Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [110,4,Mod(89,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.89");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 110.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
89.1 |
|
− | 2.00000i | − | 5.97576i | −4.00000 | 1.78092 | − | 11.0376i | −11.9515 | − | 8.09941i | 8.00000i | −8.70973 | −22.0752 | − | 3.56184i | |||||||||||||||||||||||||||||||||||
89.2 | − | 2.00000i | − | 2.48251i | −4.00000 | 3.44238 | + | 10.6372i | −4.96501 | 31.7569i | 8.00000i | 20.8372 | 21.2744 | − | 6.88475i | |||||||||||||||||||||||||||||||||||||
89.3 | − | 2.00000i | 6.82127i | −4.00000 | −8.37442 | − | 7.40737i | 13.6425 | − | 13.6360i | 8.00000i | −19.5297 | −14.8147 | + | 16.7488i | |||||||||||||||||||||||||||||||||||||
89.4 | − | 2.00000i | 8.63700i | −4.00000 | 11.1511 | + | 0.807757i | 17.2740 | 0.978517i | 8.00000i | −47.5977 | 1.61551 | − | 22.3022i | ||||||||||||||||||||||||||||||||||||||
89.5 | 2.00000i | − | 8.63700i | −4.00000 | 11.1511 | − | 0.807757i | 17.2740 | − | 0.978517i | − | 8.00000i | −47.5977 | 1.61551 | + | 22.3022i | ||||||||||||||||||||||||||||||||||||
89.6 | 2.00000i | − | 6.82127i | −4.00000 | −8.37442 | + | 7.40737i | 13.6425 | 13.6360i | − | 8.00000i | −19.5297 | −14.8147 | − | 16.7488i | |||||||||||||||||||||||||||||||||||||
89.7 | 2.00000i | 2.48251i | −4.00000 | 3.44238 | − | 10.6372i | −4.96501 | − | 31.7569i | − | 8.00000i | 20.8372 | 21.2744 | + | 6.88475i | |||||||||||||||||||||||||||||||||||||
89.8 | 2.00000i | 5.97576i | −4.00000 | 1.78092 | + | 11.0376i | −11.9515 | 8.09941i | − | 8.00000i | −8.70973 | −22.0752 | + | 3.56184i | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.4.b.c | ✓ | 8 |
3.b | odd | 2 | 1 | 990.4.c.i | 8 | ||
4.b | odd | 2 | 1 | 880.4.b.h | 8 | ||
5.b | even | 2 | 1 | inner | 110.4.b.c | ✓ | 8 |
5.c | odd | 4 | 1 | 550.4.a.ba | 4 | ||
5.c | odd | 4 | 1 | 550.4.a.bb | 4 | ||
15.d | odd | 2 | 1 | 990.4.c.i | 8 | ||
20.d | odd | 2 | 1 | 880.4.b.h | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.4.b.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
110.4.b.c | ✓ | 8 | 5.b | even | 2 | 1 | inner |
550.4.a.ba | 4 | 5.c | odd | 4 | 1 | ||
550.4.a.bb | 4 | 5.c | odd | 4 | 1 | ||
880.4.b.h | 8 | 4.b | odd | 2 | 1 | ||
880.4.b.h | 8 | 20.d | odd | 2 | 1 | ||
990.4.c.i | 8 | 3.b | odd | 2 | 1 | ||
990.4.c.i | 8 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .