\) 0 0
\(991\) −22631.4 −0.725439 −0.362719 0.931898i \(-0.618152\pi\)
−0.362719 + 0.931898i \(0.618152\pi\)
\(992\) 0 0
\(993\) 50640.5i 1.61835i
\(994\) 0 0
\(995\) 37909.2 33531.6i 1.20784 1.06836i
\(996\) 0 0
\(997\) 14507.6i 0.460844i −0.973091 0.230422i \(-0.925989\pi\)
0.973091 0.230422i \(-0.0740107\pi\)
\(998\) 0 0
\(999\) −334.751 −0.0106016
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.4.b.h.529.7 8
4.3 odd 2 110.4.b.c.89.6 yes 8
5.4 even 2 inner 880.4.b.h.529.2 8
12.11 even 2 990.4.c.i.199.4 8
20.3 even 4 550.4.a.bb.1.3 4
20.7 even 4 550.4.a.ba.1.2 4
20.19 odd 2 110.4.b.c.89.3 8
60.59 even 2 990.4.c.i.199.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.b.c.89.3 8 20.19 odd 2
110.4.b.c.89.6 yes 8 4.3 odd 2
550.4.a.ba.1.2 4 20.7 even 4
550.4.a.bb.1.3 4 20.3 even 4
880.4.b.h.529.2 8 5.4 even 2 inner
880.4.b.h.529.7 8 1.1 even 1 trivial
990.4.c.i.199.4 8 12.11 even 2
990.4.c.i.199.8 8 60.59 even 2