Properties

Label 110.4.b.c
Level 110110
Weight 44
Character orbit 110.b
Analytic conductor 6.4906.490
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(89,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.89");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 110=2511 110 = 2 \cdot 5 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 110.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.490210100636.49021010063
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+151x6+7935x4+171721x2+1308736 x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β2+β1)q34q4+(β5+β2+2)q5+(β3+3)q6+(β6+β5β2β1)q74β2q8+(β4+β313)q9++(11β411β3+143)q99+O(q100) q + \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 4 q^{4} + (\beta_{5} + \beta_{2} + 2) q^{5} + ( - \beta_{3} + 3) q^{6} + (\beta_{6} + \beta_{5} - \beta_{2} - \beta_1) q^{7} - 4 \beta_{2} q^{8} + (\beta_{4} + \beta_{3} - 13) q^{9}+ \cdots + ( - 11 \beta_{4} - 11 \beta_{3} + 143) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q32q4+16q5+28q6110q928q1088q11+44q14+8q15+128q16302q1964q20+230q21112q24162q25+256q2658q29+80q30++1210q99+O(q100) 8 q - 32 q^{4} + 16 q^{5} + 28 q^{6} - 110 q^{9} - 28 q^{10} - 88 q^{11} + 44 q^{14} + 8 q^{15} + 128 q^{16} - 302 q^{19} - 64 q^{20} + 230 q^{21} - 112 q^{24} - 162 q^{25} + 256 q^{26} - 58 q^{29} + 80 q^{30}+ \cdots + 1210 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+151x6+7935x4+171721x2+1308736 x^{8} + 151x^{6} + 7935x^{4} + 171721x^{2} + 1308736 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (8ν7+1065ν5+43460ν3+522203ν)/31460 ( 8\nu^{7} + 1065\nu^{5} + 43460\nu^{3} + 522203\nu ) / 31460 Copy content Toggle raw display
β3\beta_{3}== (ν6+140ν4+5955ν2+72996)/220 ( \nu^{6} + 140\nu^{4} + 5955\nu^{2} + 72996 ) / 220 Copy content Toggle raw display
β4\beta_{4}== (ν6+140ν4+6175ν2+81356)/220 ( \nu^{6} + 140\nu^{4} + 6175\nu^{2} + 81356 ) / 220 Copy content Toggle raw display
β5\beta_{5}== (80ν7+1001ν610650ν5+124410ν4450330ν3+4686825ν2++52336856)/188760 ( - 80 \nu^{7} + 1001 \nu^{6} - 10650 \nu^{5} + 124410 \nu^{4} - 450330 \nu^{3} + 4686825 \nu^{2} + \cdots + 52336856 ) / 188760 Copy content Toggle raw display
β6\beta_{6}== (80ν71001ν610650ν5124410ν4450330ν34686825ν2+52336856)/188760 ( - 80 \nu^{7} - 1001 \nu^{6} - 10650 \nu^{5} - 124410 \nu^{4} - 450330 \nu^{3} - 4686825 \nu^{2} + \cdots - 52336856 ) / 188760 Copy content Toggle raw display
β7\beta_{7}== (323ν7429ν640050ν560060ν41499085ν32554695ν2+31409664)/188760 ( - 323 \nu^{7} - 429 \nu^{6} - 40050 \nu^{5} - 60060 \nu^{4} - 1499085 \nu^{3} - 2554695 \nu^{2} + \cdots - 31409664 ) / 188760 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4β338 \beta_{4} - \beta_{3} - 38 Copy content Toggle raw display
ν3\nu^{3}== 6β66β520β245β1 -6\beta_{6} - 6\beta_{5} - 20\beta_{2} - 45\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 6β66β581β4+95β3+1760 6\beta_{6} - 6\beta_{5} - 81\beta_{4} + 95\beta_{3} + 1760 Copy content Toggle raw display
ν5\nu^{5}== 64β7+520β6+520β5+32β3+2164β2+2329β1+32 64\beta_{7} + 520\beta_{6} + 520\beta_{5} + 32\beta_{3} + 2164\beta_{2} + 2329\beta _1 + 32 Copy content Toggle raw display
ν6\nu^{6}== 840β6+840β5+5385β47125β393106 -840\beta_{6} + 840\beta_{5} + 5385\beta_{4} - 7125\beta_{3} - 93106 Copy content Toggle raw display
ν7\nu^{7}== 8520β736630β636630β54260β3175500β2130861β14260 -8520\beta_{7} - 36630\beta_{6} - 36630\beta_{5} - 4260\beta_{3} - 175500\beta_{2} - 130861\beta _1 - 4260 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/110Z)×\left(\mathbb{Z}/110\mathbb{Z}\right)^\times.

nn 6767 101101
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
89.1
7.97576i
4.48251i
4.82127i
6.63700i
6.63700i
4.82127i
4.48251i
7.97576i
2.00000i 5.97576i −4.00000 1.78092 11.0376i −11.9515 8.09941i 8.00000i −8.70973 −22.0752 3.56184i
89.2 2.00000i 2.48251i −4.00000 3.44238 + 10.6372i −4.96501 31.7569i 8.00000i 20.8372 21.2744 6.88475i
89.3 2.00000i 6.82127i −4.00000 −8.37442 7.40737i 13.6425 13.6360i 8.00000i −19.5297 −14.8147 + 16.7488i
89.4 2.00000i 8.63700i −4.00000 11.1511 + 0.807757i 17.2740 0.978517i 8.00000i −47.5977 1.61551 22.3022i
89.5 2.00000i 8.63700i −4.00000 11.1511 0.807757i 17.2740 0.978517i 8.00000i −47.5977 1.61551 + 22.3022i
89.6 2.00000i 6.82127i −4.00000 −8.37442 + 7.40737i 13.6425 13.6360i 8.00000i −19.5297 −14.8147 16.7488i
89.7 2.00000i 2.48251i −4.00000 3.44238 10.6372i −4.96501 31.7569i 8.00000i 20.8372 21.2744 + 6.88475i
89.8 2.00000i 5.97576i −4.00000 1.78092 + 11.0376i −11.9515 8.09941i 8.00000i −8.70973 −22.0752 + 3.56184i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 89.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.4.b.c 8
3.b odd 2 1 990.4.c.i 8
4.b odd 2 1 880.4.b.h 8
5.b even 2 1 inner 110.4.b.c 8
5.c odd 4 1 550.4.a.ba 4
5.c odd 4 1 550.4.a.bb 4
15.d odd 2 1 990.4.c.i 8
20.d odd 2 1 880.4.b.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.b.c 8 1.a even 1 1 trivial
110.4.b.c 8 5.b even 2 1 inner
550.4.a.ba 4 5.c odd 4 1
550.4.a.bb 4 5.c odd 4 1
880.4.b.h 8 4.b odd 2 1
880.4.b.h 8 20.d odd 2 1
990.4.c.i 8 3.b odd 2 1
990.4.c.i 8 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+163T36+8763T34+171997T32+763876 T_{3}^{8} + 163T_{3}^{6} + 8763T_{3}^{4} + 171997T_{3}^{2} + 763876 acting on S4new(110,[χ])S_{4}^{\mathrm{new}}(110, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)4 (T^{2} + 4)^{4} Copy content Toggle raw display
33 T8+163T6++763876 T^{8} + 163 T^{6} + \cdots + 763876 Copy content Toggle raw display
55 T816T7++244140625 T^{8} - 16 T^{7} + \cdots + 244140625 Copy content Toggle raw display
77 T8+1261T6++11778624 T^{8} + 1261 T^{6} + \cdots + 11778624 Copy content Toggle raw display
1111 (T+11)8 (T + 11)^{8} Copy content Toggle raw display
1313 T8++5498837401600 T^{8} + \cdots + 5498837401600 Copy content Toggle raw display
1717 T8++136200103430400 T^{8} + \cdots + 136200103430400 Copy content Toggle raw display
1919 (T4+151T3+390272)2 (T^{4} + 151 T^{3} + \cdots - 390272)^{2} Copy content Toggle raw display
2323 T8++73 ⁣ ⁣84 T^{8} + \cdots + 73\!\cdots\!84 Copy content Toggle raw display
2929 (T4+29T3++15788512)2 (T^{4} + 29 T^{3} + \cdots + 15788512)^{2} Copy content Toggle raw display
3131 (T4511T3+256907000)2 (T^{4} - 511 T^{3} + \cdots - 256907000)^{2} Copy content Toggle raw display
3737 T8++49077590691600 T^{8} + \cdots + 49077590691600 Copy content Toggle raw display
4141 (T4226T3++3452698624)2 (T^{4} - 226 T^{3} + \cdots + 3452698624)^{2} Copy content Toggle raw display
4343 T8++16 ⁣ ⁣00 T^{8} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
4747 T8++75 ⁣ ⁣00 T^{8} + \cdots + 75\!\cdots\!00 Copy content Toggle raw display
5353 T8++15 ⁣ ⁣76 T^{8} + \cdots + 15\!\cdots\!76 Copy content Toggle raw display
5959 (T4134T3++1066184592)2 (T^{4} - 134 T^{3} + \cdots + 1066184592)^{2} Copy content Toggle raw display
6161 (T4+245T3++22378892000)2 (T^{4} + 245 T^{3} + \cdots + 22378892000)^{2} Copy content Toggle raw display
6767 T8++80 ⁣ ⁣44 T^{8} + \cdots + 80\!\cdots\!44 Copy content Toggle raw display
7171 (T41017T3+50573201976)2 (T^{4} - 1017 T^{3} + \cdots - 50573201976)^{2} Copy content Toggle raw display
7373 T8++16 ⁣ ⁣00 T^{8} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
7979 (T4136T3++145164269184)2 (T^{4} - 136 T^{3} + \cdots + 145164269184)^{2} Copy content Toggle raw display
8383 T8++40 ⁣ ⁣00 T^{8} + \cdots + 40\!\cdots\!00 Copy content Toggle raw display
8989 (T4+1272726658650)2 (T^{4} + \cdots - 1272726658650)^{2} Copy content Toggle raw display
9797 T8++77 ⁣ ⁣96 T^{8} + \cdots + 77\!\cdots\!96 Copy content Toggle raw display
show more
show less