gp: [N,k,chi] = [110,4,Mod(89,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.89");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 151 x 6 + 7935 x 4 + 171721 x 2 + 1308736 x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 x 8 + 1 5 1 x 6 + 7 9 3 5 x 4 + 1 7 1 7 2 1 x 2 + 1 3 0 8 7 3 6
x^8 + 151*x^6 + 7935*x^4 + 171721*x^2 + 1308736
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 8 ν 7 + 1065 ν 5 + 43460 ν 3 + 522203 ν ) / 31460 ( 8\nu^{7} + 1065\nu^{5} + 43460\nu^{3} + 522203\nu ) / 31460 ( 8 ν 7 + 1 0 6 5 ν 5 + 4 3 4 6 0 ν 3 + 5 2 2 2 0 3 ν ) / 3 1 4 6 0
(8*v^7 + 1065*v^5 + 43460*v^3 + 522203*v) / 31460
β 3 \beta_{3} β 3 = = =
( ν 6 + 140 ν 4 + 5955 ν 2 + 72996 ) / 220 ( \nu^{6} + 140\nu^{4} + 5955\nu^{2} + 72996 ) / 220 ( ν 6 + 1 4 0 ν 4 + 5 9 5 5 ν 2 + 7 2 9 9 6 ) / 2 2 0
(v^6 + 140*v^4 + 5955*v^2 + 72996) / 220
β 4 \beta_{4} β 4 = = =
( ν 6 + 140 ν 4 + 6175 ν 2 + 81356 ) / 220 ( \nu^{6} + 140\nu^{4} + 6175\nu^{2} + 81356 ) / 220 ( ν 6 + 1 4 0 ν 4 + 6 1 7 5 ν 2 + 8 1 3 5 6 ) / 2 2 0
(v^6 + 140*v^4 + 6175*v^2 + 81356) / 220
β 5 \beta_{5} β 5 = = =
( − 80 ν 7 + 1001 ν 6 − 10650 ν 5 + 124410 ν 4 − 450330 ν 3 + 4686825 ν 2 + ⋯ + 52336856 ) / 188760 ( - 80 \nu^{7} + 1001 \nu^{6} - 10650 \nu^{5} + 124410 \nu^{4} - 450330 \nu^{3} + 4686825 \nu^{2} + \cdots + 52336856 ) / 188760 ( − 8 0 ν 7 + 1 0 0 1 ν 6 − 1 0 6 5 0 ν 5 + 1 2 4 4 1 0 ν 4 − 4 5 0 3 3 0 ν 3 + 4 6 8 6 8 2 5 ν 2 + ⋯ + 5 2 3 3 6 8 5 6 ) / 1 8 8 7 6 0
(-80*v^7 + 1001*v^6 - 10650*v^5 + 124410*v^4 - 450330*v^3 + 4686825*v^2 - 5929880*v + 52336856) / 188760
β 6 \beta_{6} β 6 = = =
( − 80 ν 7 − 1001 ν 6 − 10650 ν 5 − 124410 ν 4 − 450330 ν 3 − 4686825 ν 2 + ⋯ − 52336856 ) / 188760 ( - 80 \nu^{7} - 1001 \nu^{6} - 10650 \nu^{5} - 124410 \nu^{4} - 450330 \nu^{3} - 4686825 \nu^{2} + \cdots - 52336856 ) / 188760 ( − 8 0 ν 7 − 1 0 0 1 ν 6 − 1 0 6 5 0 ν 5 − 1 2 4 4 1 0 ν 4 − 4 5 0 3 3 0 ν 3 − 4 6 8 6 8 2 5 ν 2 + ⋯ − 5 2 3 3 6 8 5 6 ) / 1 8 8 7 6 0
(-80*v^7 - 1001*v^6 - 10650*v^5 - 124410*v^4 - 450330*v^3 - 4686825*v^2 - 5929880*v - 52336856) / 188760
β 7 \beta_{7} β 7 = = =
( − 323 ν 7 − 429 ν 6 − 40050 ν 5 − 60060 ν 4 − 1499085 ν 3 − 2554695 ν 2 + ⋯ − 31409664 ) / 188760 ( - 323 \nu^{7} - 429 \nu^{6} - 40050 \nu^{5} - 60060 \nu^{4} - 1499085 \nu^{3} - 2554695 \nu^{2} + \cdots - 31409664 ) / 188760 ( − 3 2 3 ν 7 − 4 2 9 ν 6 − 4 0 0 5 0 ν 5 − 6 0 0 6 0 ν 4 − 1 4 9 9 0 8 5 ν 3 − 2 5 5 4 6 9 5 ν 2 + ⋯ − 3 1 4 0 9 6 6 4 ) / 1 8 8 7 6 0
(-323*v^7 - 429*v^6 - 40050*v^5 - 60060*v^4 - 1499085*v^3 - 2554695*v^2 - 16450478*v - 31409664) / 188760
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 4 − β 3 − 38 \beta_{4} - \beta_{3} - 38 β 4 − β 3 − 3 8
b4 - b3 - 38
ν 3 \nu^{3} ν 3 = = =
− 6 β 6 − 6 β 5 − 20 β 2 − 45 β 1 -6\beta_{6} - 6\beta_{5} - 20\beta_{2} - 45\beta_1 − 6 β 6 − 6 β 5 − 2 0 β 2 − 4 5 β 1
-6*b6 - 6*b5 - 20*b2 - 45*b1
ν 4 \nu^{4} ν 4 = = =
6 β 6 − 6 β 5 − 81 β 4 + 95 β 3 + 1760 6\beta_{6} - 6\beta_{5} - 81\beta_{4} + 95\beta_{3} + 1760 6 β 6 − 6 β 5 − 8 1 β 4 + 9 5 β 3 + 1 7 6 0
6*b6 - 6*b5 - 81*b4 + 95*b3 + 1760
ν 5 \nu^{5} ν 5 = = =
64 β 7 + 520 β 6 + 520 β 5 + 32 β 3 + 2164 β 2 + 2329 β 1 + 32 64\beta_{7} + 520\beta_{6} + 520\beta_{5} + 32\beta_{3} + 2164\beta_{2} + 2329\beta _1 + 32 6 4 β 7 + 5 2 0 β 6 + 5 2 0 β 5 + 3 2 β 3 + 2 1 6 4 β 2 + 2 3 2 9 β 1 + 3 2
64*b7 + 520*b6 + 520*b5 + 32*b3 + 2164*b2 + 2329*b1 + 32
ν 6 \nu^{6} ν 6 = = =
− 840 β 6 + 840 β 5 + 5385 β 4 − 7125 β 3 − 93106 -840\beta_{6} + 840\beta_{5} + 5385\beta_{4} - 7125\beta_{3} - 93106 − 8 4 0 β 6 + 8 4 0 β 5 + 5 3 8 5 β 4 − 7 1 2 5 β 3 − 9 3 1 0 6
-840*b6 + 840*b5 + 5385*b4 - 7125*b3 - 93106
ν 7 \nu^{7} ν 7 = = =
− 8520 β 7 − 36630 β 6 − 36630 β 5 − 4260 β 3 − 175500 β 2 − 130861 β 1 − 4260 -8520\beta_{7} - 36630\beta_{6} - 36630\beta_{5} - 4260\beta_{3} - 175500\beta_{2} - 130861\beta _1 - 4260 − 8 5 2 0 β 7 − 3 6 6 3 0 β 6 − 3 6 6 3 0 β 5 − 4 2 6 0 β 3 − 1 7 5 5 0 0 β 2 − 1 3 0 8 6 1 β 1 − 4 2 6 0
-8520*b7 - 36630*b6 - 36630*b5 - 4260*b3 - 175500*b2 - 130861*b1 - 4260
Character values
We give the values of χ \chi χ on generators for ( Z / 110 Z ) × \left(\mathbb{Z}/110\mathbb{Z}\right)^\times ( Z / 1 1 0 Z ) × .
n n n
67 67 6 7
101 101 1 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 163 T 3 6 + 8763 T 3 4 + 171997 T 3 2 + 763876 T_{3}^{8} + 163T_{3}^{6} + 8763T_{3}^{4} + 171997T_{3}^{2} + 763876 T 3 8 + 1 6 3 T 3 6 + 8 7 6 3 T 3 4 + 1 7 1 9 9 7 T 3 2 + 7 6 3 8 7 6
T3^8 + 163*T3^6 + 8763*T3^4 + 171997*T3^2 + 763876
acting on S 4 n e w ( 110 , [ χ ] ) S_{4}^{\mathrm{new}}(110, [\chi]) S 4 n e w ( 1 1 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 4 ) 4 (T^{2} + 4)^{4} ( T 2 + 4 ) 4
(T^2 + 4)^4
3 3 3
T 8 + 163 T 6 + ⋯ + 763876 T^{8} + 163 T^{6} + \cdots + 763876 T 8 + 1 6 3 T 6 + ⋯ + 7 6 3 8 7 6
T^8 + 163*T^6 + 8763*T^4 + 171997*T^2 + 763876
5 5 5
T 8 − 16 T 7 + ⋯ + 244140625 T^{8} - 16 T^{7} + \cdots + 244140625 T 8 − 1 6 T 7 + ⋯ + 2 4 4 1 4 0 6 2 5
T^8 - 16*T^7 + 209*T^6 - 2234*T^5 + 11840*T^4 - 279250*T^3 + 3265625*T^2 - 31250000*T + 244140625
7 7 7
T 8 + 1261 T 6 + ⋯ + 11778624 T^{8} + 1261 T^{6} + \cdots + 11778624 T 8 + 1 2 6 1 T 6 + ⋯ + 1 1 7 7 8 6 2 4
T^8 + 1261*T^6 + 267084*T^4 + 12556080*T^2 + 11778624
11 11 1 1
( T + 11 ) 8 (T + 11)^{8} ( T + 1 1 ) 8
(T + 11)^8
13 13 1 3
T 8 + ⋯ + 5498837401600 T^{8} + \cdots + 5498837401600 T 8 + ⋯ + 5 4 9 8 8 3 7 4 0 1 6 0 0
T^8 + 13408*T^6 + 47839488*T^4 + 36256301056*T^2 + 5498837401600
17 17 1 7
T 8 + ⋯ + 136200103430400 T^{8} + \cdots + 136200103430400 T 8 + ⋯ + 1 3 6 2 0 0 1 0 3 4 3 0 4 0 0
T^8 + 30105*T^6 + 236217240*T^4 + 441671312016*T^2 + 136200103430400
19 19 1 9
( T 4 + 151 T 3 + ⋯ − 390272 ) 2 (T^{4} + 151 T^{3} + \cdots - 390272)^{2} ( T 4 + 1 5 1 T 3 + ⋯ − 3 9 0 2 7 2 ) 2
(T^4 + 151*T^3 + 2220*T^2 - 119552*T - 390272)^2
23 23 2 3
T 8 + ⋯ + 73 ⋯ 84 T^{8} + \cdots + 73\!\cdots\!84 T 8 + ⋯ + 7 3 ⋯ 8 4
T^8 + 64986*T^6 + 994991985*T^4 + 4847227794244*T^2 + 7391206792848384
29 29 2 9
( T 4 + 29 T 3 + ⋯ + 15788512 ) 2 (T^{4} + 29 T^{3} + \cdots + 15788512)^{2} ( T 4 + 2 9 T 3 + ⋯ + 1 5 7 8 8 5 1 2 ) 2
(T^4 + 29*T^3 - 17130*T^2 + 58688*T + 15788512)^2
31 31 3 1
( T 4 − 511 T 3 + ⋯ − 256907000 ) 2 (T^{4} - 511 T^{3} + \cdots - 256907000)^{2} ( T 4 − 5 1 1 T 3 + ⋯ − 2 5 6 9 0 7 0 0 0 ) 2
(T^4 - 511*T^3 + 67767*T^2 + 392735*T - 256907000)^2
37 37 3 7
T 8 + ⋯ + 49077590691600 T^{8} + \cdots + 49077590691600 T 8 + ⋯ + 4 9 0 7 7 5 9 0 6 9 1 6 0 0
T^8 + 194703*T^6 + 7228831887*T^4 + 1448823197809*T^2 + 49077590691600
41 41 4 1
( T 4 − 226 T 3 + ⋯ + 3452698624 ) 2 (T^{4} - 226 T^{3} + \cdots + 3452698624)^{2} ( T 4 − 2 2 6 T 3 + ⋯ + 3 4 5 2 6 9 8 6 2 4 ) 2
(T^4 - 226*T^3 - 134544*T^2 + 13735232*T + 3452698624)^2
43 43 4 3
T 8 + ⋯ + 16 ⋯ 00 T^{8} + \cdots + 16\!\cdots\!00 T 8 + ⋯ + 1 6 ⋯ 0 0
T^8 + 269824*T^6 + 26292862944*T^4 + 1095898833709056*T^2 + 16487163248545440000
47 47 4 7
T 8 + ⋯ + 75 ⋯ 00 T^{8} + \cdots + 75\!\cdots\!00 T 8 + ⋯ + 7 5 ⋯ 0 0
T^8 + 567580*T^6 + 108225043440*T^4 + 7330539898913344*T^2 + 75467271486050406400
53 53 5 3
T 8 + ⋯ + 15 ⋯ 76 T^{8} + \cdots + 15\!\cdots\!76 T 8 + ⋯ + 1 5 ⋯ 7 6
T^8 + 711289*T^6 + 152041942800*T^4 + 9112812573302784*T^2 + 159780252562837733376
59 59 5 9
( T 4 − 134 T 3 + ⋯ + 1066184592 ) 2 (T^{4} - 134 T^{3} + \cdots + 1066184592)^{2} ( T 4 − 1 3 4 T 3 + ⋯ + 1 0 6 6 1 8 4 5 9 2 ) 2
(T^4 - 134*T^3 - 68559*T^2 + 4972920*T + 1066184592)^2
61 61 6 1
( T 4 + 245 T 3 + ⋯ + 22378892000 ) 2 (T^{4} + 245 T^{3} + \cdots + 22378892000)^{2} ( T 4 + 2 4 5 T 3 + ⋯ + 2 2 3 7 8 8 9 2 0 0 0 ) 2
(T^4 + 245*T^3 - 492522*T^2 - 138649760*T + 22378892000)^2
67 67 6 7
T 8 + ⋯ + 80 ⋯ 44 T^{8} + \cdots + 80\!\cdots\!44 T 8 + ⋯ + 8 0 ⋯ 4 4
T^8 + 895162*T^6 + 269663552865*T^4 + 30335062433568948*T^2 + 804541791894773511744
71 71 7 1
( T 4 − 1017 T 3 + ⋯ − 50573201976 ) 2 (T^{4} - 1017 T^{3} + \cdots - 50573201976)^{2} ( T 4 − 1 0 1 7 T 3 + ⋯ − 5 0 5 7 3 2 0 1 9 7 6 ) 2
(T^4 - 1017*T^3 - 280557*T^2 + 335339349*T - 50573201976)^2
73 73 7 3
T 8 + ⋯ + 16 ⋯ 00 T^{8} + \cdots + 16\!\cdots\!00 T 8 + ⋯ + 1 6 ⋯ 0 0
T^8 + 1592980*T^6 + 730644379200*T^4 + 102562384514789376*T^2 + 165298096162735718400
79 79 7 9
( T 4 − 136 T 3 + ⋯ + 145164269184 ) 2 (T^{4} - 136 T^{3} + \cdots + 145164269184)^{2} ( T 4 − 1 3 6 T 3 + ⋯ + 1 4 5 1 6 4 2 6 9 1 8 4 ) 2
(T^4 - 136*T^3 - 834540*T^2 + 78707856*T + 145164269184)^2
83 83 8 3
T 8 + ⋯ + 40 ⋯ 00 T^{8} + \cdots + 40\!\cdots\!00 T 8 + ⋯ + 4 0 ⋯ 0 0
T^8 + 1637340*T^6 + 803514985200*T^4 + 132931053420019264*T^2 + 4098391266026535321600
89 89 8 9
( T 4 + ⋯ − 1272726658650 ) 2 (T^{4} + \cdots - 1272726658650)^{2} ( T 4 + ⋯ − 1 2 7 2 7 2 6 6 5 8 6 5 0 ) 2
(T^4 - 2891*T^3 + 1443513*T^2 + 1811309163*T - 1272726658650)^2
97 97 9 7
T 8 + ⋯ + 77 ⋯ 96 T^{8} + \cdots + 77\!\cdots\!96 T 8 + ⋯ + 7 7 ⋯ 9 6
T^8 + 3204198*T^6 + 3184951292649*T^4 + 989336764126928448*T^2 + 77112581132978751799296
show more
show less