Properties

Label 9984.2.a.bu.1.6
Level $9984$
Weight $2$
Character 9984.1
Self dual yes
Analytic conductor $79.723$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9984,2,Mod(1,9984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 14x^{6} + 24x^{5} + 65x^{4} - 82x^{3} - 126x^{2} + 84x + 92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.60416\) of defining polynomial
Character \(\chi\) \(=\) 9984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.47174 q^{5} +2.93973 q^{7} +1.00000 q^{9} +4.32135 q^{11} -1.00000 q^{13} +1.47174 q^{15} +6.88672 q^{17} -6.56749 q^{19} +2.93973 q^{21} +3.54085 q^{23} -2.83399 q^{25} +1.00000 q^{27} -7.96637 q^{29} -4.92763 q^{31} +4.32135 q^{33} +4.32651 q^{35} -3.45073 q^{37} -1.00000 q^{39} +11.4381 q^{41} -1.43599 q^{43} +1.47174 q^{45} +6.41147 q^{47} +1.64203 q^{49} +6.88672 q^{51} +9.46174 q^{53} +6.35988 q^{55} -6.56749 q^{57} -0.602544 q^{59} +5.75217 q^{61} +2.93973 q^{63} -1.47174 q^{65} +8.57959 q^{67} +3.54085 q^{69} +3.26862 q^{71} -15.3835 q^{73} -2.83399 q^{75} +12.7036 q^{77} +8.85689 q^{79} +1.00000 q^{81} +9.95232 q^{83} +10.1354 q^{85} -7.96637 q^{87} +5.10329 q^{89} -2.93973 q^{91} -4.92763 q^{93} -9.66561 q^{95} +6.42874 q^{97} +4.32135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 2 q^{5} - 2 q^{7} + 8 q^{9} - 8 q^{13} - 2 q^{15} + 8 q^{17} + 6 q^{19} - 2 q^{21} + 4 q^{23} + 16 q^{25} + 8 q^{27} - 4 q^{29} - 2 q^{31} - 4 q^{35} - 8 q^{37} - 8 q^{39} + 18 q^{41} + 16 q^{43}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.47174 0.658181 0.329090 0.944298i \(-0.393258\pi\)
0.329090 + 0.944298i \(0.393258\pi\)
\(6\) 0 0
\(7\) 2.93973 1.11111 0.555557 0.831478i \(-0.312505\pi\)
0.555557 + 0.831478i \(0.312505\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.32135 1.30293 0.651467 0.758677i \(-0.274154\pi\)
0.651467 + 0.758677i \(0.274154\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 1.47174 0.380001
\(16\) 0 0
\(17\) 6.88672 1.67027 0.835137 0.550041i \(-0.185388\pi\)
0.835137 + 0.550041i \(0.185388\pi\)
\(18\) 0 0
\(19\) −6.56749 −1.50668 −0.753342 0.657629i \(-0.771560\pi\)
−0.753342 + 0.657629i \(0.771560\pi\)
\(20\) 0 0
\(21\) 2.93973 0.641502
\(22\) 0 0
\(23\) 3.54085 0.738318 0.369159 0.929366i \(-0.379646\pi\)
0.369159 + 0.929366i \(0.379646\pi\)
\(24\) 0 0
\(25\) −2.83399 −0.566798
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −7.96637 −1.47932 −0.739659 0.672982i \(-0.765013\pi\)
−0.739659 + 0.672982i \(0.765013\pi\)
\(30\) 0 0
\(31\) −4.92763 −0.885028 −0.442514 0.896761i \(-0.645913\pi\)
−0.442514 + 0.896761i \(0.645913\pi\)
\(32\) 0 0
\(33\) 4.32135 0.752250
\(34\) 0 0
\(35\) 4.32651 0.731314
\(36\) 0 0
\(37\) −3.45073 −0.567296 −0.283648 0.958928i \(-0.591545\pi\)
−0.283648 + 0.958928i \(0.591545\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 11.4381 1.78633 0.893166 0.449727i \(-0.148479\pi\)
0.893166 + 0.449727i \(0.148479\pi\)
\(42\) 0 0
\(43\) −1.43599 −0.218987 −0.109493 0.993988i \(-0.534923\pi\)
−0.109493 + 0.993988i \(0.534923\pi\)
\(44\) 0 0
\(45\) 1.47174 0.219394
\(46\) 0 0
\(47\) 6.41147 0.935209 0.467604 0.883938i \(-0.345117\pi\)
0.467604 + 0.883938i \(0.345117\pi\)
\(48\) 0 0
\(49\) 1.64203 0.234575
\(50\) 0 0
\(51\) 6.88672 0.964334
\(52\) 0 0
\(53\) 9.46174 1.29967 0.649835 0.760075i \(-0.274838\pi\)
0.649835 + 0.760075i \(0.274838\pi\)
\(54\) 0 0
\(55\) 6.35988 0.857566
\(56\) 0 0
\(57\) −6.56749 −0.869885
\(58\) 0 0
\(59\) −0.602544 −0.0784445 −0.0392223 0.999231i \(-0.512488\pi\)
−0.0392223 + 0.999231i \(0.512488\pi\)
\(60\) 0 0
\(61\) 5.75217 0.736490 0.368245 0.929729i \(-0.379959\pi\)
0.368245 + 0.929729i \(0.379959\pi\)
\(62\) 0 0
\(63\) 2.93973 0.370371
\(64\) 0 0
\(65\) −1.47174 −0.182546
\(66\) 0 0
\(67\) 8.57959 1.04816 0.524082 0.851668i \(-0.324409\pi\)
0.524082 + 0.851668i \(0.324409\pi\)
\(68\) 0 0
\(69\) 3.54085 0.426268
\(70\) 0 0
\(71\) 3.26862 0.387914 0.193957 0.981010i \(-0.437868\pi\)
0.193957 + 0.981010i \(0.437868\pi\)
\(72\) 0 0
\(73\) −15.3835 −1.80050 −0.900249 0.435375i \(-0.856616\pi\)
−0.900249 + 0.435375i \(0.856616\pi\)
\(74\) 0 0
\(75\) −2.83399 −0.327241
\(76\) 0 0
\(77\) 12.7036 1.44771
\(78\) 0 0
\(79\) 8.85689 0.996478 0.498239 0.867040i \(-0.333980\pi\)
0.498239 + 0.867040i \(0.333980\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.95232 1.09241 0.546205 0.837652i \(-0.316072\pi\)
0.546205 + 0.837652i \(0.316072\pi\)
\(84\) 0 0
\(85\) 10.1354 1.09934
\(86\) 0 0
\(87\) −7.96637 −0.854084
\(88\) 0 0
\(89\) 5.10329 0.540947 0.270474 0.962727i \(-0.412820\pi\)
0.270474 + 0.962727i \(0.412820\pi\)
\(90\) 0 0
\(91\) −2.93973 −0.308168
\(92\) 0 0
\(93\) −4.92763 −0.510971
\(94\) 0 0
\(95\) −9.66561 −0.991670
\(96\) 0 0
\(97\) 6.42874 0.652739 0.326370 0.945242i \(-0.394175\pi\)
0.326370 + 0.945242i \(0.394175\pi\)
\(98\) 0 0
\(99\) 4.32135 0.434312
\(100\) 0 0
\(101\) −2.54248 −0.252986 −0.126493 0.991968i \(-0.540372\pi\)
−0.126493 + 0.991968i \(0.540372\pi\)
\(102\) 0 0
\(103\) 10.5637 1.04088 0.520438 0.853899i \(-0.325769\pi\)
0.520438 + 0.853899i \(0.325769\pi\)
\(104\) 0 0
\(105\) 4.32651 0.422224
\(106\) 0 0
\(107\) 2.58527 0.249928 0.124964 0.992161i \(-0.460118\pi\)
0.124964 + 0.992161i \(0.460118\pi\)
\(108\) 0 0
\(109\) 2.47602 0.237160 0.118580 0.992945i \(-0.462166\pi\)
0.118580 + 0.992945i \(0.462166\pi\)
\(110\) 0 0
\(111\) −3.45073 −0.327529
\(112\) 0 0
\(113\) 6.95821 0.654573 0.327287 0.944925i \(-0.393866\pi\)
0.327287 + 0.944925i \(0.393866\pi\)
\(114\) 0 0
\(115\) 5.21120 0.485947
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 20.2451 1.85587
\(120\) 0 0
\(121\) 7.67403 0.697639
\(122\) 0 0
\(123\) 11.4381 1.03134
\(124\) 0 0
\(125\) −11.5296 −1.03124
\(126\) 0 0
\(127\) −11.3823 −1.01002 −0.505008 0.863115i \(-0.668510\pi\)
−0.505008 + 0.863115i \(0.668510\pi\)
\(128\) 0 0
\(129\) −1.43599 −0.126432
\(130\) 0 0
\(131\) −1.41473 −0.123605 −0.0618026 0.998088i \(-0.519685\pi\)
−0.0618026 + 0.998088i \(0.519685\pi\)
\(132\) 0 0
\(133\) −19.3067 −1.67410
\(134\) 0 0
\(135\) 1.47174 0.126667
\(136\) 0 0
\(137\) 17.8444 1.52455 0.762275 0.647253i \(-0.224082\pi\)
0.762275 + 0.647253i \(0.224082\pi\)
\(138\) 0 0
\(139\) 5.42851 0.460440 0.230220 0.973139i \(-0.426055\pi\)
0.230220 + 0.973139i \(0.426055\pi\)
\(140\) 0 0
\(141\) 6.41147 0.539943
\(142\) 0 0
\(143\) −4.32135 −0.361369
\(144\) 0 0
\(145\) −11.7244 −0.973658
\(146\) 0 0
\(147\) 1.64203 0.135432
\(148\) 0 0
\(149\) −8.30643 −0.680489 −0.340245 0.940337i \(-0.610510\pi\)
−0.340245 + 0.940337i \(0.610510\pi\)
\(150\) 0 0
\(151\) −23.0182 −1.87319 −0.936596 0.350410i \(-0.886042\pi\)
−0.936596 + 0.350410i \(0.886042\pi\)
\(152\) 0 0
\(153\) 6.88672 0.556758
\(154\) 0 0
\(155\) −7.25217 −0.582508
\(156\) 0 0
\(157\) 13.7135 1.09445 0.547227 0.836985i \(-0.315684\pi\)
0.547227 + 0.836985i \(0.315684\pi\)
\(158\) 0 0
\(159\) 9.46174 0.750365
\(160\) 0 0
\(161\) 10.4092 0.820356
\(162\) 0 0
\(163\) −13.1981 −1.03375 −0.516876 0.856060i \(-0.672905\pi\)
−0.516876 + 0.856060i \(0.672905\pi\)
\(164\) 0 0
\(165\) 6.35988 0.495116
\(166\) 0 0
\(167\) −17.7828 −1.37608 −0.688038 0.725674i \(-0.741528\pi\)
−0.688038 + 0.725674i \(0.741528\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −6.56749 −0.502228
\(172\) 0 0
\(173\) −19.9839 −1.51935 −0.759674 0.650304i \(-0.774641\pi\)
−0.759674 + 0.650304i \(0.774641\pi\)
\(174\) 0 0
\(175\) −8.33118 −0.629778
\(176\) 0 0
\(177\) −0.602544 −0.0452900
\(178\) 0 0
\(179\) −4.32651 −0.323379 −0.161689 0.986842i \(-0.551694\pi\)
−0.161689 + 0.986842i \(0.551694\pi\)
\(180\) 0 0
\(181\) 15.8189 1.17581 0.587905 0.808930i \(-0.299953\pi\)
0.587905 + 0.808930i \(0.299953\pi\)
\(182\) 0 0
\(183\) 5.75217 0.425213
\(184\) 0 0
\(185\) −5.07856 −0.373383
\(186\) 0 0
\(187\) 29.7599 2.17626
\(188\) 0 0
\(189\) 2.93973 0.213834
\(190\) 0 0
\(191\) 6.76415 0.489437 0.244718 0.969594i \(-0.421304\pi\)
0.244718 + 0.969594i \(0.421304\pi\)
\(192\) 0 0
\(193\) 11.5595 0.832070 0.416035 0.909349i \(-0.363419\pi\)
0.416035 + 0.909349i \(0.363419\pi\)
\(194\) 0 0
\(195\) −1.47174 −0.105393
\(196\) 0 0
\(197\) −17.2065 −1.22591 −0.612955 0.790118i \(-0.710019\pi\)
−0.612955 + 0.790118i \(0.710019\pi\)
\(198\) 0 0
\(199\) −22.7288 −1.61120 −0.805599 0.592461i \(-0.798157\pi\)
−0.805599 + 0.592461i \(0.798157\pi\)
\(200\) 0 0
\(201\) 8.57959 0.605157
\(202\) 0 0
\(203\) −23.4190 −1.64369
\(204\) 0 0
\(205\) 16.8339 1.17573
\(206\) 0 0
\(207\) 3.54085 0.246106
\(208\) 0 0
\(209\) −28.3804 −1.96311
\(210\) 0 0
\(211\) −4.86274 −0.334765 −0.167382 0.985892i \(-0.553531\pi\)
−0.167382 + 0.985892i \(0.553531\pi\)
\(212\) 0 0
\(213\) 3.26862 0.223962
\(214\) 0 0
\(215\) −2.11340 −0.144133
\(216\) 0 0
\(217\) −14.4859 −0.983368
\(218\) 0 0
\(219\) −15.3835 −1.03952
\(220\) 0 0
\(221\) −6.88672 −0.463251
\(222\) 0 0
\(223\) 7.82908 0.524274 0.262137 0.965031i \(-0.415573\pi\)
0.262137 + 0.965031i \(0.415573\pi\)
\(224\) 0 0
\(225\) −2.83399 −0.188933
\(226\) 0 0
\(227\) −5.61608 −0.372752 −0.186376 0.982478i \(-0.559674\pi\)
−0.186376 + 0.982478i \(0.559674\pi\)
\(228\) 0 0
\(229\) −6.99252 −0.462079 −0.231039 0.972944i \(-0.574213\pi\)
−0.231039 + 0.972944i \(0.574213\pi\)
\(230\) 0 0
\(231\) 12.7036 0.835836
\(232\) 0 0
\(233\) −4.22318 −0.276670 −0.138335 0.990385i \(-0.544175\pi\)
−0.138335 + 0.990385i \(0.544175\pi\)
\(234\) 0 0
\(235\) 9.43599 0.615536
\(236\) 0 0
\(237\) 8.85689 0.575317
\(238\) 0 0
\(239\) −5.20923 −0.336957 −0.168479 0.985705i \(-0.553885\pi\)
−0.168479 + 0.985705i \(0.553885\pi\)
\(240\) 0 0
\(241\) 11.1307 0.716995 0.358497 0.933531i \(-0.383289\pi\)
0.358497 + 0.933531i \(0.383289\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 2.41663 0.154393
\(246\) 0 0
\(247\) 6.56749 0.417879
\(248\) 0 0
\(249\) 9.95232 0.630703
\(250\) 0 0
\(251\) 2.86165 0.180626 0.0903130 0.995913i \(-0.471213\pi\)
0.0903130 + 0.995913i \(0.471213\pi\)
\(252\) 0 0
\(253\) 15.3012 0.961981
\(254\) 0 0
\(255\) 10.1354 0.634706
\(256\) 0 0
\(257\) 10.6744 0.665849 0.332925 0.942953i \(-0.391965\pi\)
0.332925 + 0.942953i \(0.391965\pi\)
\(258\) 0 0
\(259\) −10.1442 −0.630331
\(260\) 0 0
\(261\) −7.96637 −0.493106
\(262\) 0 0
\(263\) 2.22929 0.137464 0.0687321 0.997635i \(-0.478105\pi\)
0.0687321 + 0.997635i \(0.478105\pi\)
\(264\) 0 0
\(265\) 13.9252 0.855418
\(266\) 0 0
\(267\) 5.10329 0.312316
\(268\) 0 0
\(269\) −0.146614 −0.00893920 −0.00446960 0.999990i \(-0.501423\pi\)
−0.00446960 + 0.999990i \(0.501423\pi\)
\(270\) 0 0
\(271\) −11.2326 −0.682334 −0.341167 0.940003i \(-0.610822\pi\)
−0.341167 + 0.940003i \(0.610822\pi\)
\(272\) 0 0
\(273\) −2.93973 −0.177921
\(274\) 0 0
\(275\) −12.2467 −0.738501
\(276\) 0 0
\(277\) −0.180247 −0.0108300 −0.00541498 0.999985i \(-0.501724\pi\)
−0.00541498 + 0.999985i \(0.501724\pi\)
\(278\) 0 0
\(279\) −4.92763 −0.295009
\(280\) 0 0
\(281\) 10.3531 0.617617 0.308809 0.951124i \(-0.400070\pi\)
0.308809 + 0.951124i \(0.400070\pi\)
\(282\) 0 0
\(283\) −2.86450 −0.170277 −0.0851386 0.996369i \(-0.527133\pi\)
−0.0851386 + 0.996369i \(0.527133\pi\)
\(284\) 0 0
\(285\) −9.66561 −0.572541
\(286\) 0 0
\(287\) 33.6250 1.98482
\(288\) 0 0
\(289\) 30.4269 1.78982
\(290\) 0 0
\(291\) 6.42874 0.376859
\(292\) 0 0
\(293\) 14.5083 0.847583 0.423791 0.905760i \(-0.360699\pi\)
0.423791 + 0.905760i \(0.360699\pi\)
\(294\) 0 0
\(295\) −0.886785 −0.0516306
\(296\) 0 0
\(297\) 4.32135 0.250750
\(298\) 0 0
\(299\) −3.54085 −0.204773
\(300\) 0 0
\(301\) −4.22143 −0.243319
\(302\) 0 0
\(303\) −2.54248 −0.146062
\(304\) 0 0
\(305\) 8.46568 0.484744
\(306\) 0 0
\(307\) 6.24005 0.356138 0.178069 0.984018i \(-0.443015\pi\)
0.178069 + 0.984018i \(0.443015\pi\)
\(308\) 0 0
\(309\) 10.5637 0.600950
\(310\) 0 0
\(311\) −21.7669 −1.23429 −0.617143 0.786851i \(-0.711710\pi\)
−0.617143 + 0.786851i \(0.711710\pi\)
\(312\) 0 0
\(313\) 32.4755 1.83562 0.917812 0.397016i \(-0.129954\pi\)
0.917812 + 0.397016i \(0.129954\pi\)
\(314\) 0 0
\(315\) 4.32651 0.243771
\(316\) 0 0
\(317\) 23.3653 1.31232 0.656162 0.754620i \(-0.272179\pi\)
0.656162 + 0.754620i \(0.272179\pi\)
\(318\) 0 0
\(319\) −34.4254 −1.92745
\(320\) 0 0
\(321\) 2.58527 0.144296
\(322\) 0 0
\(323\) −45.2284 −2.51658
\(324\) 0 0
\(325\) 2.83399 0.157202
\(326\) 0 0
\(327\) 2.47602 0.136924
\(328\) 0 0
\(329\) 18.8480 1.03912
\(330\) 0 0
\(331\) −13.6094 −0.748039 −0.374020 0.927421i \(-0.622021\pi\)
−0.374020 + 0.927421i \(0.622021\pi\)
\(332\) 0 0
\(333\) −3.45073 −0.189099
\(334\) 0 0
\(335\) 12.6269 0.689881
\(336\) 0 0
\(337\) −6.45391 −0.351567 −0.175783 0.984429i \(-0.556246\pi\)
−0.175783 + 0.984429i \(0.556246\pi\)
\(338\) 0 0
\(339\) 6.95821 0.377918
\(340\) 0 0
\(341\) −21.2940 −1.15313
\(342\) 0 0
\(343\) −15.7510 −0.850474
\(344\) 0 0
\(345\) 5.21120 0.280562
\(346\) 0 0
\(347\) −6.01451 −0.322876 −0.161438 0.986883i \(-0.551613\pi\)
−0.161438 + 0.986883i \(0.551613\pi\)
\(348\) 0 0
\(349\) −20.5964 −1.10250 −0.551249 0.834340i \(-0.685849\pi\)
−0.551249 + 0.834340i \(0.685849\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 2.96820 0.157981 0.0789907 0.996875i \(-0.474830\pi\)
0.0789907 + 0.996875i \(0.474830\pi\)
\(354\) 0 0
\(355\) 4.81054 0.255317
\(356\) 0 0
\(357\) 20.2451 1.07149
\(358\) 0 0
\(359\) −8.05700 −0.425232 −0.212616 0.977136i \(-0.568198\pi\)
−0.212616 + 0.977136i \(0.568198\pi\)
\(360\) 0 0
\(361\) 24.1319 1.27010
\(362\) 0 0
\(363\) 7.67403 0.402782
\(364\) 0 0
\(365\) −22.6404 −1.18505
\(366\) 0 0
\(367\) −0.102750 −0.00536350 −0.00268175 0.999996i \(-0.500854\pi\)
−0.00268175 + 0.999996i \(0.500854\pi\)
\(368\) 0 0
\(369\) 11.4381 0.595444
\(370\) 0 0
\(371\) 27.8150 1.44408
\(372\) 0 0
\(373\) −2.65302 −0.137368 −0.0686842 0.997638i \(-0.521880\pi\)
−0.0686842 + 0.997638i \(0.521880\pi\)
\(374\) 0 0
\(375\) −11.5296 −0.595385
\(376\) 0 0
\(377\) 7.96637 0.410289
\(378\) 0 0
\(379\) 35.9425 1.84624 0.923121 0.384510i \(-0.125629\pi\)
0.923121 + 0.384510i \(0.125629\pi\)
\(380\) 0 0
\(381\) −11.3823 −0.583133
\(382\) 0 0
\(383\) 10.8548 0.554653 0.277327 0.960776i \(-0.410552\pi\)
0.277327 + 0.960776i \(0.410552\pi\)
\(384\) 0 0
\(385\) 18.6964 0.952854
\(386\) 0 0
\(387\) −1.43599 −0.0729956
\(388\) 0 0
\(389\) 0.412406 0.0209098 0.0104549 0.999945i \(-0.496672\pi\)
0.0104549 + 0.999945i \(0.496672\pi\)
\(390\) 0 0
\(391\) 24.3848 1.23319
\(392\) 0 0
\(393\) −1.41473 −0.0713634
\(394\) 0 0
\(395\) 13.0350 0.655862
\(396\) 0 0
\(397\) −2.06389 −0.103584 −0.0517918 0.998658i \(-0.516493\pi\)
−0.0517918 + 0.998658i \(0.516493\pi\)
\(398\) 0 0
\(399\) −19.3067 −0.966541
\(400\) 0 0
\(401\) 20.7908 1.03824 0.519120 0.854701i \(-0.326260\pi\)
0.519120 + 0.854701i \(0.326260\pi\)
\(402\) 0 0
\(403\) 4.92763 0.245463
\(404\) 0 0
\(405\) 1.47174 0.0731312
\(406\) 0 0
\(407\) −14.9118 −0.739150
\(408\) 0 0
\(409\) 9.26345 0.458048 0.229024 0.973421i \(-0.426447\pi\)
0.229024 + 0.973421i \(0.426447\pi\)
\(410\) 0 0
\(411\) 17.8444 0.880200
\(412\) 0 0
\(413\) −1.77132 −0.0871608
\(414\) 0 0
\(415\) 14.6472 0.719002
\(416\) 0 0
\(417\) 5.42851 0.265835
\(418\) 0 0
\(419\) −35.1941 −1.71934 −0.859672 0.510847i \(-0.829332\pi\)
−0.859672 + 0.510847i \(0.829332\pi\)
\(420\) 0 0
\(421\) −38.5231 −1.87750 −0.938751 0.344596i \(-0.888016\pi\)
−0.938751 + 0.344596i \(0.888016\pi\)
\(422\) 0 0
\(423\) 6.41147 0.311736
\(424\) 0 0
\(425\) −19.5169 −0.946709
\(426\) 0 0
\(427\) 16.9098 0.818325
\(428\) 0 0
\(429\) −4.32135 −0.208637
\(430\) 0 0
\(431\) −1.89823 −0.0914344 −0.0457172 0.998954i \(-0.514557\pi\)
−0.0457172 + 0.998954i \(0.514557\pi\)
\(432\) 0 0
\(433\) −11.4500 −0.550251 −0.275126 0.961408i \(-0.588719\pi\)
−0.275126 + 0.961408i \(0.588719\pi\)
\(434\) 0 0
\(435\) −11.7244 −0.562142
\(436\) 0 0
\(437\) −23.2545 −1.11241
\(438\) 0 0
\(439\) −38.8346 −1.85348 −0.926738 0.375709i \(-0.877399\pi\)
−0.926738 + 0.375709i \(0.877399\pi\)
\(440\) 0 0
\(441\) 1.64203 0.0781918
\(442\) 0 0
\(443\) −31.9374 −1.51739 −0.758696 0.651445i \(-0.774163\pi\)
−0.758696 + 0.651445i \(0.774163\pi\)
\(444\) 0 0
\(445\) 7.51069 0.356041
\(446\) 0 0
\(447\) −8.30643 −0.392881
\(448\) 0 0
\(449\) 8.33864 0.393525 0.196762 0.980451i \(-0.436957\pi\)
0.196762 + 0.980451i \(0.436957\pi\)
\(450\) 0 0
\(451\) 49.4280 2.32747
\(452\) 0 0
\(453\) −23.0182 −1.08149
\(454\) 0 0
\(455\) −4.32651 −0.202830
\(456\) 0 0
\(457\) 23.6899 1.10817 0.554084 0.832461i \(-0.313069\pi\)
0.554084 + 0.832461i \(0.313069\pi\)
\(458\) 0 0
\(459\) 6.88672 0.321445
\(460\) 0 0
\(461\) 20.5605 0.957599 0.478800 0.877924i \(-0.341072\pi\)
0.478800 + 0.877924i \(0.341072\pi\)
\(462\) 0 0
\(463\) 24.3069 1.12964 0.564820 0.825214i \(-0.308946\pi\)
0.564820 + 0.825214i \(0.308946\pi\)
\(464\) 0 0
\(465\) −7.25217 −0.336311
\(466\) 0 0
\(467\) 29.7179 1.37518 0.687590 0.726099i \(-0.258669\pi\)
0.687590 + 0.726099i \(0.258669\pi\)
\(468\) 0 0
\(469\) 25.2217 1.16463
\(470\) 0 0
\(471\) 13.7135 0.631883
\(472\) 0 0
\(473\) −6.20542 −0.285326
\(474\) 0 0
\(475\) 18.6122 0.853986
\(476\) 0 0
\(477\) 9.46174 0.433224
\(478\) 0 0
\(479\) −21.9556 −1.00318 −0.501588 0.865106i \(-0.667251\pi\)
−0.501588 + 0.865106i \(0.667251\pi\)
\(480\) 0 0
\(481\) 3.45073 0.157340
\(482\) 0 0
\(483\) 10.4092 0.473633
\(484\) 0 0
\(485\) 9.46141 0.429620
\(486\) 0 0
\(487\) 41.3497 1.87374 0.936868 0.349683i \(-0.113711\pi\)
0.936868 + 0.349683i \(0.113711\pi\)
\(488\) 0 0
\(489\) −13.1981 −0.596838
\(490\) 0 0
\(491\) −20.8229 −0.939726 −0.469863 0.882739i \(-0.655697\pi\)
−0.469863 + 0.882739i \(0.655697\pi\)
\(492\) 0 0
\(493\) −54.8621 −2.47087
\(494\) 0 0
\(495\) 6.35988 0.285855
\(496\) 0 0
\(497\) 9.60886 0.431016
\(498\) 0 0
\(499\) −25.0654 −1.12208 −0.561042 0.827788i \(-0.689599\pi\)
−0.561042 + 0.827788i \(0.689599\pi\)
\(500\) 0 0
\(501\) −17.7828 −0.794478
\(502\) 0 0
\(503\) −24.4343 −1.08947 −0.544737 0.838607i \(-0.683370\pi\)
−0.544737 + 0.838607i \(0.683370\pi\)
\(504\) 0 0
\(505\) −3.74186 −0.166510
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −34.3045 −1.52052 −0.760260 0.649619i \(-0.774929\pi\)
−0.760260 + 0.649619i \(0.774929\pi\)
\(510\) 0 0
\(511\) −45.2233 −2.00056
\(512\) 0 0
\(513\) −6.56749 −0.289962
\(514\) 0 0
\(515\) 15.5470 0.685085
\(516\) 0 0
\(517\) 27.7062 1.21852
\(518\) 0 0
\(519\) −19.9839 −0.877196
\(520\) 0 0
\(521\) −24.5126 −1.07392 −0.536959 0.843609i \(-0.680427\pi\)
−0.536959 + 0.843609i \(0.680427\pi\)
\(522\) 0 0
\(523\) −21.8796 −0.956730 −0.478365 0.878161i \(-0.658770\pi\)
−0.478365 + 0.878161i \(0.658770\pi\)
\(524\) 0 0
\(525\) −8.33118 −0.363602
\(526\) 0 0
\(527\) −33.9352 −1.47824
\(528\) 0 0
\(529\) −10.4624 −0.454886
\(530\) 0 0
\(531\) −0.602544 −0.0261482
\(532\) 0 0
\(533\) −11.4381 −0.495439
\(534\) 0 0
\(535\) 3.80484 0.164498
\(536\) 0 0
\(537\) −4.32651 −0.186703
\(538\) 0 0
\(539\) 7.09577 0.305636
\(540\) 0 0
\(541\) −25.8833 −1.11281 −0.556405 0.830911i \(-0.687820\pi\)
−0.556405 + 0.830911i \(0.687820\pi\)
\(542\) 0 0
\(543\) 15.8189 0.678855
\(544\) 0 0
\(545\) 3.64405 0.156094
\(546\) 0 0
\(547\) 42.9380 1.83590 0.917949 0.396698i \(-0.129844\pi\)
0.917949 + 0.396698i \(0.129844\pi\)
\(548\) 0 0
\(549\) 5.75217 0.245497
\(550\) 0 0
\(551\) 52.3190 2.22886
\(552\) 0 0
\(553\) 26.0369 1.10720
\(554\) 0 0
\(555\) −5.07856 −0.215573
\(556\) 0 0
\(557\) 15.9949 0.677726 0.338863 0.940836i \(-0.389958\pi\)
0.338863 + 0.940836i \(0.389958\pi\)
\(558\) 0 0
\(559\) 1.43599 0.0607360
\(560\) 0 0
\(561\) 29.7599 1.25646
\(562\) 0 0
\(563\) 1.36950 0.0577174 0.0288587 0.999584i \(-0.490813\pi\)
0.0288587 + 0.999584i \(0.490813\pi\)
\(564\) 0 0
\(565\) 10.2406 0.430827
\(566\) 0 0
\(567\) 2.93973 0.123457
\(568\) 0 0
\(569\) 1.23722 0.0518672 0.0259336 0.999664i \(-0.491744\pi\)
0.0259336 + 0.999664i \(0.491744\pi\)
\(570\) 0 0
\(571\) −8.08889 −0.338510 −0.169255 0.985572i \(-0.554136\pi\)
−0.169255 + 0.985572i \(0.554136\pi\)
\(572\) 0 0
\(573\) 6.76415 0.282577
\(574\) 0 0
\(575\) −10.0347 −0.418478
\(576\) 0 0
\(577\) −4.86588 −0.202569 −0.101285 0.994857i \(-0.532295\pi\)
−0.101285 + 0.994857i \(0.532295\pi\)
\(578\) 0 0
\(579\) 11.5595 0.480396
\(580\) 0 0
\(581\) 29.2572 1.21379
\(582\) 0 0
\(583\) 40.8875 1.69339
\(584\) 0 0
\(585\) −1.47174 −0.0608488
\(586\) 0 0
\(587\) 16.5324 0.682364 0.341182 0.939997i \(-0.389173\pi\)
0.341182 + 0.939997i \(0.389173\pi\)
\(588\) 0 0
\(589\) 32.3621 1.33346
\(590\) 0 0
\(591\) −17.2065 −0.707779
\(592\) 0 0
\(593\) 21.3723 0.877656 0.438828 0.898571i \(-0.355394\pi\)
0.438828 + 0.898571i \(0.355394\pi\)
\(594\) 0 0
\(595\) 29.7955 1.22150
\(596\) 0 0
\(597\) −22.7288 −0.930226
\(598\) 0 0
\(599\) 1.02621 0.0419299 0.0209649 0.999780i \(-0.493326\pi\)
0.0209649 + 0.999780i \(0.493326\pi\)
\(600\) 0 0
\(601\) −37.0228 −1.51019 −0.755096 0.655614i \(-0.772410\pi\)
−0.755096 + 0.655614i \(0.772410\pi\)
\(602\) 0 0
\(603\) 8.57959 0.349388
\(604\) 0 0
\(605\) 11.2941 0.459172
\(606\) 0 0
\(607\) 43.5674 1.76835 0.884174 0.467158i \(-0.154722\pi\)
0.884174 + 0.467158i \(0.154722\pi\)
\(608\) 0 0
\(609\) −23.4190 −0.948985
\(610\) 0 0
\(611\) −6.41147 −0.259380
\(612\) 0 0
\(613\) −18.5030 −0.747327 −0.373664 0.927564i \(-0.621899\pi\)
−0.373664 + 0.927564i \(0.621899\pi\)
\(614\) 0 0
\(615\) 16.8339 0.678807
\(616\) 0 0
\(617\) 28.9669 1.16617 0.583083 0.812413i \(-0.301846\pi\)
0.583083 + 0.812413i \(0.301846\pi\)
\(618\) 0 0
\(619\) −34.5680 −1.38941 −0.694703 0.719297i \(-0.744464\pi\)
−0.694703 + 0.719297i \(0.744464\pi\)
\(620\) 0 0
\(621\) 3.54085 0.142089
\(622\) 0 0
\(623\) 15.0023 0.601055
\(624\) 0 0
\(625\) −2.79853 −0.111941
\(626\) 0 0
\(627\) −28.3804 −1.13340
\(628\) 0 0
\(629\) −23.7642 −0.947540
\(630\) 0 0
\(631\) −17.5139 −0.697218 −0.348609 0.937268i \(-0.613346\pi\)
−0.348609 + 0.937268i \(0.613346\pi\)
\(632\) 0 0
\(633\) −4.86274 −0.193277
\(634\) 0 0
\(635\) −16.7517 −0.664773
\(636\) 0 0
\(637\) −1.64203 −0.0650595
\(638\) 0 0
\(639\) 3.26862 0.129305
\(640\) 0 0
\(641\) −11.0016 −0.434535 −0.217268 0.976112i \(-0.569714\pi\)
−0.217268 + 0.976112i \(0.569714\pi\)
\(642\) 0 0
\(643\) −24.8557 −0.980214 −0.490107 0.871662i \(-0.663042\pi\)
−0.490107 + 0.871662i \(0.663042\pi\)
\(644\) 0 0
\(645\) −2.11340 −0.0832152
\(646\) 0 0
\(647\) 32.7660 1.28816 0.644082 0.764956i \(-0.277239\pi\)
0.644082 + 0.764956i \(0.277239\pi\)
\(648\) 0 0
\(649\) −2.60380 −0.102208
\(650\) 0 0
\(651\) −14.4859 −0.567748
\(652\) 0 0
\(653\) 37.6400 1.47297 0.736484 0.676455i \(-0.236485\pi\)
0.736484 + 0.676455i \(0.236485\pi\)
\(654\) 0 0
\(655\) −2.08210 −0.0813545
\(656\) 0 0
\(657\) −15.3835 −0.600166
\(658\) 0 0
\(659\) −36.8040 −1.43368 −0.716840 0.697238i \(-0.754412\pi\)
−0.716840 + 0.697238i \(0.754412\pi\)
\(660\) 0 0
\(661\) 2.08080 0.0809336 0.0404668 0.999181i \(-0.487115\pi\)
0.0404668 + 0.999181i \(0.487115\pi\)
\(662\) 0 0
\(663\) −6.88672 −0.267458
\(664\) 0 0
\(665\) −28.4143 −1.10186
\(666\) 0 0
\(667\) −28.2077 −1.09221
\(668\) 0 0
\(669\) 7.82908 0.302690
\(670\) 0 0
\(671\) 24.8571 0.959599
\(672\) 0 0
\(673\) 44.3467 1.70944 0.854720 0.519089i \(-0.173729\pi\)
0.854720 + 0.519089i \(0.173729\pi\)
\(674\) 0 0
\(675\) −2.83399 −0.109080
\(676\) 0 0
\(677\) 36.1463 1.38922 0.694608 0.719388i \(-0.255578\pi\)
0.694608 + 0.719388i \(0.255578\pi\)
\(678\) 0 0
\(679\) 18.8988 0.725268
\(680\) 0 0
\(681\) −5.61608 −0.215209
\(682\) 0 0
\(683\) −8.12516 −0.310900 −0.155450 0.987844i \(-0.549683\pi\)
−0.155450 + 0.987844i \(0.549683\pi\)
\(684\) 0 0
\(685\) 26.2623 1.00343
\(686\) 0 0
\(687\) −6.99252 −0.266781
\(688\) 0 0
\(689\) −9.46174 −0.360464
\(690\) 0 0
\(691\) 8.04956 0.306220 0.153110 0.988209i \(-0.451071\pi\)
0.153110 + 0.988209i \(0.451071\pi\)
\(692\) 0 0
\(693\) 12.7036 0.482570
\(694\) 0 0
\(695\) 7.98934 0.303053
\(696\) 0 0
\(697\) 78.7710 2.98367
\(698\) 0 0
\(699\) −4.22318 −0.159735
\(700\) 0 0
\(701\) 32.5847 1.23071 0.615353 0.788252i \(-0.289014\pi\)
0.615353 + 0.788252i \(0.289014\pi\)
\(702\) 0 0
\(703\) 22.6626 0.854736
\(704\) 0 0
\(705\) 9.43599 0.355380
\(706\) 0 0
\(707\) −7.47420 −0.281096
\(708\) 0 0
\(709\) −19.1070 −0.717578 −0.358789 0.933419i \(-0.616810\pi\)
−0.358789 + 0.933419i \(0.616810\pi\)
\(710\) 0 0
\(711\) 8.85689 0.332159
\(712\) 0 0
\(713\) −17.4480 −0.653433
\(714\) 0 0
\(715\) −6.35988 −0.237846
\(716\) 0 0
\(717\) −5.20923 −0.194542
\(718\) 0 0
\(719\) −16.2181 −0.604832 −0.302416 0.953176i \(-0.597793\pi\)
−0.302416 + 0.953176i \(0.597793\pi\)
\(720\) 0 0
\(721\) 31.0546 1.15653
\(722\) 0 0
\(723\) 11.1307 0.413957
\(724\) 0 0
\(725\) 22.5766 0.838475
\(726\) 0 0
\(727\) −7.74395 −0.287207 −0.143604 0.989635i \(-0.545869\pi\)
−0.143604 + 0.989635i \(0.545869\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −9.88928 −0.365768
\(732\) 0 0
\(733\) −40.9216 −1.51147 −0.755737 0.654875i \(-0.772721\pi\)
−0.755737 + 0.654875i \(0.772721\pi\)
\(734\) 0 0
\(735\) 2.41663 0.0891388
\(736\) 0 0
\(737\) 37.0754 1.36569
\(738\) 0 0
\(739\) 22.5269 0.828667 0.414334 0.910125i \(-0.364015\pi\)
0.414334 + 0.910125i \(0.364015\pi\)
\(740\) 0 0
\(741\) 6.56749 0.241263
\(742\) 0 0
\(743\) −4.15224 −0.152331 −0.0761655 0.997095i \(-0.524268\pi\)
−0.0761655 + 0.997095i \(0.524268\pi\)
\(744\) 0 0
\(745\) −12.2249 −0.447885
\(746\) 0 0
\(747\) 9.95232 0.364136
\(748\) 0 0
\(749\) 7.60002 0.277699
\(750\) 0 0
\(751\) −40.2084 −1.46723 −0.733613 0.679567i \(-0.762168\pi\)
−0.733613 + 0.679567i \(0.762168\pi\)
\(752\) 0 0
\(753\) 2.86165 0.104284
\(754\) 0 0
\(755\) −33.8767 −1.23290
\(756\) 0 0
\(757\) −37.6737 −1.36928 −0.684638 0.728884i \(-0.740040\pi\)
−0.684638 + 0.728884i \(0.740040\pi\)
\(758\) 0 0
\(759\) 15.3012 0.555400
\(760\) 0 0
\(761\) 5.75751 0.208710 0.104355 0.994540i \(-0.466722\pi\)
0.104355 + 0.994540i \(0.466722\pi\)
\(762\) 0 0
\(763\) 7.27884 0.263512
\(764\) 0 0
\(765\) 10.1354 0.366447
\(766\) 0 0
\(767\) 0.602544 0.0217566
\(768\) 0 0
\(769\) 17.6221 0.635469 0.317734 0.948180i \(-0.397078\pi\)
0.317734 + 0.948180i \(0.397078\pi\)
\(770\) 0 0
\(771\) 10.6744 0.384428
\(772\) 0 0
\(773\) −26.8263 −0.964873 −0.482437 0.875931i \(-0.660248\pi\)
−0.482437 + 0.875931i \(0.660248\pi\)
\(774\) 0 0
\(775\) 13.9649 0.501633
\(776\) 0 0
\(777\) −10.1442 −0.363922
\(778\) 0 0
\(779\) −75.1196 −2.69144
\(780\) 0 0
\(781\) 14.1248 0.505426
\(782\) 0 0
\(783\) −7.96637 −0.284695
\(784\) 0 0
\(785\) 20.1826 0.720348
\(786\) 0 0
\(787\) −13.2119 −0.470955 −0.235477 0.971880i \(-0.575665\pi\)
−0.235477 + 0.971880i \(0.575665\pi\)
\(788\) 0 0
\(789\) 2.22929 0.0793650
\(790\) 0 0
\(791\) 20.4553 0.727306
\(792\) 0 0
\(793\) −5.75217 −0.204266
\(794\) 0 0
\(795\) 13.9252 0.493876
\(796\) 0 0
\(797\) −30.2374 −1.07106 −0.535531 0.844516i \(-0.679888\pi\)
−0.535531 + 0.844516i \(0.679888\pi\)
\(798\) 0 0
\(799\) 44.1540 1.56206
\(800\) 0 0
\(801\) 5.10329 0.180316
\(802\) 0 0
\(803\) −66.4773 −2.34593
\(804\) 0 0
\(805\) 15.3195 0.539943
\(806\) 0 0
\(807\) −0.146614 −0.00516105
\(808\) 0 0
\(809\) 20.8919 0.734519 0.367259 0.930119i \(-0.380296\pi\)
0.367259 + 0.930119i \(0.380296\pi\)
\(810\) 0 0
\(811\) −2.19807 −0.0771846 −0.0385923 0.999255i \(-0.512287\pi\)
−0.0385923 + 0.999255i \(0.512287\pi\)
\(812\) 0 0
\(813\) −11.2326 −0.393946
\(814\) 0 0
\(815\) −19.4241 −0.680396
\(816\) 0 0
\(817\) 9.43086 0.329944
\(818\) 0 0
\(819\) −2.93973 −0.102723
\(820\) 0 0
\(821\) 28.6736 1.00071 0.500357 0.865819i \(-0.333202\pi\)
0.500357 + 0.865819i \(0.333202\pi\)
\(822\) 0 0
\(823\) −32.9907 −1.14998 −0.574992 0.818159i \(-0.694995\pi\)
−0.574992 + 0.818159i \(0.694995\pi\)
\(824\) 0 0
\(825\) −12.2467 −0.426374
\(826\) 0 0
\(827\) 3.70664 0.128893 0.0644463 0.997921i \(-0.479472\pi\)
0.0644463 + 0.997921i \(0.479472\pi\)
\(828\) 0 0
\(829\) −38.6208 −1.34136 −0.670678 0.741748i \(-0.733997\pi\)
−0.670678 + 0.741748i \(0.733997\pi\)
\(830\) 0 0
\(831\) −0.180247 −0.00625268
\(832\) 0 0
\(833\) 11.3082 0.391805
\(834\) 0 0
\(835\) −26.1716 −0.905707
\(836\) 0 0
\(837\) −4.92763 −0.170324
\(838\) 0 0
\(839\) −24.7828 −0.855599 −0.427799 0.903874i \(-0.640711\pi\)
−0.427799 + 0.903874i \(0.640711\pi\)
\(840\) 0 0
\(841\) 34.4630 1.18838
\(842\) 0 0
\(843\) 10.3531 0.356581
\(844\) 0 0
\(845\) 1.47174 0.0506293
\(846\) 0 0
\(847\) 22.5596 0.775157
\(848\) 0 0
\(849\) −2.86450 −0.0983095
\(850\) 0 0
\(851\) −12.2185 −0.418845
\(852\) 0 0
\(853\) 48.8930 1.67406 0.837032 0.547154i \(-0.184289\pi\)
0.837032 + 0.547154i \(0.184289\pi\)
\(854\) 0 0
\(855\) −9.66561 −0.330557
\(856\) 0 0
\(857\) 40.4927 1.38320 0.691602 0.722279i \(-0.256905\pi\)
0.691602 + 0.722279i \(0.256905\pi\)
\(858\) 0 0
\(859\) −36.2116 −1.23552 −0.617762 0.786365i \(-0.711961\pi\)
−0.617762 + 0.786365i \(0.711961\pi\)
\(860\) 0 0
\(861\) 33.6250 1.14594
\(862\) 0 0
\(863\) −18.0925 −0.615877 −0.307938 0.951406i \(-0.599639\pi\)
−0.307938 + 0.951406i \(0.599639\pi\)
\(864\) 0 0
\(865\) −29.4110 −1.00001
\(866\) 0 0
\(867\) 30.4269 1.03335
\(868\) 0 0
\(869\) 38.2737 1.29835
\(870\) 0 0
\(871\) −8.57959 −0.290708
\(872\) 0 0
\(873\) 6.42874 0.217580
\(874\) 0 0
\(875\) −33.8939 −1.14582
\(876\) 0 0
\(877\) −4.27060 −0.144208 −0.0721039 0.997397i \(-0.522971\pi\)
−0.0721039 + 0.997397i \(0.522971\pi\)
\(878\) 0 0
\(879\) 14.5083 0.489352
\(880\) 0 0
\(881\) 24.9886 0.841886 0.420943 0.907087i \(-0.361699\pi\)
0.420943 + 0.907087i \(0.361699\pi\)
\(882\) 0 0
\(883\) −34.7898 −1.17077 −0.585385 0.810756i \(-0.699056\pi\)
−0.585385 + 0.810756i \(0.699056\pi\)
\(884\) 0 0
\(885\) −0.886785 −0.0298090
\(886\) 0 0
\(887\) −21.6922 −0.728354 −0.364177 0.931330i \(-0.618650\pi\)
−0.364177 + 0.931330i \(0.618650\pi\)
\(888\) 0 0
\(889\) −33.4609 −1.12224
\(890\) 0 0
\(891\) 4.32135 0.144771
\(892\) 0 0
\(893\) −42.1072 −1.40906
\(894\) 0 0
\(895\) −6.36748 −0.212842
\(896\) 0 0
\(897\) −3.54085 −0.118226
\(898\) 0 0
\(899\) 39.2553 1.30924
\(900\) 0 0
\(901\) 65.1604 2.17081
\(902\) 0 0
\(903\) −4.22143 −0.140481
\(904\) 0 0
\(905\) 23.2813 0.773896
\(906\) 0 0
\(907\) 19.1200 0.634870 0.317435 0.948280i \(-0.397179\pi\)
0.317435 + 0.948280i \(0.397179\pi\)
\(908\) 0 0
\(909\) −2.54248 −0.0843287
\(910\) 0 0
\(911\) −12.1149 −0.401386 −0.200693 0.979654i \(-0.564319\pi\)
−0.200693 + 0.979654i \(0.564319\pi\)
\(912\) 0 0
\(913\) 43.0074 1.42334
\(914\) 0 0
\(915\) 8.46568 0.279867
\(916\) 0 0
\(917\) −4.15891 −0.137339
\(918\) 0 0
\(919\) −7.22863 −0.238451 −0.119225 0.992867i \(-0.538041\pi\)
−0.119225 + 0.992867i \(0.538041\pi\)
\(920\) 0 0
\(921\) 6.24005 0.205617
\(922\) 0 0
\(923\) −3.26862 −0.107588
\(924\) 0 0
\(925\) 9.77933 0.321543
\(926\) 0 0
\(927\) 10.5637 0.346959
\(928\) 0 0
\(929\) −41.9587 −1.37662 −0.688310 0.725416i \(-0.741647\pi\)
−0.688310 + 0.725416i \(0.741647\pi\)
\(930\) 0 0
\(931\) −10.7840 −0.353431
\(932\) 0 0
\(933\) −21.7669 −0.712616
\(934\) 0 0
\(935\) 43.7987 1.43237
\(936\) 0 0
\(937\) −19.5281 −0.637954 −0.318977 0.947763i \(-0.603339\pi\)
−0.318977 + 0.947763i \(0.603339\pi\)
\(938\) 0 0
\(939\) 32.4755 1.05980
\(940\) 0 0
\(941\) 11.7669 0.383591 0.191795 0.981435i \(-0.438569\pi\)
0.191795 + 0.981435i \(0.438569\pi\)
\(942\) 0 0
\(943\) 40.5006 1.31888
\(944\) 0 0
\(945\) 4.32651 0.140741
\(946\) 0 0
\(947\) −34.6707 −1.12665 −0.563323 0.826236i \(-0.690477\pi\)
−0.563323 + 0.826236i \(0.690477\pi\)
\(948\) 0 0
\(949\) 15.3835 0.499368
\(950\) 0 0
\(951\) 23.3653 0.757670
\(952\) 0 0
\(953\) 60.1507 1.94847 0.974236 0.225533i \(-0.0724123\pi\)
0.974236 + 0.225533i \(0.0724123\pi\)
\(954\) 0 0
\(955\) 9.95505 0.322138
\(956\) 0 0
\(957\) −34.4254 −1.11282
\(958\) 0 0
\(959\) 52.4578 1.69395
\(960\) 0 0
\(961\) −6.71847 −0.216725
\(962\) 0 0
\(963\) 2.58527 0.0833093
\(964\) 0 0
\(965\) 17.0125 0.547652
\(966\) 0 0
\(967\) −39.2013 −1.26063 −0.630315 0.776340i \(-0.717074\pi\)
−0.630315 + 0.776340i \(0.717074\pi\)
\(968\) 0 0
\(969\) −45.2284 −1.45295
\(970\) 0 0
\(971\) 42.7280 1.37121 0.685603 0.727976i \(-0.259539\pi\)
0.685603 + 0.727976i \(0.259539\pi\)
\(972\) 0 0
\(973\) 15.9584 0.511602
\(974\) 0 0
\(975\) 2.83399 0.0907604
\(976\) 0 0
\(977\) −15.5858 −0.498633 −0.249316 0.968422i \(-0.580206\pi\)
−0.249316 + 0.968422i \(0.580206\pi\)
\(978\) 0 0
\(979\) 22.0531 0.704819
\(980\) 0 0
\(981\) 2.47602 0.0790532
\(982\) 0 0
\(983\) 43.4450 1.38568 0.692840 0.721091i \(-0.256359\pi\)
0.692840 + 0.721091i \(0.256359\pi\)
\(984\) 0 0
\(985\) −25.3234 −0.806870
\(986\) 0 0
\(987\) 18.8480 0.599939
\(988\) 0 0
\(989\) −5.08464 −0.161682
\(990\) 0 0
\(991\) −10.3905 −0.330064 −0.165032 0.986288i \(-0.552773\pi\)
−0.165032 + 0.986288i \(0.552773\pi\)
\(992\) 0 0
\(993\) −13.6094 −0.431881
\(994\) 0 0
\(995\) −33.4507 −1.06046
\(996\) 0 0
\(997\) −16.4960 −0.522433 −0.261217 0.965280i \(-0.584124\pi\)
−0.261217 + 0.965280i \(0.584124\pi\)
\(998\) 0 0
\(999\) −3.45073 −0.109176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9984.2.a.bu.1.6 8
4.3 odd 2 9984.2.a.bs.1.6 8
8.3 odd 2 9984.2.a.bv.1.3 8
8.5 even 2 9984.2.a.bt.1.3 8
16.3 odd 4 1248.2.g.b.625.3 16
16.5 even 4 312.2.g.b.157.4 yes 16
16.11 odd 4 1248.2.g.b.625.14 16
16.13 even 4 312.2.g.b.157.3 16
48.5 odd 4 936.2.g.e.469.13 16
48.11 even 4 3744.2.g.e.1873.6 16
48.29 odd 4 936.2.g.e.469.14 16
48.35 even 4 3744.2.g.e.1873.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.b.157.3 16 16.13 even 4
312.2.g.b.157.4 yes 16 16.5 even 4
936.2.g.e.469.13 16 48.5 odd 4
936.2.g.e.469.14 16 48.29 odd 4
1248.2.g.b.625.3 16 16.3 odd 4
1248.2.g.b.625.14 16 16.11 odd 4
3744.2.g.e.1873.6 16 48.11 even 4
3744.2.g.e.1873.11 16 48.35 even 4
9984.2.a.bs.1.6 8 4.3 odd 2
9984.2.a.bt.1.3 8 8.5 even 2
9984.2.a.bu.1.6 8 1.1 even 1 trivial
9984.2.a.bv.1.3 8 8.3 odd 2