Properties

Label 9984.2.a.bn.1.2
Level $9984$
Weight $2$
Character 9984.1
Self dual yes
Analytic conductor $79.723$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9984,2,Mod(1,9984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.5163008.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 5x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 4992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.218114\) of defining polynomial
Character \(\chi\) \(=\) 9984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.10575 q^{5} -0.685687 q^{7} +1.00000 q^{9} -2.76115 q^{11} +1.00000 q^{13} +1.10575 q^{15} -3.55207 q^{17} -0.578969 q^{19} +0.685687 q^{21} +2.35279 q^{23} -3.77731 q^{25} -1.00000 q^{27} -2.48990 q^{29} -6.82490 q^{31} +2.76115 q^{33} +0.758200 q^{35} -7.11584 q^{37} -1.00000 q^{39} +4.72320 q^{41} +11.4039 q^{43} -1.10575 q^{45} +4.66390 q^{47} -6.52983 q^{49} +3.55207 q^{51} -9.10892 q^{53} +3.05315 q^{55} +0.578969 q^{57} -3.01668 q^{59} -7.13869 q^{61} -0.685687 q^{63} -1.10575 q^{65} -7.03386 q^{67} -2.35279 q^{69} +7.53590 q^{71} +11.5846 q^{73} +3.77731 q^{75} +1.89328 q^{77} +17.0435 q^{79} +1.00000 q^{81} -11.1878 q^{83} +3.92771 q^{85} +2.48990 q^{87} +12.5299 q^{89} -0.685687 q^{91} +6.82490 q^{93} +0.640197 q^{95} -12.7727 q^{97} -2.76115 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 4 q^{7} + 6 q^{9} + 8 q^{11} + 6 q^{13} + 4 q^{19} - 4 q^{21} + 8 q^{23} + 2 q^{25} - 6 q^{27} + 4 q^{29} + 20 q^{31} - 8 q^{33} + 8 q^{35} - 20 q^{37} - 6 q^{39} + 16 q^{47} + 10 q^{49}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.10575 −0.494508 −0.247254 0.968951i \(-0.579528\pi\)
−0.247254 + 0.968951i \(0.579528\pi\)
\(6\) 0 0
\(7\) −0.685687 −0.259165 −0.129583 0.991569i \(-0.541364\pi\)
−0.129583 + 0.991569i \(0.541364\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.76115 −0.832517 −0.416259 0.909246i \(-0.636659\pi\)
−0.416259 + 0.909246i \(0.636659\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 1.10575 0.285504
\(16\) 0 0
\(17\) −3.55207 −0.861502 −0.430751 0.902471i \(-0.641751\pi\)
−0.430751 + 0.902471i \(0.641751\pi\)
\(18\) 0 0
\(19\) −0.578969 −0.132825 −0.0664123 0.997792i \(-0.521155\pi\)
−0.0664123 + 0.997792i \(0.521155\pi\)
\(20\) 0 0
\(21\) 0.685687 0.149629
\(22\) 0 0
\(23\) 2.35279 0.490590 0.245295 0.969448i \(-0.421115\pi\)
0.245295 + 0.969448i \(0.421115\pi\)
\(24\) 0 0
\(25\) −3.77731 −0.755462
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.48990 −0.462363 −0.231181 0.972911i \(-0.574259\pi\)
−0.231181 + 0.972911i \(0.574259\pi\)
\(30\) 0 0
\(31\) −6.82490 −1.22579 −0.612894 0.790165i \(-0.709995\pi\)
−0.612894 + 0.790165i \(0.709995\pi\)
\(32\) 0 0
\(33\) 2.76115 0.480654
\(34\) 0 0
\(35\) 0.758200 0.128159
\(36\) 0 0
\(37\) −7.11584 −1.16984 −0.584918 0.811092i \(-0.698873\pi\)
−0.584918 + 0.811092i \(0.698873\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 4.72320 0.737639 0.368820 0.929501i \(-0.379762\pi\)
0.368820 + 0.929501i \(0.379762\pi\)
\(42\) 0 0
\(43\) 11.4039 1.73907 0.869537 0.493868i \(-0.164417\pi\)
0.869537 + 0.493868i \(0.164417\pi\)
\(44\) 0 0
\(45\) −1.10575 −0.164836
\(46\) 0 0
\(47\) 4.66390 0.680299 0.340150 0.940371i \(-0.389522\pi\)
0.340150 + 0.940371i \(0.389522\pi\)
\(48\) 0 0
\(49\) −6.52983 −0.932833
\(50\) 0 0
\(51\) 3.55207 0.497389
\(52\) 0 0
\(53\) −9.10892 −1.25121 −0.625603 0.780141i \(-0.715147\pi\)
−0.625603 + 0.780141i \(0.715147\pi\)
\(54\) 0 0
\(55\) 3.05315 0.411686
\(56\) 0 0
\(57\) 0.578969 0.0766863
\(58\) 0 0
\(59\) −3.01668 −0.392739 −0.196369 0.980530i \(-0.562915\pi\)
−0.196369 + 0.980530i \(0.562915\pi\)
\(60\) 0 0
\(61\) −7.13869 −0.914016 −0.457008 0.889463i \(-0.651079\pi\)
−0.457008 + 0.889463i \(0.651079\pi\)
\(62\) 0 0
\(63\) −0.685687 −0.0863884
\(64\) 0 0
\(65\) −1.10575 −0.137152
\(66\) 0 0
\(67\) −7.03386 −0.859322 −0.429661 0.902990i \(-0.641367\pi\)
−0.429661 + 0.902990i \(0.641367\pi\)
\(68\) 0 0
\(69\) −2.35279 −0.283242
\(70\) 0 0
\(71\) 7.53590 0.894347 0.447174 0.894447i \(-0.352431\pi\)
0.447174 + 0.894447i \(0.352431\pi\)
\(72\) 0 0
\(73\) 11.5846 1.35587 0.677935 0.735122i \(-0.262875\pi\)
0.677935 + 0.735122i \(0.262875\pi\)
\(74\) 0 0
\(75\) 3.77731 0.436166
\(76\) 0 0
\(77\) 1.89328 0.215760
\(78\) 0 0
\(79\) 17.0435 1.91755 0.958774 0.284169i \(-0.0917176\pi\)
0.958774 + 0.284169i \(0.0917176\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.1878 −1.22802 −0.614009 0.789299i \(-0.710444\pi\)
−0.614009 + 0.789299i \(0.710444\pi\)
\(84\) 0 0
\(85\) 3.92771 0.426020
\(86\) 0 0
\(87\) 2.48990 0.266945
\(88\) 0 0
\(89\) 12.5299 1.32817 0.664085 0.747657i \(-0.268821\pi\)
0.664085 + 0.747657i \(0.268821\pi\)
\(90\) 0 0
\(91\) −0.685687 −0.0718795
\(92\) 0 0
\(93\) 6.82490 0.707709
\(94\) 0 0
\(95\) 0.640197 0.0656828
\(96\) 0 0
\(97\) −12.7727 −1.29687 −0.648435 0.761270i \(-0.724576\pi\)
−0.648435 + 0.761270i \(0.724576\pi\)
\(98\) 0 0
\(99\) −2.76115 −0.277506
\(100\) 0 0
\(101\) 6.61486 0.658203 0.329101 0.944295i \(-0.393254\pi\)
0.329101 + 0.944295i \(0.393254\pi\)
\(102\) 0 0
\(103\) −4.54312 −0.447647 −0.223823 0.974630i \(-0.571854\pi\)
−0.223823 + 0.974630i \(0.571854\pi\)
\(104\) 0 0
\(105\) −0.758200 −0.0739928
\(106\) 0 0
\(107\) −2.76305 −0.267114 −0.133557 0.991041i \(-0.542640\pi\)
−0.133557 + 0.991041i \(0.542640\pi\)
\(108\) 0 0
\(109\) −13.7172 −1.31387 −0.656937 0.753945i \(-0.728148\pi\)
−0.656937 + 0.753945i \(0.728148\pi\)
\(110\) 0 0
\(111\) 7.11584 0.675405
\(112\) 0 0
\(113\) −12.4874 −1.17471 −0.587357 0.809328i \(-0.699832\pi\)
−0.587357 + 0.809328i \(0.699832\pi\)
\(114\) 0 0
\(115\) −2.60160 −0.242601
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 2.43560 0.223271
\(120\) 0 0
\(121\) −3.37606 −0.306915
\(122\) 0 0
\(123\) −4.72320 −0.425876
\(124\) 0 0
\(125\) 9.70554 0.868090
\(126\) 0 0
\(127\) 0.796554 0.0706828 0.0353414 0.999375i \(-0.488748\pi\)
0.0353414 + 0.999375i \(0.488748\pi\)
\(128\) 0 0
\(129\) −11.4039 −1.00405
\(130\) 0 0
\(131\) −6.40167 −0.559316 −0.279658 0.960100i \(-0.590221\pi\)
−0.279658 + 0.960100i \(0.590221\pi\)
\(132\) 0 0
\(133\) 0.396991 0.0344235
\(134\) 0 0
\(135\) 1.10575 0.0951681
\(136\) 0 0
\(137\) 0.333293 0.0284752 0.0142376 0.999899i \(-0.495468\pi\)
0.0142376 + 0.999899i \(0.495468\pi\)
\(138\) 0 0
\(139\) −5.95367 −0.504984 −0.252492 0.967599i \(-0.581250\pi\)
−0.252492 + 0.967599i \(0.581250\pi\)
\(140\) 0 0
\(141\) −4.66390 −0.392771
\(142\) 0 0
\(143\) −2.76115 −0.230899
\(144\) 0 0
\(145\) 2.75322 0.228642
\(146\) 0 0
\(147\) 6.52983 0.538572
\(148\) 0 0
\(149\) 11.4682 0.939510 0.469755 0.882797i \(-0.344342\pi\)
0.469755 + 0.882797i \(0.344342\pi\)
\(150\) 0 0
\(151\) 6.82129 0.555109 0.277554 0.960710i \(-0.410476\pi\)
0.277554 + 0.960710i \(0.410476\pi\)
\(152\) 0 0
\(153\) −3.55207 −0.287167
\(154\) 0 0
\(155\) 7.54666 0.606162
\(156\) 0 0
\(157\) 9.24604 0.737914 0.368957 0.929446i \(-0.379715\pi\)
0.368957 + 0.929446i \(0.379715\pi\)
\(158\) 0 0
\(159\) 9.10892 0.722385
\(160\) 0 0
\(161\) −1.61327 −0.127144
\(162\) 0 0
\(163\) −14.2252 −1.11420 −0.557100 0.830445i \(-0.688086\pi\)
−0.557100 + 0.830445i \(0.688086\pi\)
\(164\) 0 0
\(165\) −3.05315 −0.237687
\(166\) 0 0
\(167\) 23.1974 1.79507 0.897535 0.440943i \(-0.145356\pi\)
0.897535 + 0.440943i \(0.145356\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.578969 −0.0442749
\(172\) 0 0
\(173\) −7.21309 −0.548401 −0.274200 0.961673i \(-0.588413\pi\)
−0.274200 + 0.961673i \(0.588413\pi\)
\(174\) 0 0
\(175\) 2.59005 0.195789
\(176\) 0 0
\(177\) 3.01668 0.226748
\(178\) 0 0
\(179\) 11.4129 0.853039 0.426520 0.904478i \(-0.359740\pi\)
0.426520 + 0.904478i \(0.359740\pi\)
\(180\) 0 0
\(181\) −19.3259 −1.43648 −0.718242 0.695794i \(-0.755053\pi\)
−0.718242 + 0.695794i \(0.755053\pi\)
\(182\) 0 0
\(183\) 7.13869 0.527707
\(184\) 0 0
\(185\) 7.86836 0.578493
\(186\) 0 0
\(187\) 9.80778 0.717216
\(188\) 0 0
\(189\) 0.685687 0.0498764
\(190\) 0 0
\(191\) 3.74971 0.271319 0.135660 0.990756i \(-0.456685\pi\)
0.135660 + 0.990756i \(0.456685\pi\)
\(192\) 0 0
\(193\) −6.51547 −0.468994 −0.234497 0.972117i \(-0.575344\pi\)
−0.234497 + 0.972117i \(0.575344\pi\)
\(194\) 0 0
\(195\) 1.10575 0.0791847
\(196\) 0 0
\(197\) 3.84850 0.274194 0.137097 0.990558i \(-0.456223\pi\)
0.137097 + 0.990558i \(0.456223\pi\)
\(198\) 0 0
\(199\) 3.11118 0.220546 0.110273 0.993901i \(-0.464828\pi\)
0.110273 + 0.993901i \(0.464828\pi\)
\(200\) 0 0
\(201\) 7.03386 0.496130
\(202\) 0 0
\(203\) 1.70729 0.119828
\(204\) 0 0
\(205\) −5.22269 −0.364769
\(206\) 0 0
\(207\) 2.35279 0.163530
\(208\) 0 0
\(209\) 1.59862 0.110579
\(210\) 0 0
\(211\) −1.12650 −0.0775513 −0.0387757 0.999248i \(-0.512346\pi\)
−0.0387757 + 0.999248i \(0.512346\pi\)
\(212\) 0 0
\(213\) −7.53590 −0.516352
\(214\) 0 0
\(215\) −12.6099 −0.859986
\(216\) 0 0
\(217\) 4.67974 0.317682
\(218\) 0 0
\(219\) −11.5846 −0.782812
\(220\) 0 0
\(221\) −3.55207 −0.238938
\(222\) 0 0
\(223\) −0.307748 −0.0206083 −0.0103042 0.999947i \(-0.503280\pi\)
−0.0103042 + 0.999947i \(0.503280\pi\)
\(224\) 0 0
\(225\) −3.77731 −0.251821
\(226\) 0 0
\(227\) 19.1157 1.26875 0.634376 0.773025i \(-0.281257\pi\)
0.634376 + 0.773025i \(0.281257\pi\)
\(228\) 0 0
\(229\) 4.65469 0.307590 0.153795 0.988103i \(-0.450850\pi\)
0.153795 + 0.988103i \(0.450850\pi\)
\(230\) 0 0
\(231\) −1.89328 −0.124569
\(232\) 0 0
\(233\) 15.4230 1.01039 0.505196 0.863004i \(-0.331420\pi\)
0.505196 + 0.863004i \(0.331420\pi\)
\(234\) 0 0
\(235\) −5.15712 −0.336413
\(236\) 0 0
\(237\) −17.0435 −1.10710
\(238\) 0 0
\(239\) 13.6256 0.881370 0.440685 0.897662i \(-0.354736\pi\)
0.440685 + 0.897662i \(0.354736\pi\)
\(240\) 0 0
\(241\) −25.5569 −1.64626 −0.823132 0.567850i \(-0.807775\pi\)
−0.823132 + 0.567850i \(0.807775\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 7.22039 0.461294
\(246\) 0 0
\(247\) −0.578969 −0.0368389
\(248\) 0 0
\(249\) 11.1878 0.708996
\(250\) 0 0
\(251\) −20.7744 −1.31127 −0.655633 0.755079i \(-0.727598\pi\)
−0.655633 + 0.755079i \(0.727598\pi\)
\(252\) 0 0
\(253\) −6.49639 −0.408425
\(254\) 0 0
\(255\) −3.92771 −0.245963
\(256\) 0 0
\(257\) 0.897798 0.0560031 0.0280016 0.999608i \(-0.491086\pi\)
0.0280016 + 0.999608i \(0.491086\pi\)
\(258\) 0 0
\(259\) 4.87923 0.303181
\(260\) 0 0
\(261\) −2.48990 −0.154121
\(262\) 0 0
\(263\) −14.8581 −0.916190 −0.458095 0.888903i \(-0.651468\pi\)
−0.458095 + 0.888903i \(0.651468\pi\)
\(264\) 0 0
\(265\) 10.0722 0.618732
\(266\) 0 0
\(267\) −12.5299 −0.766819
\(268\) 0 0
\(269\) 18.8744 1.15079 0.575397 0.817874i \(-0.304848\pi\)
0.575397 + 0.817874i \(0.304848\pi\)
\(270\) 0 0
\(271\) −5.89671 −0.358200 −0.179100 0.983831i \(-0.557318\pi\)
−0.179100 + 0.983831i \(0.557318\pi\)
\(272\) 0 0
\(273\) 0.685687 0.0414996
\(274\) 0 0
\(275\) 10.4297 0.628935
\(276\) 0 0
\(277\) 5.37429 0.322910 0.161455 0.986880i \(-0.448381\pi\)
0.161455 + 0.986880i \(0.448381\pi\)
\(278\) 0 0
\(279\) −6.82490 −0.408596
\(280\) 0 0
\(281\) 0.0410347 0.00244792 0.00122396 0.999999i \(-0.499610\pi\)
0.00122396 + 0.999999i \(0.499610\pi\)
\(282\) 0 0
\(283\) 6.32265 0.375843 0.187921 0.982184i \(-0.439825\pi\)
0.187921 + 0.982184i \(0.439825\pi\)
\(284\) 0 0
\(285\) −0.640197 −0.0379220
\(286\) 0 0
\(287\) −3.23863 −0.191170
\(288\) 0 0
\(289\) −4.38283 −0.257814
\(290\) 0 0
\(291\) 12.7727 0.748748
\(292\) 0 0
\(293\) 0.685714 0.0400598 0.0200299 0.999799i \(-0.493624\pi\)
0.0200299 + 0.999799i \(0.493624\pi\)
\(294\) 0 0
\(295\) 3.33571 0.194212
\(296\) 0 0
\(297\) 2.76115 0.160218
\(298\) 0 0
\(299\) 2.35279 0.136065
\(300\) 0 0
\(301\) −7.81948 −0.450707
\(302\) 0 0
\(303\) −6.61486 −0.380014
\(304\) 0 0
\(305\) 7.89363 0.451988
\(306\) 0 0
\(307\) −10.4663 −0.597341 −0.298670 0.954356i \(-0.596543\pi\)
−0.298670 + 0.954356i \(0.596543\pi\)
\(308\) 0 0
\(309\) 4.54312 0.258449
\(310\) 0 0
\(311\) 14.3985 0.816464 0.408232 0.912878i \(-0.366145\pi\)
0.408232 + 0.912878i \(0.366145\pi\)
\(312\) 0 0
\(313\) 31.5228 1.78178 0.890888 0.454224i \(-0.150083\pi\)
0.890888 + 0.454224i \(0.150083\pi\)
\(314\) 0 0
\(315\) 0.758200 0.0427198
\(316\) 0 0
\(317\) 13.7158 0.770357 0.385178 0.922842i \(-0.374140\pi\)
0.385178 + 0.922842i \(0.374140\pi\)
\(318\) 0 0
\(319\) 6.87498 0.384925
\(320\) 0 0
\(321\) 2.76305 0.154218
\(322\) 0 0
\(323\) 2.05654 0.114429
\(324\) 0 0
\(325\) −3.77731 −0.209527
\(326\) 0 0
\(327\) 13.7172 0.758565
\(328\) 0 0
\(329\) −3.19797 −0.176310
\(330\) 0 0
\(331\) 28.9849 1.59315 0.796577 0.604537i \(-0.206642\pi\)
0.796577 + 0.604537i \(0.206642\pi\)
\(332\) 0 0
\(333\) −7.11584 −0.389945
\(334\) 0 0
\(335\) 7.77771 0.424942
\(336\) 0 0
\(337\) −1.17449 −0.0639787 −0.0319894 0.999488i \(-0.510184\pi\)
−0.0319894 + 0.999488i \(0.510184\pi\)
\(338\) 0 0
\(339\) 12.4874 0.678222
\(340\) 0 0
\(341\) 18.8446 1.02049
\(342\) 0 0
\(343\) 9.27723 0.500923
\(344\) 0 0
\(345\) 2.60160 0.140066
\(346\) 0 0
\(347\) 5.19324 0.278787 0.139394 0.990237i \(-0.455485\pi\)
0.139394 + 0.990237i \(0.455485\pi\)
\(348\) 0 0
\(349\) 8.87053 0.474828 0.237414 0.971409i \(-0.423700\pi\)
0.237414 + 0.971409i \(0.423700\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −5.11101 −0.272032 −0.136016 0.990707i \(-0.543430\pi\)
−0.136016 + 0.990707i \(0.543430\pi\)
\(354\) 0 0
\(355\) −8.33285 −0.442262
\(356\) 0 0
\(357\) −2.43560 −0.128906
\(358\) 0 0
\(359\) 36.1704 1.90900 0.954499 0.298214i \(-0.0963907\pi\)
0.954499 + 0.298214i \(0.0963907\pi\)
\(360\) 0 0
\(361\) −18.6648 −0.982358
\(362\) 0 0
\(363\) 3.37606 0.177197
\(364\) 0 0
\(365\) −12.8097 −0.670489
\(366\) 0 0
\(367\) 28.0824 1.46589 0.732945 0.680288i \(-0.238145\pi\)
0.732945 + 0.680288i \(0.238145\pi\)
\(368\) 0 0
\(369\) 4.72320 0.245880
\(370\) 0 0
\(371\) 6.24587 0.324269
\(372\) 0 0
\(373\) 18.7204 0.969304 0.484652 0.874707i \(-0.338946\pi\)
0.484652 + 0.874707i \(0.338946\pi\)
\(374\) 0 0
\(375\) −9.70554 −0.501192
\(376\) 0 0
\(377\) −2.48990 −0.128236
\(378\) 0 0
\(379\) 13.8256 0.710171 0.355086 0.934834i \(-0.384452\pi\)
0.355086 + 0.934834i \(0.384452\pi\)
\(380\) 0 0
\(381\) −0.796554 −0.0408087
\(382\) 0 0
\(383\) 8.59161 0.439011 0.219505 0.975611i \(-0.429556\pi\)
0.219505 + 0.975611i \(0.429556\pi\)
\(384\) 0 0
\(385\) −2.09350 −0.106695
\(386\) 0 0
\(387\) 11.4039 0.579691
\(388\) 0 0
\(389\) −27.2446 −1.38136 −0.690679 0.723162i \(-0.742688\pi\)
−0.690679 + 0.723162i \(0.742688\pi\)
\(390\) 0 0
\(391\) −8.35725 −0.422644
\(392\) 0 0
\(393\) 6.40167 0.322921
\(394\) 0 0
\(395\) −18.8460 −0.948243
\(396\) 0 0
\(397\) 21.5335 1.08073 0.540367 0.841429i \(-0.318285\pi\)
0.540367 + 0.841429i \(0.318285\pi\)
\(398\) 0 0
\(399\) −0.396991 −0.0198744
\(400\) 0 0
\(401\) 0.890079 0.0444484 0.0222242 0.999753i \(-0.492925\pi\)
0.0222242 + 0.999753i \(0.492925\pi\)
\(402\) 0 0
\(403\) −6.82490 −0.339973
\(404\) 0 0
\(405\) −1.10575 −0.0549453
\(406\) 0 0
\(407\) 19.6479 0.973909
\(408\) 0 0
\(409\) 6.28608 0.310826 0.155413 0.987850i \(-0.450329\pi\)
0.155413 + 0.987850i \(0.450329\pi\)
\(410\) 0 0
\(411\) −0.333293 −0.0164401
\(412\) 0 0
\(413\) 2.06850 0.101784
\(414\) 0 0
\(415\) 12.3709 0.607265
\(416\) 0 0
\(417\) 5.95367 0.291553
\(418\) 0 0
\(419\) −5.63655 −0.275364 −0.137682 0.990477i \(-0.543965\pi\)
−0.137682 + 0.990477i \(0.543965\pi\)
\(420\) 0 0
\(421\) −23.9587 −1.16768 −0.583838 0.811870i \(-0.698450\pi\)
−0.583838 + 0.811870i \(0.698450\pi\)
\(422\) 0 0
\(423\) 4.66390 0.226766
\(424\) 0 0
\(425\) 13.4172 0.650832
\(426\) 0 0
\(427\) 4.89491 0.236881
\(428\) 0 0
\(429\) 2.76115 0.133309
\(430\) 0 0
\(431\) 29.2799 1.41036 0.705182 0.709026i \(-0.250865\pi\)
0.705182 + 0.709026i \(0.250865\pi\)
\(432\) 0 0
\(433\) 11.2630 0.541266 0.270633 0.962683i \(-0.412767\pi\)
0.270633 + 0.962683i \(0.412767\pi\)
\(434\) 0 0
\(435\) −2.75322 −0.132007
\(436\) 0 0
\(437\) −1.36219 −0.0651624
\(438\) 0 0
\(439\) 30.4516 1.45338 0.726688 0.686967i \(-0.241058\pi\)
0.726688 + 0.686967i \(0.241058\pi\)
\(440\) 0 0
\(441\) −6.52983 −0.310944
\(442\) 0 0
\(443\) −26.1510 −1.24247 −0.621236 0.783624i \(-0.713369\pi\)
−0.621236 + 0.783624i \(0.713369\pi\)
\(444\) 0 0
\(445\) −13.8550 −0.656790
\(446\) 0 0
\(447\) −11.4682 −0.542426
\(448\) 0 0
\(449\) −31.2462 −1.47460 −0.737301 0.675565i \(-0.763900\pi\)
−0.737301 + 0.675565i \(0.763900\pi\)
\(450\) 0 0
\(451\) −13.0414 −0.614098
\(452\) 0 0
\(453\) −6.82129 −0.320492
\(454\) 0 0
\(455\) 0.758200 0.0355450
\(456\) 0 0
\(457\) −10.9309 −0.511327 −0.255663 0.966766i \(-0.582294\pi\)
−0.255663 + 0.966766i \(0.582294\pi\)
\(458\) 0 0
\(459\) 3.55207 0.165796
\(460\) 0 0
\(461\) −3.40242 −0.158467 −0.0792333 0.996856i \(-0.525247\pi\)
−0.0792333 + 0.996856i \(0.525247\pi\)
\(462\) 0 0
\(463\) 9.31244 0.432786 0.216393 0.976306i \(-0.430571\pi\)
0.216393 + 0.976306i \(0.430571\pi\)
\(464\) 0 0
\(465\) −7.54666 −0.349968
\(466\) 0 0
\(467\) 17.8530 0.826140 0.413070 0.910699i \(-0.364456\pi\)
0.413070 + 0.910699i \(0.364456\pi\)
\(468\) 0 0
\(469\) 4.82302 0.222706
\(470\) 0 0
\(471\) −9.24604 −0.426035
\(472\) 0 0
\(473\) −31.4878 −1.44781
\(474\) 0 0
\(475\) 2.18694 0.100344
\(476\) 0 0
\(477\) −9.10892 −0.417069
\(478\) 0 0
\(479\) −9.89685 −0.452199 −0.226099 0.974104i \(-0.572597\pi\)
−0.226099 + 0.974104i \(0.572597\pi\)
\(480\) 0 0
\(481\) −7.11584 −0.324454
\(482\) 0 0
\(483\) 1.61327 0.0734066
\(484\) 0 0
\(485\) 14.1234 0.641313
\(486\) 0 0
\(487\) 20.8666 0.945554 0.472777 0.881182i \(-0.343252\pi\)
0.472777 + 0.881182i \(0.343252\pi\)
\(488\) 0 0
\(489\) 14.2252 0.643284
\(490\) 0 0
\(491\) −8.99319 −0.405857 −0.202928 0.979194i \(-0.565046\pi\)
−0.202928 + 0.979194i \(0.565046\pi\)
\(492\) 0 0
\(493\) 8.84429 0.398327
\(494\) 0 0
\(495\) 3.05315 0.137229
\(496\) 0 0
\(497\) −5.16727 −0.231784
\(498\) 0 0
\(499\) 14.9129 0.667595 0.333797 0.942645i \(-0.391670\pi\)
0.333797 + 0.942645i \(0.391670\pi\)
\(500\) 0 0
\(501\) −23.1974 −1.03638
\(502\) 0 0
\(503\) −7.56905 −0.337487 −0.168744 0.985660i \(-0.553971\pi\)
−0.168744 + 0.985660i \(0.553971\pi\)
\(504\) 0 0
\(505\) −7.31440 −0.325486
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) 5.16738 0.229040 0.114520 0.993421i \(-0.463467\pi\)
0.114520 + 0.993421i \(0.463467\pi\)
\(510\) 0 0
\(511\) −7.94338 −0.351394
\(512\) 0 0
\(513\) 0.578969 0.0255621
\(514\) 0 0
\(515\) 5.02357 0.221365
\(516\) 0 0
\(517\) −12.8777 −0.566361
\(518\) 0 0
\(519\) 7.21309 0.316619
\(520\) 0 0
\(521\) −14.5480 −0.637358 −0.318679 0.947863i \(-0.603239\pi\)
−0.318679 + 0.947863i \(0.603239\pi\)
\(522\) 0 0
\(523\) 11.6629 0.509984 0.254992 0.966943i \(-0.417927\pi\)
0.254992 + 0.966943i \(0.417927\pi\)
\(524\) 0 0
\(525\) −2.59005 −0.113039
\(526\) 0 0
\(527\) 24.2425 1.05602
\(528\) 0 0
\(529\) −17.4644 −0.759321
\(530\) 0 0
\(531\) −3.01668 −0.130913
\(532\) 0 0
\(533\) 4.72320 0.204584
\(534\) 0 0
\(535\) 3.05525 0.132090
\(536\) 0 0
\(537\) −11.4129 −0.492502
\(538\) 0 0
\(539\) 18.0298 0.776600
\(540\) 0 0
\(541\) −15.2582 −0.656003 −0.328001 0.944677i \(-0.606375\pi\)
−0.328001 + 0.944677i \(0.606375\pi\)
\(542\) 0 0
\(543\) 19.3259 0.829354
\(544\) 0 0
\(545\) 15.1679 0.649721
\(546\) 0 0
\(547\) −28.2101 −1.20618 −0.603089 0.797674i \(-0.706064\pi\)
−0.603089 + 0.797674i \(0.706064\pi\)
\(548\) 0 0
\(549\) −7.13869 −0.304672
\(550\) 0 0
\(551\) 1.44157 0.0614131
\(552\) 0 0
\(553\) −11.6865 −0.496962
\(554\) 0 0
\(555\) −7.86836 −0.333993
\(556\) 0 0
\(557\) 18.9541 0.803112 0.401556 0.915834i \(-0.368469\pi\)
0.401556 + 0.915834i \(0.368469\pi\)
\(558\) 0 0
\(559\) 11.4039 0.482332
\(560\) 0 0
\(561\) −9.80778 −0.414085
\(562\) 0 0
\(563\) 3.54239 0.149294 0.0746471 0.997210i \(-0.476217\pi\)
0.0746471 + 0.997210i \(0.476217\pi\)
\(564\) 0 0
\(565\) 13.8080 0.580906
\(566\) 0 0
\(567\) −0.685687 −0.0287961
\(568\) 0 0
\(569\) 23.7895 0.997306 0.498653 0.866802i \(-0.333828\pi\)
0.498653 + 0.866802i \(0.333828\pi\)
\(570\) 0 0
\(571\) 34.7499 1.45424 0.727118 0.686512i \(-0.240859\pi\)
0.727118 + 0.686512i \(0.240859\pi\)
\(572\) 0 0
\(573\) −3.74971 −0.156646
\(574\) 0 0
\(575\) −8.88721 −0.370622
\(576\) 0 0
\(577\) 19.5537 0.814032 0.407016 0.913421i \(-0.366569\pi\)
0.407016 + 0.913421i \(0.366569\pi\)
\(578\) 0 0
\(579\) 6.51547 0.270774
\(580\) 0 0
\(581\) 7.67131 0.318259
\(582\) 0 0
\(583\) 25.1511 1.04165
\(584\) 0 0
\(585\) −1.10575 −0.0457173
\(586\) 0 0
\(587\) −20.7215 −0.855269 −0.427634 0.903952i \(-0.640653\pi\)
−0.427634 + 0.903952i \(0.640653\pi\)
\(588\) 0 0
\(589\) 3.95141 0.162815
\(590\) 0 0
\(591\) −3.84850 −0.158306
\(592\) 0 0
\(593\) 11.8943 0.488441 0.244221 0.969720i \(-0.421468\pi\)
0.244221 + 0.969720i \(0.421468\pi\)
\(594\) 0 0
\(595\) −2.69318 −0.110410
\(596\) 0 0
\(597\) −3.11118 −0.127332
\(598\) 0 0
\(599\) −28.2654 −1.15489 −0.577446 0.816429i \(-0.695951\pi\)
−0.577446 + 0.816429i \(0.695951\pi\)
\(600\) 0 0
\(601\) 9.99876 0.407858 0.203929 0.978986i \(-0.434629\pi\)
0.203929 + 0.978986i \(0.434629\pi\)
\(602\) 0 0
\(603\) −7.03386 −0.286441
\(604\) 0 0
\(605\) 3.73309 0.151772
\(606\) 0 0
\(607\) −0.899468 −0.0365083 −0.0182541 0.999833i \(-0.505811\pi\)
−0.0182541 + 0.999833i \(0.505811\pi\)
\(608\) 0 0
\(609\) −1.70729 −0.0691829
\(610\) 0 0
\(611\) 4.66390 0.188681
\(612\) 0 0
\(613\) −7.32954 −0.296038 −0.148019 0.988985i \(-0.547290\pi\)
−0.148019 + 0.988985i \(0.547290\pi\)
\(614\) 0 0
\(615\) 5.22269 0.210599
\(616\) 0 0
\(617\) 46.5169 1.87270 0.936349 0.351070i \(-0.114182\pi\)
0.936349 + 0.351070i \(0.114182\pi\)
\(618\) 0 0
\(619\) −0.661456 −0.0265862 −0.0132931 0.999912i \(-0.504231\pi\)
−0.0132931 + 0.999912i \(0.504231\pi\)
\(620\) 0 0
\(621\) −2.35279 −0.0944141
\(622\) 0 0
\(623\) −8.59160 −0.344215
\(624\) 0 0
\(625\) 8.15461 0.326184
\(626\) 0 0
\(627\) −1.59862 −0.0638427
\(628\) 0 0
\(629\) 25.2759 1.00782
\(630\) 0 0
\(631\) 31.5950 1.25778 0.628889 0.777495i \(-0.283510\pi\)
0.628889 + 0.777495i \(0.283510\pi\)
\(632\) 0 0
\(633\) 1.12650 0.0447743
\(634\) 0 0
\(635\) −0.880793 −0.0349532
\(636\) 0 0
\(637\) −6.52983 −0.258721
\(638\) 0 0
\(639\) 7.53590 0.298116
\(640\) 0 0
\(641\) −10.8982 −0.430451 −0.215226 0.976564i \(-0.569049\pi\)
−0.215226 + 0.976564i \(0.569049\pi\)
\(642\) 0 0
\(643\) 5.08026 0.200346 0.100173 0.994970i \(-0.468060\pi\)
0.100173 + 0.994970i \(0.468060\pi\)
\(644\) 0 0
\(645\) 12.6099 0.496513
\(646\) 0 0
\(647\) −12.3338 −0.484893 −0.242447 0.970165i \(-0.577950\pi\)
−0.242447 + 0.970165i \(0.577950\pi\)
\(648\) 0 0
\(649\) 8.32951 0.326962
\(650\) 0 0
\(651\) −4.67974 −0.183414
\(652\) 0 0
\(653\) 48.7543 1.90790 0.953952 0.299961i \(-0.0969736\pi\)
0.953952 + 0.299961i \(0.0969736\pi\)
\(654\) 0 0
\(655\) 7.07866 0.276586
\(656\) 0 0
\(657\) 11.5846 0.451957
\(658\) 0 0
\(659\) 30.5060 1.18834 0.594172 0.804338i \(-0.297480\pi\)
0.594172 + 0.804338i \(0.297480\pi\)
\(660\) 0 0
\(661\) −13.0033 −0.505770 −0.252885 0.967496i \(-0.581380\pi\)
−0.252885 + 0.967496i \(0.581380\pi\)
\(662\) 0 0
\(663\) 3.55207 0.137951
\(664\) 0 0
\(665\) −0.438974 −0.0170227
\(666\) 0 0
\(667\) −5.85820 −0.226831
\(668\) 0 0
\(669\) 0.307748 0.0118982
\(670\) 0 0
\(671\) 19.7110 0.760934
\(672\) 0 0
\(673\) 24.3174 0.937367 0.468683 0.883366i \(-0.344729\pi\)
0.468683 + 0.883366i \(0.344729\pi\)
\(674\) 0 0
\(675\) 3.77731 0.145389
\(676\) 0 0
\(677\) 23.3502 0.897420 0.448710 0.893677i \(-0.351884\pi\)
0.448710 + 0.893677i \(0.351884\pi\)
\(678\) 0 0
\(679\) 8.75806 0.336104
\(680\) 0 0
\(681\) −19.1157 −0.732514
\(682\) 0 0
\(683\) 35.6322 1.36343 0.681714 0.731619i \(-0.261235\pi\)
0.681714 + 0.731619i \(0.261235\pi\)
\(684\) 0 0
\(685\) −0.368540 −0.0140812
\(686\) 0 0
\(687\) −4.65469 −0.177587
\(688\) 0 0
\(689\) −9.10892 −0.347022
\(690\) 0 0
\(691\) −15.6695 −0.596095 −0.298047 0.954551i \(-0.596335\pi\)
−0.298047 + 0.954551i \(0.596335\pi\)
\(692\) 0 0
\(693\) 1.89328 0.0719198
\(694\) 0 0
\(695\) 6.58330 0.249719
\(696\) 0 0
\(697\) −16.7771 −0.635478
\(698\) 0 0
\(699\) −15.4230 −0.583351
\(700\) 0 0
\(701\) 47.9494 1.81102 0.905511 0.424323i \(-0.139488\pi\)
0.905511 + 0.424323i \(0.139488\pi\)
\(702\) 0 0
\(703\) 4.11985 0.155383
\(704\) 0 0
\(705\) 5.15712 0.194228
\(706\) 0 0
\(707\) −4.53572 −0.170583
\(708\) 0 0
\(709\) −38.1397 −1.43237 −0.716183 0.697913i \(-0.754112\pi\)
−0.716183 + 0.697913i \(0.754112\pi\)
\(710\) 0 0
\(711\) 17.0435 0.639183
\(712\) 0 0
\(713\) −16.0575 −0.601360
\(714\) 0 0
\(715\) 3.05315 0.114181
\(716\) 0 0
\(717\) −13.6256 −0.508859
\(718\) 0 0
\(719\) 15.4056 0.574531 0.287265 0.957851i \(-0.407254\pi\)
0.287265 + 0.957851i \(0.407254\pi\)
\(720\) 0 0
\(721\) 3.11516 0.116015
\(722\) 0 0
\(723\) 25.5569 0.950471
\(724\) 0 0
\(725\) 9.40512 0.349297
\(726\) 0 0
\(727\) −30.6861 −1.13809 −0.569043 0.822308i \(-0.692686\pi\)
−0.569043 + 0.822308i \(0.692686\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −40.5073 −1.49822
\(732\) 0 0
\(733\) 39.3294 1.45266 0.726332 0.687344i \(-0.241224\pi\)
0.726332 + 0.687344i \(0.241224\pi\)
\(734\) 0 0
\(735\) −7.22039 −0.266328
\(736\) 0 0
\(737\) 19.4215 0.715401
\(738\) 0 0
\(739\) −22.8826 −0.841750 −0.420875 0.907119i \(-0.638277\pi\)
−0.420875 + 0.907119i \(0.638277\pi\)
\(740\) 0 0
\(741\) 0.578969 0.0212690
\(742\) 0 0
\(743\) −34.1646 −1.25338 −0.626690 0.779269i \(-0.715591\pi\)
−0.626690 + 0.779269i \(0.715591\pi\)
\(744\) 0 0
\(745\) −12.6810 −0.464595
\(746\) 0 0
\(747\) −11.1878 −0.409339
\(748\) 0 0
\(749\) 1.89459 0.0692267
\(750\) 0 0
\(751\) 48.5164 1.77039 0.885195 0.465221i \(-0.154025\pi\)
0.885195 + 0.465221i \(0.154025\pi\)
\(752\) 0 0
\(753\) 20.7744 0.757060
\(754\) 0 0
\(755\) −7.54267 −0.274506
\(756\) 0 0
\(757\) −1.04163 −0.0378588 −0.0189294 0.999821i \(-0.506026\pi\)
−0.0189294 + 0.999821i \(0.506026\pi\)
\(758\) 0 0
\(759\) 6.49639 0.235804
\(760\) 0 0
\(761\) −33.0167 −1.19685 −0.598427 0.801177i \(-0.704207\pi\)
−0.598427 + 0.801177i \(0.704207\pi\)
\(762\) 0 0
\(763\) 9.40573 0.340510
\(764\) 0 0
\(765\) 3.92771 0.142007
\(766\) 0 0
\(767\) −3.01668 −0.108926
\(768\) 0 0
\(769\) −7.43777 −0.268213 −0.134106 0.990967i \(-0.542816\pi\)
−0.134106 + 0.990967i \(0.542816\pi\)
\(770\) 0 0
\(771\) −0.897798 −0.0323334
\(772\) 0 0
\(773\) 51.5396 1.85375 0.926876 0.375368i \(-0.122484\pi\)
0.926876 + 0.375368i \(0.122484\pi\)
\(774\) 0 0
\(775\) 25.7798 0.926037
\(776\) 0 0
\(777\) −4.87923 −0.175042
\(778\) 0 0
\(779\) −2.73458 −0.0979766
\(780\) 0 0
\(781\) −20.8077 −0.744560
\(782\) 0 0
\(783\) 2.48990 0.0889818
\(784\) 0 0
\(785\) −10.2238 −0.364904
\(786\) 0 0
\(787\) 3.30283 0.117733 0.0588667 0.998266i \(-0.481251\pi\)
0.0588667 + 0.998266i \(0.481251\pi\)
\(788\) 0 0
\(789\) 14.8581 0.528962
\(790\) 0 0
\(791\) 8.56243 0.304445
\(792\) 0 0
\(793\) −7.13869 −0.253502
\(794\) 0 0
\(795\) −10.0722 −0.357225
\(796\) 0 0
\(797\) −50.1597 −1.77675 −0.888374 0.459121i \(-0.848165\pi\)
−0.888374 + 0.459121i \(0.848165\pi\)
\(798\) 0 0
\(799\) −16.5665 −0.586079
\(800\) 0 0
\(801\) 12.5299 0.442723
\(802\) 0 0
\(803\) −31.9867 −1.12879
\(804\) 0 0
\(805\) 1.78388 0.0628737
\(806\) 0 0
\(807\) −18.8744 −0.664411
\(808\) 0 0
\(809\) −40.9805 −1.44080 −0.720399 0.693560i \(-0.756041\pi\)
−0.720399 + 0.693560i \(0.756041\pi\)
\(810\) 0 0
\(811\) 43.0183 1.51058 0.755288 0.655393i \(-0.227497\pi\)
0.755288 + 0.655393i \(0.227497\pi\)
\(812\) 0 0
\(813\) 5.89671 0.206807
\(814\) 0 0
\(815\) 15.7295 0.550981
\(816\) 0 0
\(817\) −6.60249 −0.230992
\(818\) 0 0
\(819\) −0.685687 −0.0239598
\(820\) 0 0
\(821\) 39.9408 1.39394 0.696971 0.717099i \(-0.254531\pi\)
0.696971 + 0.717099i \(0.254531\pi\)
\(822\) 0 0
\(823\) −0.699056 −0.0243675 −0.0121838 0.999926i \(-0.503878\pi\)
−0.0121838 + 0.999926i \(0.503878\pi\)
\(824\) 0 0
\(825\) −10.4297 −0.363116
\(826\) 0 0
\(827\) 37.1391 1.29145 0.645726 0.763569i \(-0.276555\pi\)
0.645726 + 0.763569i \(0.276555\pi\)
\(828\) 0 0
\(829\) −37.6179 −1.30652 −0.653262 0.757132i \(-0.726600\pi\)
−0.653262 + 0.757132i \(0.726600\pi\)
\(830\) 0 0
\(831\) −5.37429 −0.186432
\(832\) 0 0
\(833\) 23.1944 0.803638
\(834\) 0 0
\(835\) −25.6506 −0.887676
\(836\) 0 0
\(837\) 6.82490 0.235903
\(838\) 0 0
\(839\) 27.7951 0.959592 0.479796 0.877380i \(-0.340711\pi\)
0.479796 + 0.877380i \(0.340711\pi\)
\(840\) 0 0
\(841\) −22.8004 −0.786221
\(842\) 0 0
\(843\) −0.0410347 −0.00141331
\(844\) 0 0
\(845\) −1.10575 −0.0380391
\(846\) 0 0
\(847\) 2.31492 0.0795417
\(848\) 0 0
\(849\) −6.32265 −0.216993
\(850\) 0 0
\(851\) −16.7420 −0.573910
\(852\) 0 0
\(853\) 8.03933 0.275261 0.137631 0.990484i \(-0.456051\pi\)
0.137631 + 0.990484i \(0.456051\pi\)
\(854\) 0 0
\(855\) 0.640197 0.0218943
\(856\) 0 0
\(857\) −1.86836 −0.0638220 −0.0319110 0.999491i \(-0.510159\pi\)
−0.0319110 + 0.999491i \(0.510159\pi\)
\(858\) 0 0
\(859\) −14.4919 −0.494458 −0.247229 0.968957i \(-0.579520\pi\)
−0.247229 + 0.968957i \(0.579520\pi\)
\(860\) 0 0
\(861\) 3.23863 0.110372
\(862\) 0 0
\(863\) −30.2816 −1.03080 −0.515398 0.856951i \(-0.672356\pi\)
−0.515398 + 0.856951i \(0.672356\pi\)
\(864\) 0 0
\(865\) 7.97590 0.271189
\(866\) 0 0
\(867\) 4.38283 0.148849
\(868\) 0 0
\(869\) −47.0597 −1.59639
\(870\) 0 0
\(871\) −7.03386 −0.238333
\(872\) 0 0
\(873\) −12.7727 −0.432290
\(874\) 0 0
\(875\) −6.65496 −0.224979
\(876\) 0 0
\(877\) −32.6612 −1.10289 −0.551445 0.834211i \(-0.685924\pi\)
−0.551445 + 0.834211i \(0.685924\pi\)
\(878\) 0 0
\(879\) −0.685714 −0.0231285
\(880\) 0 0
\(881\) 19.6921 0.663444 0.331722 0.943377i \(-0.392370\pi\)
0.331722 + 0.943377i \(0.392370\pi\)
\(882\) 0 0
\(883\) −45.0848 −1.51722 −0.758611 0.651543i \(-0.774122\pi\)
−0.758611 + 0.651543i \(0.774122\pi\)
\(884\) 0 0
\(885\) −3.33571 −0.112129
\(886\) 0 0
\(887\) 35.2426 1.18333 0.591665 0.806184i \(-0.298471\pi\)
0.591665 + 0.806184i \(0.298471\pi\)
\(888\) 0 0
\(889\) −0.546187 −0.0183185
\(890\) 0 0
\(891\) −2.76115 −0.0925019
\(892\) 0 0
\(893\) −2.70025 −0.0903605
\(894\) 0 0
\(895\) −12.6198 −0.421835
\(896\) 0 0
\(897\) −2.35279 −0.0785573
\(898\) 0 0
\(899\) 16.9933 0.566759
\(900\) 0 0
\(901\) 32.3555 1.07792
\(902\) 0 0
\(903\) 7.81948 0.260216
\(904\) 0 0
\(905\) 21.3697 0.710352
\(906\) 0 0
\(907\) 29.3483 0.974495 0.487247 0.873264i \(-0.338001\pi\)
0.487247 + 0.873264i \(0.338001\pi\)
\(908\) 0 0
\(909\) 6.61486 0.219401
\(910\) 0 0
\(911\) −3.06426 −0.101523 −0.0507617 0.998711i \(-0.516165\pi\)
−0.0507617 + 0.998711i \(0.516165\pi\)
\(912\) 0 0
\(913\) 30.8911 1.02235
\(914\) 0 0
\(915\) −7.89363 −0.260956
\(916\) 0 0
\(917\) 4.38954 0.144955
\(918\) 0 0
\(919\) −11.7866 −0.388803 −0.194401 0.980922i \(-0.562276\pi\)
−0.194401 + 0.980922i \(0.562276\pi\)
\(920\) 0 0
\(921\) 10.4663 0.344875
\(922\) 0 0
\(923\) 7.53590 0.248047
\(924\) 0 0
\(925\) 26.8787 0.883767
\(926\) 0 0
\(927\) −4.54312 −0.149216
\(928\) 0 0
\(929\) 26.2340 0.860708 0.430354 0.902660i \(-0.358389\pi\)
0.430354 + 0.902660i \(0.358389\pi\)
\(930\) 0 0
\(931\) 3.78057 0.123903
\(932\) 0 0
\(933\) −14.3985 −0.471386
\(934\) 0 0
\(935\) −10.8450 −0.354669
\(936\) 0 0
\(937\) −28.4449 −0.929255 −0.464627 0.885506i \(-0.653812\pi\)
−0.464627 + 0.885506i \(0.653812\pi\)
\(938\) 0 0
\(939\) −31.5228 −1.02871
\(940\) 0 0
\(941\) 54.6424 1.78129 0.890646 0.454698i \(-0.150253\pi\)
0.890646 + 0.454698i \(0.150253\pi\)
\(942\) 0 0
\(943\) 11.1127 0.361879
\(944\) 0 0
\(945\) −0.758200 −0.0246643
\(946\) 0 0
\(947\) 2.41371 0.0784350 0.0392175 0.999231i \(-0.487513\pi\)
0.0392175 + 0.999231i \(0.487513\pi\)
\(948\) 0 0
\(949\) 11.5846 0.376051
\(950\) 0 0
\(951\) −13.7158 −0.444766
\(952\) 0 0
\(953\) −55.6943 −1.80411 −0.902057 0.431617i \(-0.857943\pi\)
−0.902057 + 0.431617i \(0.857943\pi\)
\(954\) 0 0
\(955\) −4.14625 −0.134170
\(956\) 0 0
\(957\) −6.87498 −0.222237
\(958\) 0 0
\(959\) −0.228535 −0.00737977
\(960\) 0 0
\(961\) 15.5793 0.502558
\(962\) 0 0
\(963\) −2.76305 −0.0890380
\(964\) 0 0
\(965\) 7.20451 0.231921
\(966\) 0 0
\(967\) −13.6118 −0.437725 −0.218862 0.975756i \(-0.570235\pi\)
−0.218862 + 0.975756i \(0.570235\pi\)
\(968\) 0 0
\(969\) −2.05654 −0.0660654
\(970\) 0 0
\(971\) −38.1923 −1.22565 −0.612825 0.790219i \(-0.709967\pi\)
−0.612825 + 0.790219i \(0.709967\pi\)
\(972\) 0 0
\(973\) 4.08236 0.130874
\(974\) 0 0
\(975\) 3.77731 0.120971
\(976\) 0 0
\(977\) 15.2697 0.488521 0.244260 0.969710i \(-0.421455\pi\)
0.244260 + 0.969710i \(0.421455\pi\)
\(978\) 0 0
\(979\) −34.5970 −1.10572
\(980\) 0 0
\(981\) −13.7172 −0.437958
\(982\) 0 0
\(983\) −35.5633 −1.13429 −0.567147 0.823617i \(-0.691953\pi\)
−0.567147 + 0.823617i \(0.691953\pi\)
\(984\) 0 0
\(985\) −4.25549 −0.135591
\(986\) 0 0
\(987\) 3.19797 0.101793
\(988\) 0 0
\(989\) 26.8309 0.853172
\(990\) 0 0
\(991\) −31.8367 −1.01133 −0.505663 0.862731i \(-0.668752\pi\)
−0.505663 + 0.862731i \(0.668752\pi\)
\(992\) 0 0
\(993\) −28.9849 −0.919808
\(994\) 0 0
\(995\) −3.44020 −0.109062
\(996\) 0 0
\(997\) 8.18204 0.259128 0.129564 0.991571i \(-0.458642\pi\)
0.129564 + 0.991571i \(0.458642\pi\)
\(998\) 0 0
\(999\) 7.11584 0.225135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9984.2.a.bn.1.2 6
4.3 odd 2 9984.2.a.bo.1.2 6
8.3 odd 2 9984.2.a.bl.1.5 6
8.5 even 2 9984.2.a.bq.1.5 6
16.3 odd 4 4992.2.g.k.2497.11 yes 12
16.5 even 4 4992.2.g.i.2497.8 yes 12
16.11 odd 4 4992.2.g.k.2497.2 yes 12
16.13 even 4 4992.2.g.i.2497.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4992.2.g.i.2497.5 12 16.13 even 4
4992.2.g.i.2497.8 yes 12 16.5 even 4
4992.2.g.k.2497.2 yes 12 16.11 odd 4
4992.2.g.k.2497.11 yes 12 16.3 odd 4
9984.2.a.bl.1.5 6 8.3 odd 2
9984.2.a.bn.1.2 6 1.1 even 1 trivial
9984.2.a.bo.1.2 6 4.3 odd 2
9984.2.a.bq.1.5 6 8.5 even 2