Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [9900,2,Mod(1,9900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9900, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9900.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 9900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9900.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(79.0518980011\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 220) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 9900.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −1.00000 | −0.301511 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −4.00000 | −0.970143 | −0.485071 | − | 0.874475i | \(-0.661206\pi\) | ||||
−0.485071 | + | 0.874475i | \(0.661206\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −4.00000 | −0.917663 | −0.458831 | − | 0.888523i | \(-0.651732\pi\) | ||||
−0.458831 | + | 0.888523i | \(0.651732\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.00000 | 1.25109 | 0.625543 | − | 0.780189i | \(-0.284877\pi\) | ||||
0.625543 | + | 0.780189i | \(0.284877\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 6.00000 | 0.986394 | 0.493197 | − | 0.869918i | \(-0.335828\pi\) | ||||
0.493197 | + | 0.869918i | \(0.335828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 10.0000 | 1.56174 | 0.780869 | − | 0.624695i | \(-0.214777\pi\) | ||||
0.780869 | + | 0.624695i | \(0.214777\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 10.0000 | 1.45865 | 0.729325 | − | 0.684167i | \(-0.239834\pi\) | ||||
0.729325 | + | 0.684167i | \(0.239834\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000 | 0.274721 | 0.137361 | − | 0.990521i | \(-0.456138\pi\) | ||||
0.137361 | + | 0.990521i | \(0.456138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.00000 | 0.520756 | 0.260378 | − | 0.965507i | \(-0.416153\pi\) | ||||
0.260378 | + | 0.965507i | \(0.416153\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −14.0000 | −1.79252 | −0.896258 | − | 0.443533i | \(-0.853725\pi\) | ||||
−0.896258 | + | 0.443533i | \(0.853725\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −2.00000 | −0.244339 | −0.122169 | − | 0.992509i | \(-0.538985\pi\) | ||||
−0.122169 | + | 0.992509i | \(0.538985\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −4.00000 | −0.474713 | −0.237356 | − | 0.971423i | \(-0.576281\pi\) | ||||
−0.237356 | + | 0.971423i | \(0.576281\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 4.00000 | 0.468165 | 0.234082 | − | 0.972217i | \(-0.424791\pi\) | ||||
0.234082 | + | 0.972217i | \(0.424791\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −6.00000 | −0.609208 | −0.304604 | − | 0.952479i | \(-0.598524\pi\) | ||||
−0.304604 | + | 0.952479i | \(0.598524\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −10.0000 | −0.985329 | −0.492665 | − | 0.870219i | \(-0.663977\pi\) | ||||
−0.492665 | + | 0.870219i | \(0.663977\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 8.00000 | 0.773389 | 0.386695 | − | 0.922208i | \(-0.373617\pi\) | ||||
0.386695 | + | 0.922208i | \(0.373617\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.0000 | 1.34096 | 0.670478 | − | 0.741929i | \(-0.266089\pi\) | ||||
0.670478 | + | 0.741929i | \(0.266089\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 14.0000 | 1.31701 | 0.658505 | − | 0.752577i | \(-0.271189\pi\) | ||||
0.658505 | + | 0.752577i | \(0.271189\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 1.00000 | 0.0909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −20.0000 | −1.77471 | −0.887357 | − | 0.461084i | \(-0.847461\pi\) | ||||
−0.887357 | + | 0.461084i | \(0.847461\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −20.0000 | −1.74741 | −0.873704 | − | 0.486458i | \(-0.838289\pi\) | ||||
−0.873704 | + | 0.486458i | \(0.838289\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.0000 | −1.53784 | −0.768922 | − | 0.639343i | \(-0.779207\pi\) | ||||
−0.768922 | + | 0.639343i | \(0.779207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −16.0000 | −1.30206 | −0.651031 | − | 0.759051i | \(-0.725663\pi\) | ||||
−0.651031 | + | 0.759051i | \(0.725663\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −6.00000 | −0.478852 | −0.239426 | − | 0.970915i | \(-0.576959\pi\) | ||||
−0.239426 | + | 0.970915i | \(0.576959\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 14.0000 | 1.09656 | 0.548282 | − | 0.836293i | \(-0.315282\pi\) | ||||
0.548282 | + | 0.836293i | \(0.315282\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −13.0000 | −1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −4.00000 | −0.304114 | −0.152057 | − | 0.988372i | \(-0.548590\pi\) | ||||
−0.152057 | + | 0.988372i | \(0.548590\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 26.0000 | 1.93256 | 0.966282 | − | 0.257485i | \(-0.0828937\pi\) | ||||
0.966282 | + | 0.257485i | \(0.0828937\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 4.00000 | 0.292509 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −4.00000 | −0.287926 | −0.143963 | − | 0.989583i | \(-0.545985\pi\) | ||||
−0.143963 | + | 0.989583i | \(0.545985\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 12.0000 | 0.854965 | 0.427482 | − | 0.904024i | \(-0.359401\pi\) | ||||
0.427482 | + | 0.904024i | \(0.359401\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 4.00000 | 0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 28.0000 | 1.92760 | 0.963800 | − | 0.266627i | \(-0.0859092\pi\) | ||||
0.963800 | + | 0.266627i | \(0.0859092\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 18.0000 | 1.20537 | 0.602685 | − | 0.797980i | \(-0.294098\pi\) | ||||
0.602685 | + | 0.797980i | \(0.294098\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4.00000 | 0.265489 | 0.132745 | − | 0.991150i | \(-0.457621\pi\) | ||||
0.132745 | + | 0.991150i | \(0.457621\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −2.00000 | −0.132164 | −0.0660819 | − | 0.997814i | \(-0.521050\pi\) | ||||
−0.0660819 | + | 0.997814i | \(0.521050\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −24.0000 | −1.57229 | −0.786146 | − | 0.618041i | \(-0.787927\pi\) | ||||
−0.786146 | + | 0.618041i | \(0.787927\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −16.0000 | −1.03495 | −0.517477 | − | 0.855697i | \(-0.673129\pi\) | ||||
−0.517477 | + | 0.855697i | \(0.673129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 6.00000 | 0.386494 | 0.193247 | − | 0.981150i | \(-0.438098\pi\) | ||||
0.193247 | + | 0.981150i | \(0.438098\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −8.00000 | −0.504956 | −0.252478 | − | 0.967603i | \(-0.581245\pi\) | ||||
−0.252478 | + | 0.967603i | \(0.581245\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −6.00000 | −0.377217 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.0000 | −0.873296 | −0.436648 | − | 0.899632i | \(-0.643834\pi\) | ||||
−0.436648 | + | 0.899632i | \(0.643834\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −12.0000 | −0.739952 | −0.369976 | − | 0.929041i | \(-0.620634\pi\) | ||||
−0.369976 | + | 0.929041i | \(0.620634\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 14.0000 | 0.853595 | 0.426798 | − | 0.904347i | \(-0.359642\pi\) | ||||
0.426798 | + | 0.904347i | \(0.359642\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −8.00000 | −0.485965 | −0.242983 | − | 0.970031i | \(-0.578126\pi\) | ||||
−0.242983 | + | 0.970031i | \(0.578126\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −24.0000 | −1.44202 | −0.721010 | − | 0.692925i | \(-0.756322\pi\) | ||||
−0.721010 | + | 0.692925i | \(0.756322\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 18.0000 | 1.07379 | 0.536895 | − | 0.843649i | \(-0.319597\pi\) | ||||
0.536895 | + | 0.843649i | \(0.319597\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 12.0000 | 0.713326 | 0.356663 | − | 0.934233i | \(-0.383914\pi\) | ||||
0.356663 | + | 0.934233i | \(0.383914\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1.00000 | −0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −16.0000 | −0.913168 | −0.456584 | − | 0.889680i | \(-0.650927\pi\) | ||||
−0.456584 | + | 0.889680i | \(0.650927\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 12.0000 | 0.680458 | 0.340229 | − | 0.940343i | \(-0.389495\pi\) | ||||
0.340229 | + | 0.940343i | \(0.389495\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −10.0000 | −0.561656 | −0.280828 | − | 0.959758i | \(-0.590609\pi\) | ||||
−0.280828 | + | 0.959758i | \(0.590609\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 2.00000 | 0.111979 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000 | 0.890264 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −4.00000 | −0.219860 | −0.109930 | − | 0.993939i | \(-0.535063\pi\) | ||||
−0.109930 | + | 0.993939i | \(0.535063\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −28.0000 | −1.52526 | −0.762629 | − | 0.646837i | \(-0.776092\pi\) | ||||
−0.762629 | + | 0.646837i | \(0.776092\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −30.0000 | −1.60586 | −0.802932 | − | 0.596071i | \(-0.796728\pi\) | ||||
−0.802932 | + | 0.596071i | \(0.796728\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 34.0000 | 1.80964 | 0.904819 | − | 0.425797i | \(-0.140006\pi\) | ||||
0.904819 | + | 0.425797i | \(0.140006\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −16.0000 | −0.844448 | −0.422224 | − | 0.906492i | \(-0.638750\pi\) | ||||
−0.422224 | + | 0.906492i | \(0.638750\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −10.0000 | −0.521996 | −0.260998 | − | 0.965339i | \(-0.584052\pi\) | ||||
−0.260998 | + | 0.965339i | \(0.584052\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 36.0000 | 1.86401 | 0.932005 | − | 0.362446i | \(-0.118058\pi\) | ||||
0.932005 | + | 0.362446i | \(0.118058\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 12.0000 | 0.616399 | 0.308199 | − | 0.951322i | \(-0.400274\pi\) | ||||
0.308199 | + | 0.951322i | \(0.400274\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −38.0000 | −1.94171 | −0.970855 | − | 0.239669i | \(-0.922961\pi\) | ||||
−0.970855 | + | 0.239669i | \(0.922961\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −18.0000 | −0.912636 | −0.456318 | − | 0.889817i | \(-0.650832\pi\) | ||||
−0.456318 | + | 0.889817i | \(0.650832\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −24.0000 | −1.21373 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −22.0000 | −1.10415 | −0.552074 | − | 0.833795i | \(-0.686163\pi\) | ||||
−0.552074 | + | 0.833795i | \(0.686163\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 34.0000 | 1.69788 | 0.848939 | − | 0.528490i | \(-0.177242\pi\) | ||||
0.848939 | + | 0.528490i | \(0.177242\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −6.00000 | −0.297409 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 24.0000 | 1.17248 | 0.586238 | − | 0.810139i | \(-0.300608\pi\) | ||||
0.586238 | + | 0.810139i | \(0.300608\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −10.0000 | −0.487370 | −0.243685 | − | 0.969854i | \(-0.578356\pi\) | ||||
−0.243685 | + | 0.969854i | \(0.578356\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −16.0000 | −0.770693 | −0.385346 | − | 0.922772i | \(-0.625918\pi\) | ||||
−0.385346 | + | 0.922772i | \(0.625918\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −38.0000 | −1.82616 | −0.913082 | − | 0.407777i | \(-0.866304\pi\) | ||||
−0.913082 | + | 0.407777i | \(0.866304\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −24.0000 | −1.14808 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −16.0000 | −0.763638 | −0.381819 | − | 0.924237i | \(-0.624702\pi\) | ||||
−0.381819 | + | 0.924237i | \(0.624702\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −14.0000 | −0.665160 | −0.332580 | − | 0.943075i | \(-0.607919\pi\) | ||||
−0.332580 | + | 0.943075i | \(0.607919\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 30.0000 | 1.41579 | 0.707894 | − | 0.706319i | \(-0.249646\pi\) | ||||
0.707894 | + | 0.706319i | \(0.249646\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −10.0000 | −0.470882 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 24.0000 | 1.12267 | 0.561336 | − | 0.827588i | \(-0.310287\pi\) | ||||
0.561336 | + | 0.827588i | \(0.310287\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 18.0000 | 0.838344 | 0.419172 | − | 0.907907i | \(-0.362320\pi\) | ||||
0.419172 | + | 0.907907i | \(0.362320\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −22.0000 | −1.02243 | −0.511213 | − | 0.859454i | \(-0.670804\pi\) | ||||
−0.511213 | + | 0.859454i | \(0.670804\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −22.0000 | −1.01804 | −0.509019 | − | 0.860755i | \(-0.669992\pi\) | ||||
−0.509019 | + | 0.860755i | \(0.669992\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 4.00000 | 0.183920 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 30.0000 | 1.35943 | 0.679715 | − | 0.733476i | \(-0.262104\pi\) | ||||
0.679715 | + | 0.733476i | \(0.262104\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −36.0000 | −1.62466 | −0.812329 | − | 0.583200i | \(-0.801800\pi\) | ||||
−0.812329 | + | 0.583200i | \(0.801800\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 8.00000 | 0.360302 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −4.00000 | −0.179065 | −0.0895323 | − | 0.995984i | \(-0.528537\pi\) | ||||
−0.0895323 | + | 0.995984i | \(0.528537\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 10.0000 | 0.443242 | 0.221621 | − | 0.975133i | \(-0.428865\pi\) | ||||
0.221621 | + | 0.975133i | \(0.428865\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −10.0000 | −0.439799 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 26.0000 | 1.13908 | 0.569540 | − | 0.821963i | \(-0.307121\pi\) | ||||
0.569540 | + | 0.821963i | \(0.307121\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −8.00000 | −0.349816 | −0.174908 | − | 0.984585i | \(-0.555963\pi\) | ||||
−0.174908 | + | 0.984585i | \(0.555963\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 7.00000 | 0.301511 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 22.0000 | 0.945854 | 0.472927 | − | 0.881102i | \(-0.343197\pi\) | ||||
0.472927 | + | 0.881102i | \(0.343197\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 4.00000 | 0.171028 | 0.0855138 | − | 0.996337i | \(-0.472747\pi\) | ||||
0.0855138 | + | 0.996337i | \(0.472747\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 8.00000 | 0.340811 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −12.0000 | −0.508456 | −0.254228 | − | 0.967144i | \(-0.581821\pi\) | ||||
−0.254228 | + | 0.967144i | \(0.581821\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 24.0000 | 1.01148 | 0.505740 | − | 0.862686i | \(-0.331220\pi\) | ||||
0.505740 | + | 0.862686i | \(0.331220\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −18.0000 | −0.754599 | −0.377300 | − | 0.926091i | \(-0.623147\pi\) | ||||
−0.377300 | + | 0.926091i | \(0.623147\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 12.0000 | 0.502184 | 0.251092 | − | 0.967963i | \(-0.419210\pi\) | ||||
0.251092 | + | 0.967963i | \(0.419210\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −38.0000 | −1.58196 | −0.790980 | − | 0.611842i | \(-0.790429\pi\) | ||||
−0.790980 | + | 0.611842i | \(0.790429\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −2.00000 | −0.0828315 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −30.0000 | −1.23823 | −0.619116 | − | 0.785299i | \(-0.712509\pi\) | ||||
−0.619116 | + | 0.785299i | \(0.712509\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −28.0000 | −1.14982 | −0.574911 | − | 0.818216i | \(-0.694963\pi\) | ||||
−0.574911 | + | 0.818216i | \(0.694963\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −36.0000 | −1.47092 | −0.735460 | − | 0.677568i | \(-0.763034\pi\) | ||||
−0.735460 | + | 0.677568i | \(0.763034\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 6.00000 | 0.244745 | 0.122373 | − | 0.992484i | \(-0.460950\pi\) | ||||
0.122373 | + | 0.992484i | \(0.460950\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −28.0000 | −1.13648 | −0.568242 | − | 0.822861i | \(-0.692376\pi\) | ||||
−0.568242 | + | 0.822861i | \(0.692376\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 20.0000 | 0.807792 | 0.403896 | − | 0.914805i | \(-0.367656\pi\) | ||||
0.403896 | + | 0.914805i | \(0.367656\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −10.0000 | −0.402585 | −0.201292 | − | 0.979531i | \(-0.564514\pi\) | ||||
−0.201292 | + | 0.979531i | \(0.564514\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −40.0000 | −1.60774 | −0.803868 | − | 0.594808i | \(-0.797228\pi\) | ||||
−0.803868 | + | 0.594808i | \(0.797228\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −12.0000 | −0.477712 | −0.238856 | − | 0.971055i | \(-0.576772\pi\) | ||||
−0.238856 | + | 0.971055i | \(0.576772\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −34.0000 | −1.34083 | −0.670415 | − | 0.741987i | \(-0.733884\pi\) | ||||
−0.670415 | + | 0.741987i | \(0.733884\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 6.00000 | 0.235884 | 0.117942 | − | 0.993020i | \(-0.462370\pi\) | ||||
0.117942 | + | 0.993020i | \(0.462370\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −4.00000 | −0.157014 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 26.0000 | 1.01746 | 0.508729 | − | 0.860927i | \(-0.330115\pi\) | ||||
0.508729 | + | 0.860927i | \(0.330115\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −22.0000 | −0.855701 | −0.427850 | − | 0.903850i | \(-0.640729\pi\) | ||||
−0.427850 | + | 0.903850i | \(0.640729\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −12.0000 | −0.464642 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 14.0000 | 0.540464 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 28.0000 | 1.07932 | 0.539660 | − | 0.841883i | \(-0.318553\pi\) | ||||
0.539660 | + | 0.841883i | \(0.318553\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −8.00000 | −0.307465 | −0.153732 | − | 0.988113i | \(-0.549129\pi\) | ||||
−0.153732 | + | 0.988113i | \(0.549129\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −10.0000 | −0.382639 | −0.191320 | − | 0.981528i | \(-0.561277\pi\) | ||||
−0.191320 | + | 0.981528i | \(0.561277\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.00000 | −0.304334 | −0.152167 | − | 0.988355i | \(-0.548625\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −40.0000 | −1.51511 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −34.0000 | −1.28416 | −0.642081 | − | 0.766637i | \(-0.721929\pi\) | ||||
−0.642081 | + | 0.766637i | \(0.721929\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −24.0000 | −0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000 | 0.976450 | 0.488225 | − | 0.872718i | \(-0.337644\pi\) | ||||
0.488225 | + | 0.872718i | \(0.337644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −4.00000 | −0.149175 | −0.0745874 | − | 0.997214i | \(-0.523764\pi\) | ||||
−0.0745874 | + | 0.997214i | \(0.523764\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 34.0000 | 1.26099 | 0.630495 | − | 0.776193i | \(-0.282852\pi\) | ||||
0.630495 | + | 0.776193i | \(0.282852\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 16.0000 | 0.591781 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 36.0000 | 1.32969 | 0.664845 | − | 0.746981i | \(-0.268498\pi\) | ||||
0.664845 | + | 0.746981i | \(0.268498\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 2.00000 | 0.0736709 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 52.0000 | 1.91285 | 0.956425 | − | 0.291977i | \(-0.0943129\pi\) | ||||
0.956425 | + | 0.291977i | \(0.0943129\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 36.0000 | 1.32071 | 0.660356 | − | 0.750953i | \(-0.270405\pi\) | ||||
0.660356 | + | 0.750953i | \(0.270405\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −4.00000 | −0.145962 | −0.0729810 | − | 0.997333i | \(-0.523251\pi\) | ||||
−0.0729810 | + | 0.997333i | \(0.523251\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −38.0000 | −1.38113 | −0.690567 | − | 0.723269i | \(-0.742639\pi\) | ||||
−0.690567 | + | 0.723269i | \(0.742639\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 54.0000 | 1.95750 | 0.978749 | − | 0.205061i | \(-0.0657392\pi\) | ||||
0.978749 | + | 0.205061i | \(0.0657392\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −14.0000 | −0.503545 | −0.251773 | − | 0.967786i | \(-0.581013\pi\) | ||||
−0.251773 | + | 0.967786i | \(0.581013\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −40.0000 | −1.43315 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 4.00000 | 0.143131 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 32.0000 | 1.14068 | 0.570338 | − | 0.821410i | \(-0.306812\pi\) | ||||
0.570338 | + | 0.821410i | \(0.306812\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 54.0000 | 1.91278 | 0.956389 | − | 0.292096i | \(-0.0943526\pi\) | ||||
0.956389 | + | 0.292096i | \(0.0943526\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −40.0000 | −1.41510 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −4.00000 | −0.141157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −54.0000 | −1.89854 | −0.949269 | − | 0.314464i | \(-0.898175\pi\) | ||||
−0.949269 | + | 0.314464i | \(0.898175\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −20.0000 | −0.702295 | −0.351147 | − | 0.936320i | \(-0.614208\pi\) | ||||
−0.351147 | + | 0.936320i | \(0.614208\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −18.0000 | −0.628204 | −0.314102 | − | 0.949389i | \(-0.601703\pi\) | ||||
−0.314102 | + | 0.949389i | \(0.601703\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 22.0000 | 0.766872 | 0.383436 | − | 0.923567i | \(-0.374741\pi\) | ||||
0.383436 | + | 0.923567i | \(0.374741\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 8.00000 | 0.278187 | 0.139094 | − | 0.990279i | \(-0.455581\pi\) | ||||
0.139094 | + | 0.990279i | \(0.455581\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −2.00000 | −0.0694629 | −0.0347314 | − | 0.999397i | \(-0.511058\pi\) | ||||
−0.0347314 | + | 0.999397i | \(0.511058\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 28.0000 | 0.970143 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 36.0000 | 1.23406 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.0000 | 1.50653 | 0.753266 | − | 0.657716i | \(-0.228477\pi\) | ||||
0.753266 | + | 0.657716i | \(0.228477\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 20.0000 | 0.683187 | 0.341593 | − | 0.939848i | \(-0.389033\pi\) | ||||
0.341593 | + | 0.939848i | \(0.389033\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −48.0000 | −1.63774 | −0.818869 | − | 0.573980i | \(-0.805399\pi\) | ||||
−0.818869 | + | 0.573980i | \(0.805399\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −30.0000 | −1.02121 | −0.510606 | − | 0.859815i | \(-0.670579\pi\) | ||||
−0.510606 | + | 0.859815i | \(0.670579\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 8.00000 | 0.271381 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 28.0000 | 0.945493 | 0.472746 | − | 0.881199i | \(-0.343263\pi\) | ||||
0.472746 | + | 0.881199i | \(0.343263\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −14.0000 | −0.471672 | −0.235836 | − | 0.971793i | \(-0.575783\pi\) | ||||
−0.235836 | + | 0.971793i | \(0.575783\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 6.00000 | 0.201916 | 0.100958 | − | 0.994891i | \(-0.467809\pi\) | ||||
0.100958 | + | 0.994891i | \(0.467809\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −28.0000 | −0.940148 | −0.470074 | − | 0.882627i | \(-0.655773\pi\) | ||||
−0.470074 | + | 0.882627i | \(0.655773\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −40.0000 | −1.33855 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −8.00000 | −0.266519 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −18.0000 | −0.597680 | −0.298840 | − | 0.954303i | \(-0.596600\pi\) | ||||
−0.298840 | + | 0.954303i | \(0.596600\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −12.0000 | −0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −8.00000 | −0.263896 | −0.131948 | − | 0.991257i | \(-0.542123\pi\) | ||||
−0.131948 | + | 0.991257i | \(0.542123\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 34.0000 | 1.11550 | 0.557752 | − | 0.830008i | \(-0.311664\pi\) | ||||
0.557752 | + | 0.830008i | \(0.311664\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 28.0000 | 0.917663 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −56.0000 | −1.82944 | −0.914720 | − | 0.404088i | \(-0.867589\pi\) | ||||
−0.914720 | + | 0.404088i | \(0.867589\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −14.0000 | −0.456387 | −0.228193 | − | 0.973616i | \(-0.573282\pi\) | ||||
−0.228193 | + | 0.973616i | \(0.573282\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 60.0000 | 1.95387 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18.0000 | 0.584921 | 0.292461 | − | 0.956278i | \(-0.405526\pi\) | ||||
0.292461 | + | 0.956278i | \(0.405526\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 24.0000 | 0.777436 | 0.388718 | − | 0.921357i | \(-0.372918\pi\) | ||||
0.388718 | + | 0.921357i | \(0.372918\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 12.0000 | 0.385894 | 0.192947 | − | 0.981209i | \(-0.438195\pi\) | ||||
0.192947 | + | 0.981209i | \(0.438195\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 6.00000 | 0.191957 | 0.0959785 | − | 0.995383i | \(-0.469402\pi\) | ||||
0.0959785 | + | 0.995383i | \(0.469402\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 6.00000 | 0.191761 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 18.0000 | 0.574111 | 0.287055 | − | 0.957914i | \(-0.407324\pi\) | ||||
0.287055 | + | 0.957914i | \(0.407324\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −24.0000 | −0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40.0000 | 1.27064 | 0.635321 | − | 0.772248i | \(-0.280868\pi\) | ||||
0.635321 | + | 0.772248i | \(0.280868\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 44.0000 | 1.39349 | 0.696747 | − | 0.717317i | \(-0.254630\pi\) | ||||
0.696747 | + | 0.717317i | \(0.254630\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 9900.2.a.n.1.1 | 1 | ||
3.2 | odd | 2 | 1100.2.a.a.1.1 | 1 | |||
5.2 | odd | 4 | 9900.2.c.e.5149.1 | 2 | |||
5.3 | odd | 4 | 9900.2.c.e.5149.2 | 2 | |||
5.4 | even | 2 | 1980.2.a.b.1.1 | 1 | |||
12.11 | even | 2 | 4400.2.a.z.1.1 | 1 | |||
15.2 | even | 4 | 1100.2.b.b.749.2 | 2 | |||
15.8 | even | 4 | 1100.2.b.b.749.1 | 2 | |||
15.14 | odd | 2 | 220.2.a.b.1.1 | ✓ | 1 | ||
20.19 | odd | 2 | 7920.2.a.l.1.1 | 1 | |||
60.23 | odd | 4 | 4400.2.b.c.4049.2 | 2 | |||
60.47 | odd | 4 | 4400.2.b.c.4049.1 | 2 | |||
60.59 | even | 2 | 880.2.a.b.1.1 | 1 | |||
120.29 | odd | 2 | 3520.2.a.c.1.1 | 1 | |||
120.59 | even | 2 | 3520.2.a.bf.1.1 | 1 | |||
165.164 | even | 2 | 2420.2.a.g.1.1 | 1 | |||
660.659 | odd | 2 | 9680.2.a.d.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
220.2.a.b.1.1 | ✓ | 1 | 15.14 | odd | 2 | ||
880.2.a.b.1.1 | 1 | 60.59 | even | 2 | |||
1100.2.a.a.1.1 | 1 | 3.2 | odd | 2 | |||
1100.2.b.b.749.1 | 2 | 15.8 | even | 4 | |||
1100.2.b.b.749.2 | 2 | 15.2 | even | 4 | |||
1980.2.a.b.1.1 | 1 | 5.4 | even | 2 | |||
2420.2.a.g.1.1 | 1 | 165.164 | even | 2 | |||
3520.2.a.c.1.1 | 1 | 120.29 | odd | 2 | |||
3520.2.a.bf.1.1 | 1 | 120.59 | even | 2 | |||
4400.2.a.z.1.1 | 1 | 12.11 | even | 2 | |||
4400.2.b.c.4049.1 | 2 | 60.47 | odd | 4 | |||
4400.2.b.c.4049.2 | 2 | 60.23 | odd | 4 | |||
7920.2.a.l.1.1 | 1 | 20.19 | odd | 2 | |||
9680.2.a.d.1.1 | 1 | 660.659 | odd | 2 | |||
9900.2.a.n.1.1 | 1 | 1.1 | even | 1 | trivial | ||
9900.2.c.e.5149.1 | 2 | 5.2 | odd | 4 | |||
9900.2.c.e.5149.2 | 2 | 5.3 | odd | 4 |