Properties

Label 880.4.b.h
Level $880$
Weight $4$
Character orbit 880.b
Analytic conductor $51.922$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,4,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.9216808051\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{4} + 2) q^{5} + (\beta_{4} - \beta_{3} - 2 \beta_{2} + \beta_1) q^{7} + (\beta_{6} + \beta_{5} - \beta_{2} - 13) q^{9} + 11 q^{11} + (2 \beta_{7} - 2 \beta_{4} + \cdots + 5 \beta_{2}) q^{13}+ \cdots + (11 \beta_{6} + 11 \beta_{5} + \cdots - 143) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{5} - 110 q^{9} + 88 q^{11} - 8 q^{15} + 302 q^{19} + 230 q^{21} - 162 q^{25} - 58 q^{29} - 1022 q^{31} + 1058 q^{35} + 320 q^{39} + 452 q^{41} - 622 q^{45} + 222 q^{49} - 834 q^{51} + 176 q^{55}+ \cdots - 1210 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 8\nu^{7} + 1065\nu^{5} + 43460\nu^{3} + 490743\nu ) / 31460 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{7} + 1065\nu^{5} + 43460\nu^{3} + 522203\nu ) / 15730 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 32 \nu^{7} - 1001 \nu^{6} + 4260 \nu^{5} - 124410 \nu^{4} + 189570 \nu^{3} - 4686825 \nu^{2} + \cdots - 52336856 ) / 188760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 32 \nu^{7} - 1001 \nu^{6} - 4260 \nu^{5} - 124410 \nu^{4} - 189570 \nu^{3} - 4686825 \nu^{2} + \cdots - 52336856 ) / 188760 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 8\nu^{7} + 143\nu^{6} + 1065\nu^{5} + 20020\nu^{4} + 43460\nu^{3} + 851565\nu^{2} + 522203\nu + 10438428 ) / 31460 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 8\nu^{7} + 143\nu^{6} + 1065\nu^{5} + 20020\nu^{4} + 43460\nu^{3} + 883025\nu^{2} + 522203\nu + 11633908 ) / 31460 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -379\nu^{7} - 47505\nu^{5} - 1819035\nu^{3} - 20813749\nu ) / 94380 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{5} - 38 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -12\beta_{4} + 12\beta_{3} - 53\beta_{2} + 90\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -81\beta_{6} + 95\beta_{5} + 6\beta_{4} + 6\beta_{3} - 7\beta_{2} + 1760 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 64\beta_{7} + 976\beta_{4} - 976\beta_{3} + 3485\beta_{2} - 4658\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 5385\beta_{6} - 7125\beta_{5} - 840\beta_{4} - 840\beta_{3} + 870\beta_{2} - 93106 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -8520\beta_{7} - 64740\beta_{4} + 64740\beta_{3} - 237361\beta_{2} + 261722\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
6.63700i
4.82127i
7.97576i
4.48251i
4.48251i
7.97576i
4.82127i
6.63700i
0 8.63700i 0 11.1511 + 0.807757i 0 0.978517i 0 −47.5977 0
529.2 0 6.82127i 0 −8.37442 7.40737i 0 13.6360i 0 −19.5297 0
529.3 0 5.97576i 0 1.78092 + 11.0376i 0 8.09941i 0 −8.70973 0
529.4 0 2.48251i 0 3.44238 10.6372i 0 31.7569i 0 20.8372 0
529.5 0 2.48251i 0 3.44238 + 10.6372i 0 31.7569i 0 20.8372 0
529.6 0 5.97576i 0 1.78092 11.0376i 0 8.09941i 0 −8.70973 0
529.7 0 6.82127i 0 −8.37442 + 7.40737i 0 13.6360i 0 −19.5297 0
529.8 0 8.63700i 0 11.1511 0.807757i 0 0.978517i 0 −47.5977 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 529.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.4.b.h 8
4.b odd 2 1 110.4.b.c 8
5.b even 2 1 inner 880.4.b.h 8
12.b even 2 1 990.4.c.i 8
20.d odd 2 1 110.4.b.c 8
20.e even 4 1 550.4.a.ba 4
20.e even 4 1 550.4.a.bb 4
60.h even 2 1 990.4.c.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.b.c 8 4.b odd 2 1
110.4.b.c 8 20.d odd 2 1
550.4.a.ba 4 20.e even 4 1
550.4.a.bb 4 20.e even 4 1
880.4.b.h 8 1.a even 1 1 trivial
880.4.b.h 8 5.b even 2 1 inner
990.4.c.i 8 12.b even 2 1
990.4.c.i 8 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 163T_{3}^{6} + 8763T_{3}^{4} + 171997T_{3}^{2} + 763876 \) acting on \(S_{4}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 163 T^{6} + \cdots + 763876 \) Copy content Toggle raw display
$5$ \( T^{8} - 16 T^{7} + \cdots + 244140625 \) Copy content Toggle raw display
$7$ \( T^{8} + 1261 T^{6} + \cdots + 11778624 \) Copy content Toggle raw display
$11$ \( (T - 11)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 5498837401600 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 136200103430400 \) Copy content Toggle raw display
$19$ \( (T^{4} - 151 T^{3} + \cdots - 390272)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 73\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( (T^{4} + 29 T^{3} + \cdots + 15788512)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 511 T^{3} + \cdots - 256907000)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 49077590691600 \) Copy content Toggle raw display
$41$ \( (T^{4} - 226 T^{3} + \cdots + 3452698624)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 75\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{4} + 134 T^{3} + \cdots + 1066184592)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 245 T^{3} + \cdots + 22378892000)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 80\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{4} + 1017 T^{3} + \cdots - 50573201976)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{4} + 136 T^{3} + \cdots + 145164269184)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots - 1272726658650)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 77\!\cdots\!96 \) Copy content Toggle raw display
show more
show less