Properties

Label 9984.2.a.bv.1.4
Level $9984$
Weight $2$
Character 9984.1
Self dual yes
Analytic conductor $79.723$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9984,2,Mod(1,9984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 14x^{6} + 24x^{5} + 65x^{4} - 82x^{3} - 126x^{2} + 84x + 92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.81444\) of defining polynomial
Character \(\chi\) \(=\) 9984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -0.218531 q^{5} -4.47783 q^{7} +1.00000 q^{9} -3.58286 q^{11} +1.00000 q^{13} -0.218531 q^{15} -7.60367 q^{17} +4.65804 q^{19} -4.47783 q^{21} -5.21219 q^{23} -4.95224 q^{25} +1.00000 q^{27} -3.39240 q^{29} +1.71291 q^{31} -3.58286 q^{33} +0.978543 q^{35} -3.06703 q^{37} +1.00000 q^{39} -1.17387 q^{41} +6.53664 q^{43} -0.218531 q^{45} -6.69636 q^{47} +13.0509 q^{49} -7.60367 q^{51} +1.18362 q^{53} +0.782966 q^{55} +4.65804 q^{57} -9.33654 q^{59} +14.6809 q^{61} -4.47783 q^{63} -0.218531 q^{65} +2.10688 q^{67} -5.21219 q^{69} -11.9731 q^{71} +13.8518 q^{73} -4.95224 q^{75} +16.0434 q^{77} -2.12278 q^{79} +1.00000 q^{81} +11.9086 q^{83} +1.66164 q^{85} -3.39240 q^{87} +10.2015 q^{89} -4.47783 q^{91} +1.71291 q^{93} -1.01792 q^{95} +16.0227 q^{97} -3.58286 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 2 q^{5} + 2 q^{7} + 8 q^{9} + 8 q^{13} + 2 q^{15} + 8 q^{17} + 6 q^{19} + 2 q^{21} - 4 q^{23} + 16 q^{25} + 8 q^{27} + 4 q^{29} + 2 q^{31} - 4 q^{35} + 8 q^{37} + 8 q^{39} + 18 q^{41} + 16 q^{43}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.218531 −0.0977299 −0.0488650 0.998805i \(-0.515560\pi\)
−0.0488650 + 0.998805i \(0.515560\pi\)
\(6\) 0 0
\(7\) −4.47783 −1.69246 −0.846230 0.532818i \(-0.821133\pi\)
−0.846230 + 0.532818i \(0.821133\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.58286 −1.08027 −0.540137 0.841577i \(-0.681628\pi\)
−0.540137 + 0.841577i \(0.681628\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −0.218531 −0.0564244
\(16\) 0 0
\(17\) −7.60367 −1.84416 −0.922080 0.386998i \(-0.873512\pi\)
−0.922080 + 0.386998i \(0.873512\pi\)
\(18\) 0 0
\(19\) 4.65804 1.06863 0.534313 0.845286i \(-0.320570\pi\)
0.534313 + 0.845286i \(0.320570\pi\)
\(20\) 0 0
\(21\) −4.47783 −0.977142
\(22\) 0 0
\(23\) −5.21219 −1.08682 −0.543409 0.839468i \(-0.682867\pi\)
−0.543409 + 0.839468i \(0.682867\pi\)
\(24\) 0 0
\(25\) −4.95224 −0.990449
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.39240 −0.629953 −0.314977 0.949099i \(-0.601997\pi\)
−0.314977 + 0.949099i \(0.601997\pi\)
\(30\) 0 0
\(31\) 1.71291 0.307647 0.153824 0.988098i \(-0.450841\pi\)
0.153824 + 0.988098i \(0.450841\pi\)
\(32\) 0 0
\(33\) −3.58286 −0.623697
\(34\) 0 0
\(35\) 0.978543 0.165404
\(36\) 0 0
\(37\) −3.06703 −0.504217 −0.252108 0.967699i \(-0.581124\pi\)
−0.252108 + 0.967699i \(0.581124\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −1.17387 −0.183328 −0.0916638 0.995790i \(-0.529219\pi\)
−0.0916638 + 0.995790i \(0.529219\pi\)
\(42\) 0 0
\(43\) 6.53664 0.996828 0.498414 0.866939i \(-0.333916\pi\)
0.498414 + 0.866939i \(0.333916\pi\)
\(44\) 0 0
\(45\) −0.218531 −0.0325766
\(46\) 0 0
\(47\) −6.69636 −0.976764 −0.488382 0.872630i \(-0.662413\pi\)
−0.488382 + 0.872630i \(0.662413\pi\)
\(48\) 0 0
\(49\) 13.0509 1.86442
\(50\) 0 0
\(51\) −7.60367 −1.06473
\(52\) 0 0
\(53\) 1.18362 0.162583 0.0812914 0.996690i \(-0.474096\pi\)
0.0812914 + 0.996690i \(0.474096\pi\)
\(54\) 0 0
\(55\) 0.782966 0.105575
\(56\) 0 0
\(57\) 4.65804 0.616972
\(58\) 0 0
\(59\) −9.33654 −1.21551 −0.607757 0.794123i \(-0.707930\pi\)
−0.607757 + 0.794123i \(0.707930\pi\)
\(60\) 0 0
\(61\) 14.6809 1.87970 0.939849 0.341590i \(-0.110965\pi\)
0.939849 + 0.341590i \(0.110965\pi\)
\(62\) 0 0
\(63\) −4.47783 −0.564153
\(64\) 0 0
\(65\) −0.218531 −0.0271054
\(66\) 0 0
\(67\) 2.10688 0.257397 0.128698 0.991684i \(-0.458920\pi\)
0.128698 + 0.991684i \(0.458920\pi\)
\(68\) 0 0
\(69\) −5.21219 −0.627474
\(70\) 0 0
\(71\) −11.9731 −1.42094 −0.710470 0.703728i \(-0.751518\pi\)
−0.710470 + 0.703728i \(0.751518\pi\)
\(72\) 0 0
\(73\) 13.8518 1.62123 0.810617 0.585576i \(-0.199132\pi\)
0.810617 + 0.585576i \(0.199132\pi\)
\(74\) 0 0
\(75\) −4.95224 −0.571836
\(76\) 0 0
\(77\) 16.0434 1.82832
\(78\) 0 0
\(79\) −2.12278 −0.238832 −0.119416 0.992844i \(-0.538102\pi\)
−0.119416 + 0.992844i \(0.538102\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 11.9086 1.30713 0.653567 0.756869i \(-0.273272\pi\)
0.653567 + 0.756869i \(0.273272\pi\)
\(84\) 0 0
\(85\) 1.66164 0.180230
\(86\) 0 0
\(87\) −3.39240 −0.363704
\(88\) 0 0
\(89\) 10.2015 1.08136 0.540679 0.841229i \(-0.318167\pi\)
0.540679 + 0.841229i \(0.318167\pi\)
\(90\) 0 0
\(91\) −4.47783 −0.469404
\(92\) 0 0
\(93\) 1.71291 0.177620
\(94\) 0 0
\(95\) −1.01792 −0.104437
\(96\) 0 0
\(97\) 16.0227 1.62686 0.813429 0.581665i \(-0.197598\pi\)
0.813429 + 0.581665i \(0.197598\pi\)
\(98\) 0 0
\(99\) −3.58286 −0.360091
\(100\) 0 0
\(101\) 3.90916 0.388976 0.194488 0.980905i \(-0.437695\pi\)
0.194488 + 0.980905i \(0.437695\pi\)
\(102\) 0 0
\(103\) −3.38273 −0.333310 −0.166655 0.986015i \(-0.553297\pi\)
−0.166655 + 0.986015i \(0.553297\pi\)
\(104\) 0 0
\(105\) 0.978543 0.0954960
\(106\) 0 0
\(107\) 2.01021 0.194334 0.0971672 0.995268i \(-0.469022\pi\)
0.0971672 + 0.995268i \(0.469022\pi\)
\(108\) 0 0
\(109\) −16.0032 −1.53283 −0.766414 0.642347i \(-0.777961\pi\)
−0.766414 + 0.642347i \(0.777961\pi\)
\(110\) 0 0
\(111\) −3.06703 −0.291110
\(112\) 0 0
\(113\) 5.90667 0.555653 0.277826 0.960631i \(-0.410386\pi\)
0.277826 + 0.960631i \(0.410386\pi\)
\(114\) 0 0
\(115\) 1.13902 0.106215
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 34.0479 3.12117
\(120\) 0 0
\(121\) 1.83691 0.166992
\(122\) 0 0
\(123\) −1.17387 −0.105844
\(124\) 0 0
\(125\) 2.17487 0.194526
\(126\) 0 0
\(127\) −6.89436 −0.611776 −0.305888 0.952068i \(-0.598953\pi\)
−0.305888 + 0.952068i \(0.598953\pi\)
\(128\) 0 0
\(129\) 6.53664 0.575519
\(130\) 0 0
\(131\) −1.98979 −0.173849 −0.0869244 0.996215i \(-0.527704\pi\)
−0.0869244 + 0.996215i \(0.527704\pi\)
\(132\) 0 0
\(133\) −20.8579 −1.80861
\(134\) 0 0
\(135\) −0.218531 −0.0188081
\(136\) 0 0
\(137\) 0.961081 0.0821107 0.0410554 0.999157i \(-0.486928\pi\)
0.0410554 + 0.999157i \(0.486928\pi\)
\(138\) 0 0
\(139\) 5.54489 0.470312 0.235156 0.971958i \(-0.424440\pi\)
0.235156 + 0.971958i \(0.424440\pi\)
\(140\) 0 0
\(141\) −6.69636 −0.563935
\(142\) 0 0
\(143\) −3.58286 −0.299614
\(144\) 0 0
\(145\) 0.741344 0.0615653
\(146\) 0 0
\(147\) 13.0509 1.07642
\(148\) 0 0
\(149\) 20.9305 1.71469 0.857347 0.514739i \(-0.172111\pi\)
0.857347 + 0.514739i \(0.172111\pi\)
\(150\) 0 0
\(151\) −0.401184 −0.0326479 −0.0163239 0.999867i \(-0.505196\pi\)
−0.0163239 + 0.999867i \(0.505196\pi\)
\(152\) 0 0
\(153\) −7.60367 −0.614720
\(154\) 0 0
\(155\) −0.374323 −0.0300663
\(156\) 0 0
\(157\) −18.9079 −1.50901 −0.754507 0.656292i \(-0.772124\pi\)
−0.754507 + 0.656292i \(0.772124\pi\)
\(158\) 0 0
\(159\) 1.18362 0.0938672
\(160\) 0 0
\(161\) 23.3393 1.83939
\(162\) 0 0
\(163\) 18.5887 1.45598 0.727989 0.685589i \(-0.240455\pi\)
0.727989 + 0.685589i \(0.240455\pi\)
\(164\) 0 0
\(165\) 0.782966 0.0609538
\(166\) 0 0
\(167\) −15.9204 −1.23196 −0.615979 0.787763i \(-0.711239\pi\)
−0.615979 + 0.787763i \(0.711239\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.65804 0.356209
\(172\) 0 0
\(173\) −3.39369 −0.258018 −0.129009 0.991643i \(-0.541180\pi\)
−0.129009 + 0.991643i \(0.541180\pi\)
\(174\) 0 0
\(175\) 22.1753 1.67629
\(176\) 0 0
\(177\) −9.33654 −0.701777
\(178\) 0 0
\(179\) −0.978543 −0.0731397 −0.0365699 0.999331i \(-0.511643\pi\)
−0.0365699 + 0.999331i \(0.511643\pi\)
\(180\) 0 0
\(181\) 12.2039 0.907111 0.453555 0.891228i \(-0.350155\pi\)
0.453555 + 0.891228i \(0.350155\pi\)
\(182\) 0 0
\(183\) 14.6809 1.08524
\(184\) 0 0
\(185\) 0.670241 0.0492771
\(186\) 0 0
\(187\) 27.2429 1.99220
\(188\) 0 0
\(189\) −4.47783 −0.325714
\(190\) 0 0
\(191\) −9.11614 −0.659621 −0.329810 0.944047i \(-0.606985\pi\)
−0.329810 + 0.944047i \(0.606985\pi\)
\(192\) 0 0
\(193\) 7.98107 0.574490 0.287245 0.957857i \(-0.407261\pi\)
0.287245 + 0.957857i \(0.407261\pi\)
\(194\) 0 0
\(195\) −0.218531 −0.0156493
\(196\) 0 0
\(197\) 12.6000 0.897713 0.448856 0.893604i \(-0.351831\pi\)
0.448856 + 0.893604i \(0.351831\pi\)
\(198\) 0 0
\(199\) −19.1593 −1.35816 −0.679082 0.734062i \(-0.737622\pi\)
−0.679082 + 0.734062i \(0.737622\pi\)
\(200\) 0 0
\(201\) 2.10688 0.148608
\(202\) 0 0
\(203\) 15.1906 1.06617
\(204\) 0 0
\(205\) 0.256527 0.0179166
\(206\) 0 0
\(207\) −5.21219 −0.362272
\(208\) 0 0
\(209\) −16.6891 −1.15441
\(210\) 0 0
\(211\) −17.4547 −1.20163 −0.600817 0.799386i \(-0.705158\pi\)
−0.600817 + 0.799386i \(0.705158\pi\)
\(212\) 0 0
\(213\) −11.9731 −0.820380
\(214\) 0 0
\(215\) −1.42846 −0.0974200
\(216\) 0 0
\(217\) −7.67010 −0.520681
\(218\) 0 0
\(219\) 13.8518 0.936020
\(220\) 0 0
\(221\) −7.60367 −0.511478
\(222\) 0 0
\(223\) 8.42115 0.563922 0.281961 0.959426i \(-0.409015\pi\)
0.281961 + 0.959426i \(0.409015\pi\)
\(224\) 0 0
\(225\) −4.95224 −0.330150
\(226\) 0 0
\(227\) −21.0875 −1.39963 −0.699813 0.714326i \(-0.746733\pi\)
−0.699813 + 0.714326i \(0.746733\pi\)
\(228\) 0 0
\(229\) −12.0289 −0.794894 −0.397447 0.917625i \(-0.630104\pi\)
−0.397447 + 0.917625i \(0.630104\pi\)
\(230\) 0 0
\(231\) 16.0434 1.05558
\(232\) 0 0
\(233\) 14.3048 0.937140 0.468570 0.883426i \(-0.344769\pi\)
0.468570 + 0.883426i \(0.344769\pi\)
\(234\) 0 0
\(235\) 1.46336 0.0954591
\(236\) 0 0
\(237\) −2.12278 −0.137890
\(238\) 0 0
\(239\) 5.22763 0.338147 0.169074 0.985603i \(-0.445922\pi\)
0.169074 + 0.985603i \(0.445922\pi\)
\(240\) 0 0
\(241\) −2.04161 −0.131512 −0.0657559 0.997836i \(-0.520946\pi\)
−0.0657559 + 0.997836i \(0.520946\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.85203 −0.182210
\(246\) 0 0
\(247\) 4.65804 0.296384
\(248\) 0 0
\(249\) 11.9086 0.754674
\(250\) 0 0
\(251\) −22.1961 −1.40100 −0.700502 0.713650i \(-0.747041\pi\)
−0.700502 + 0.713650i \(0.747041\pi\)
\(252\) 0 0
\(253\) 18.6746 1.17406
\(254\) 0 0
\(255\) 1.66164 0.104056
\(256\) 0 0
\(257\) −3.71742 −0.231886 −0.115943 0.993256i \(-0.536989\pi\)
−0.115943 + 0.993256i \(0.536989\pi\)
\(258\) 0 0
\(259\) 13.7336 0.853367
\(260\) 0 0
\(261\) −3.39240 −0.209984
\(262\) 0 0
\(263\) −2.09245 −0.129026 −0.0645130 0.997917i \(-0.520549\pi\)
−0.0645130 + 0.997917i \(0.520549\pi\)
\(264\) 0 0
\(265\) −0.258657 −0.0158892
\(266\) 0 0
\(267\) 10.2015 0.624323
\(268\) 0 0
\(269\) 5.16604 0.314979 0.157490 0.987521i \(-0.449660\pi\)
0.157490 + 0.987521i \(0.449660\pi\)
\(270\) 0 0
\(271\) 12.0412 0.731453 0.365727 0.930722i \(-0.380821\pi\)
0.365727 + 0.930722i \(0.380821\pi\)
\(272\) 0 0
\(273\) −4.47783 −0.271010
\(274\) 0 0
\(275\) 17.7432 1.06996
\(276\) 0 0
\(277\) 16.5584 0.994901 0.497450 0.867492i \(-0.334270\pi\)
0.497450 + 0.867492i \(0.334270\pi\)
\(278\) 0 0
\(279\) 1.71291 0.102549
\(280\) 0 0
\(281\) −4.99219 −0.297809 −0.148905 0.988852i \(-0.547575\pi\)
−0.148905 + 0.988852i \(0.547575\pi\)
\(282\) 0 0
\(283\) 4.99175 0.296729 0.148364 0.988933i \(-0.452599\pi\)
0.148364 + 0.988933i \(0.452599\pi\)
\(284\) 0 0
\(285\) −1.01792 −0.0602966
\(286\) 0 0
\(287\) 5.25639 0.310275
\(288\) 0 0
\(289\) 40.8158 2.40093
\(290\) 0 0
\(291\) 16.0227 0.939266
\(292\) 0 0
\(293\) 3.02283 0.176596 0.0882979 0.996094i \(-0.471857\pi\)
0.0882979 + 0.996094i \(0.471857\pi\)
\(294\) 0 0
\(295\) 2.04032 0.118792
\(296\) 0 0
\(297\) −3.58286 −0.207899
\(298\) 0 0
\(299\) −5.21219 −0.301429
\(300\) 0 0
\(301\) −29.2699 −1.68709
\(302\) 0 0
\(303\) 3.90916 0.224575
\(304\) 0 0
\(305\) −3.20823 −0.183703
\(306\) 0 0
\(307\) −22.8741 −1.30549 −0.652747 0.757576i \(-0.726383\pi\)
−0.652747 + 0.757576i \(0.726383\pi\)
\(308\) 0 0
\(309\) −3.38273 −0.192437
\(310\) 0 0
\(311\) 22.1117 1.25384 0.626920 0.779084i \(-0.284315\pi\)
0.626920 + 0.779084i \(0.284315\pi\)
\(312\) 0 0
\(313\) 15.6954 0.887155 0.443577 0.896236i \(-0.353709\pi\)
0.443577 + 0.896236i \(0.353709\pi\)
\(314\) 0 0
\(315\) 0.978543 0.0551347
\(316\) 0 0
\(317\) 24.6083 1.38214 0.691070 0.722788i \(-0.257140\pi\)
0.691070 + 0.722788i \(0.257140\pi\)
\(318\) 0 0
\(319\) 12.1545 0.680522
\(320\) 0 0
\(321\) 2.01021 0.112199
\(322\) 0 0
\(323\) −35.4182 −1.97072
\(324\) 0 0
\(325\) −4.95224 −0.274701
\(326\) 0 0
\(327\) −16.0032 −0.884978
\(328\) 0 0
\(329\) 29.9851 1.65313
\(330\) 0 0
\(331\) 6.29568 0.346042 0.173021 0.984918i \(-0.444647\pi\)
0.173021 + 0.984918i \(0.444647\pi\)
\(332\) 0 0
\(333\) −3.06703 −0.168072
\(334\) 0 0
\(335\) −0.460419 −0.0251554
\(336\) 0 0
\(337\) −16.8841 −0.919737 −0.459869 0.887987i \(-0.652104\pi\)
−0.459869 + 0.887987i \(0.652104\pi\)
\(338\) 0 0
\(339\) 5.90667 0.320806
\(340\) 0 0
\(341\) −6.13711 −0.332343
\(342\) 0 0
\(343\) −27.0951 −1.46300
\(344\) 0 0
\(345\) 1.13902 0.0613230
\(346\) 0 0
\(347\) 29.1187 1.56317 0.781586 0.623798i \(-0.214411\pi\)
0.781586 + 0.623798i \(0.214411\pi\)
\(348\) 0 0
\(349\) −7.81462 −0.418307 −0.209154 0.977883i \(-0.567071\pi\)
−0.209154 + 0.977883i \(0.567071\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 11.3088 0.601908 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(354\) 0 0
\(355\) 2.61648 0.138868
\(356\) 0 0
\(357\) 34.0479 1.80201
\(358\) 0 0
\(359\) 18.0361 0.951910 0.475955 0.879470i \(-0.342102\pi\)
0.475955 + 0.879470i \(0.342102\pi\)
\(360\) 0 0
\(361\) 2.69730 0.141963
\(362\) 0 0
\(363\) 1.83691 0.0964130
\(364\) 0 0
\(365\) −3.02705 −0.158443
\(366\) 0 0
\(367\) 18.7918 0.980924 0.490462 0.871463i \(-0.336828\pi\)
0.490462 + 0.871463i \(0.336828\pi\)
\(368\) 0 0
\(369\) −1.17387 −0.0611092
\(370\) 0 0
\(371\) −5.30005 −0.275165
\(372\) 0 0
\(373\) −4.04291 −0.209334 −0.104667 0.994507i \(-0.533378\pi\)
−0.104667 + 0.994507i \(0.533378\pi\)
\(374\) 0 0
\(375\) 2.17487 0.112310
\(376\) 0 0
\(377\) −3.39240 −0.174718
\(378\) 0 0
\(379\) 18.3308 0.941590 0.470795 0.882243i \(-0.343967\pi\)
0.470795 + 0.882243i \(0.343967\pi\)
\(380\) 0 0
\(381\) −6.89436 −0.353209
\(382\) 0 0
\(383\) −1.24438 −0.0635851 −0.0317925 0.999494i \(-0.510122\pi\)
−0.0317925 + 0.999494i \(0.510122\pi\)
\(384\) 0 0
\(385\) −3.50599 −0.178682
\(386\) 0 0
\(387\) 6.53664 0.332276
\(388\) 0 0
\(389\) 18.8394 0.955196 0.477598 0.878579i \(-0.341508\pi\)
0.477598 + 0.878579i \(0.341508\pi\)
\(390\) 0 0
\(391\) 39.6318 2.00427
\(392\) 0 0
\(393\) −1.98979 −0.100372
\(394\) 0 0
\(395\) 0.463893 0.0233410
\(396\) 0 0
\(397\) −22.7274 −1.14065 −0.570327 0.821418i \(-0.693183\pi\)
−0.570327 + 0.821418i \(0.693183\pi\)
\(398\) 0 0
\(399\) −20.8579 −1.04420
\(400\) 0 0
\(401\) −0.720524 −0.0359813 −0.0179906 0.999838i \(-0.505727\pi\)
−0.0179906 + 0.999838i \(0.505727\pi\)
\(402\) 0 0
\(403\) 1.71291 0.0853260
\(404\) 0 0
\(405\) −0.218531 −0.0108589
\(406\) 0 0
\(407\) 10.9888 0.544692
\(408\) 0 0
\(409\) 13.4116 0.663163 0.331582 0.943427i \(-0.392418\pi\)
0.331582 + 0.943427i \(0.392418\pi\)
\(410\) 0 0
\(411\) 0.961081 0.0474067
\(412\) 0 0
\(413\) 41.8074 2.05721
\(414\) 0 0
\(415\) −2.60238 −0.127746
\(416\) 0 0
\(417\) 5.54489 0.271535
\(418\) 0 0
\(419\) −21.7292 −1.06154 −0.530770 0.847516i \(-0.678097\pi\)
−0.530770 + 0.847516i \(0.678097\pi\)
\(420\) 0 0
\(421\) 17.1215 0.834452 0.417226 0.908803i \(-0.363002\pi\)
0.417226 + 0.908803i \(0.363002\pi\)
\(422\) 0 0
\(423\) −6.69636 −0.325588
\(424\) 0 0
\(425\) 37.6552 1.82655
\(426\) 0 0
\(427\) −65.7386 −3.18131
\(428\) 0 0
\(429\) −3.58286 −0.172982
\(430\) 0 0
\(431\) 35.9214 1.73027 0.865137 0.501536i \(-0.167232\pi\)
0.865137 + 0.501536i \(0.167232\pi\)
\(432\) 0 0
\(433\) −20.7974 −0.999460 −0.499730 0.866181i \(-0.666567\pi\)
−0.499730 + 0.866181i \(0.666567\pi\)
\(434\) 0 0
\(435\) 0.741344 0.0355447
\(436\) 0 0
\(437\) −24.2786 −1.16140
\(438\) 0 0
\(439\) 8.05946 0.384657 0.192328 0.981331i \(-0.438396\pi\)
0.192328 + 0.981331i \(0.438396\pi\)
\(440\) 0 0
\(441\) 13.0509 0.621473
\(442\) 0 0
\(443\) 7.84426 0.372692 0.186346 0.982484i \(-0.440335\pi\)
0.186346 + 0.982484i \(0.440335\pi\)
\(444\) 0 0
\(445\) −2.22935 −0.105681
\(446\) 0 0
\(447\) 20.9305 0.989979
\(448\) 0 0
\(449\) 28.1265 1.32737 0.663685 0.748012i \(-0.268992\pi\)
0.663685 + 0.748012i \(0.268992\pi\)
\(450\) 0 0
\(451\) 4.20582 0.198044
\(452\) 0 0
\(453\) −0.401184 −0.0188493
\(454\) 0 0
\(455\) 0.978543 0.0458748
\(456\) 0 0
\(457\) −7.83861 −0.366675 −0.183337 0.983050i \(-0.558690\pi\)
−0.183337 + 0.983050i \(0.558690\pi\)
\(458\) 0 0
\(459\) −7.60367 −0.354909
\(460\) 0 0
\(461\) −11.2498 −0.523955 −0.261977 0.965074i \(-0.584375\pi\)
−0.261977 + 0.965074i \(0.584375\pi\)
\(462\) 0 0
\(463\) −16.7795 −0.779811 −0.389905 0.920855i \(-0.627492\pi\)
−0.389905 + 0.920855i \(0.627492\pi\)
\(464\) 0 0
\(465\) −0.374323 −0.0173588
\(466\) 0 0
\(467\) −39.3481 −1.82081 −0.910407 0.413713i \(-0.864232\pi\)
−0.910407 + 0.413713i \(0.864232\pi\)
\(468\) 0 0
\(469\) −9.43426 −0.435634
\(470\) 0 0
\(471\) −18.9079 −0.871230
\(472\) 0 0
\(473\) −23.4199 −1.07685
\(474\) 0 0
\(475\) −23.0677 −1.05842
\(476\) 0 0
\(477\) 1.18362 0.0541942
\(478\) 0 0
\(479\) 12.7196 0.581173 0.290586 0.956849i \(-0.406150\pi\)
0.290586 + 0.956849i \(0.406150\pi\)
\(480\) 0 0
\(481\) −3.06703 −0.139845
\(482\) 0 0
\(483\) 23.3393 1.06197
\(484\) 0 0
\(485\) −3.50145 −0.158993
\(486\) 0 0
\(487\) 36.3811 1.64859 0.824293 0.566164i \(-0.191573\pi\)
0.824293 + 0.566164i \(0.191573\pi\)
\(488\) 0 0
\(489\) 18.5887 0.840609
\(490\) 0 0
\(491\) −21.3927 −0.965440 −0.482720 0.875775i \(-0.660351\pi\)
−0.482720 + 0.875775i \(0.660351\pi\)
\(492\) 0 0
\(493\) 25.7947 1.16173
\(494\) 0 0
\(495\) 0.782966 0.0351917
\(496\) 0 0
\(497\) 53.6133 2.40488
\(498\) 0 0
\(499\) 8.39795 0.375944 0.187972 0.982174i \(-0.439809\pi\)
0.187972 + 0.982174i \(0.439809\pi\)
\(500\) 0 0
\(501\) −15.9204 −0.711271
\(502\) 0 0
\(503\) −37.1422 −1.65609 −0.828044 0.560663i \(-0.810547\pi\)
−0.828044 + 0.560663i \(0.810547\pi\)
\(504\) 0 0
\(505\) −0.854272 −0.0380146
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −6.89677 −0.305694 −0.152847 0.988250i \(-0.548844\pi\)
−0.152847 + 0.988250i \(0.548844\pi\)
\(510\) 0 0
\(511\) −62.0261 −2.74387
\(512\) 0 0
\(513\) 4.65804 0.205657
\(514\) 0 0
\(515\) 0.739231 0.0325744
\(516\) 0 0
\(517\) 23.9921 1.05517
\(518\) 0 0
\(519\) −3.39369 −0.148967
\(520\) 0 0
\(521\) 7.62254 0.333949 0.166975 0.985961i \(-0.446600\pi\)
0.166975 + 0.985961i \(0.446600\pi\)
\(522\) 0 0
\(523\) −14.7801 −0.646287 −0.323144 0.946350i \(-0.604740\pi\)
−0.323144 + 0.946350i \(0.604740\pi\)
\(524\) 0 0
\(525\) 22.1753 0.967809
\(526\) 0 0
\(527\) −13.0244 −0.567351
\(528\) 0 0
\(529\) 4.16695 0.181172
\(530\) 0 0
\(531\) −9.33654 −0.405171
\(532\) 0 0
\(533\) −1.17387 −0.0508460
\(534\) 0 0
\(535\) −0.439293 −0.0189923
\(536\) 0 0
\(537\) −0.978543 −0.0422273
\(538\) 0 0
\(539\) −46.7597 −2.01408
\(540\) 0 0
\(541\) 37.4916 1.61189 0.805945 0.591990i \(-0.201658\pi\)
0.805945 + 0.591990i \(0.201658\pi\)
\(542\) 0 0
\(543\) 12.2039 0.523721
\(544\) 0 0
\(545\) 3.49719 0.149803
\(546\) 0 0
\(547\) −15.7598 −0.673840 −0.336920 0.941533i \(-0.609385\pi\)
−0.336920 + 0.941533i \(0.609385\pi\)
\(548\) 0 0
\(549\) 14.6809 0.626566
\(550\) 0 0
\(551\) −15.8019 −0.673185
\(552\) 0 0
\(553\) 9.50545 0.404213
\(554\) 0 0
\(555\) 0.670241 0.0284501
\(556\) 0 0
\(557\) −24.0153 −1.01756 −0.508781 0.860896i \(-0.669904\pi\)
−0.508781 + 0.860896i \(0.669904\pi\)
\(558\) 0 0
\(559\) 6.53664 0.276470
\(560\) 0 0
\(561\) 27.2429 1.15020
\(562\) 0 0
\(563\) 26.9917 1.13757 0.568783 0.822488i \(-0.307414\pi\)
0.568783 + 0.822488i \(0.307414\pi\)
\(564\) 0 0
\(565\) −1.29079 −0.0543039
\(566\) 0 0
\(567\) −4.47783 −0.188051
\(568\) 0 0
\(569\) 39.0770 1.63819 0.819096 0.573657i \(-0.194476\pi\)
0.819096 + 0.573657i \(0.194476\pi\)
\(570\) 0 0
\(571\) −38.5630 −1.61381 −0.806907 0.590679i \(-0.798860\pi\)
−0.806907 + 0.590679i \(0.798860\pi\)
\(572\) 0 0
\(573\) −9.11614 −0.380832
\(574\) 0 0
\(575\) 25.8120 1.07644
\(576\) 0 0
\(577\) 29.4706 1.22688 0.613438 0.789743i \(-0.289786\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(578\) 0 0
\(579\) 7.98107 0.331682
\(580\) 0 0
\(581\) −53.3244 −2.21227
\(582\) 0 0
\(583\) −4.24075 −0.175634
\(584\) 0 0
\(585\) −0.218531 −0.00903514
\(586\) 0 0
\(587\) −7.19553 −0.296991 −0.148496 0.988913i \(-0.547443\pi\)
−0.148496 + 0.988913i \(0.547443\pi\)
\(588\) 0 0
\(589\) 7.97879 0.328760
\(590\) 0 0
\(591\) 12.6000 0.518295
\(592\) 0 0
\(593\) 7.68075 0.315411 0.157705 0.987486i \(-0.449590\pi\)
0.157705 + 0.987486i \(0.449590\pi\)
\(594\) 0 0
\(595\) −7.44052 −0.305032
\(596\) 0 0
\(597\) −19.1593 −0.784137
\(598\) 0 0
\(599\) 24.3642 0.995493 0.497747 0.867322i \(-0.334161\pi\)
0.497747 + 0.867322i \(0.334161\pi\)
\(600\) 0 0
\(601\) −8.34674 −0.340471 −0.170235 0.985403i \(-0.554453\pi\)
−0.170235 + 0.985403i \(0.554453\pi\)
\(602\) 0 0
\(603\) 2.10688 0.0857989
\(604\) 0 0
\(605\) −0.401422 −0.0163201
\(606\) 0 0
\(607\) −25.7099 −1.04353 −0.521767 0.853088i \(-0.674727\pi\)
−0.521767 + 0.853088i \(0.674727\pi\)
\(608\) 0 0
\(609\) 15.1906 0.615554
\(610\) 0 0
\(611\) −6.69636 −0.270906
\(612\) 0 0
\(613\) 12.4181 0.501564 0.250782 0.968044i \(-0.419312\pi\)
0.250782 + 0.968044i \(0.419312\pi\)
\(614\) 0 0
\(615\) 0.256527 0.0103442
\(616\) 0 0
\(617\) −25.8886 −1.04224 −0.521118 0.853485i \(-0.674485\pi\)
−0.521118 + 0.853485i \(0.674485\pi\)
\(618\) 0 0
\(619\) 35.4019 1.42292 0.711461 0.702726i \(-0.248034\pi\)
0.711461 + 0.702726i \(0.248034\pi\)
\(620\) 0 0
\(621\) −5.21219 −0.209158
\(622\) 0 0
\(623\) −45.6806 −1.83016
\(624\) 0 0
\(625\) 24.2859 0.971438
\(626\) 0 0
\(627\) −16.6891 −0.666499
\(628\) 0 0
\(629\) 23.3207 0.929857
\(630\) 0 0
\(631\) 15.1930 0.604824 0.302412 0.953177i \(-0.402208\pi\)
0.302412 + 0.953177i \(0.402208\pi\)
\(632\) 0 0
\(633\) −17.4547 −0.693764
\(634\) 0 0
\(635\) 1.50663 0.0597888
\(636\) 0 0
\(637\) 13.0509 0.517097
\(638\) 0 0
\(639\) −11.9731 −0.473647
\(640\) 0 0
\(641\) 33.9555 1.34116 0.670582 0.741836i \(-0.266045\pi\)
0.670582 + 0.741836i \(0.266045\pi\)
\(642\) 0 0
\(643\) 11.8070 0.465623 0.232812 0.972522i \(-0.425207\pi\)
0.232812 + 0.972522i \(0.425207\pi\)
\(644\) 0 0
\(645\) −1.42846 −0.0562454
\(646\) 0 0
\(647\) −19.7307 −0.775695 −0.387848 0.921724i \(-0.626781\pi\)
−0.387848 + 0.921724i \(0.626781\pi\)
\(648\) 0 0
\(649\) 33.4515 1.31309
\(650\) 0 0
\(651\) −7.67010 −0.300615
\(652\) 0 0
\(653\) −14.9225 −0.583963 −0.291982 0.956424i \(-0.594315\pi\)
−0.291982 + 0.956424i \(0.594315\pi\)
\(654\) 0 0
\(655\) 0.434830 0.0169902
\(656\) 0 0
\(657\) 13.8518 0.540411
\(658\) 0 0
\(659\) 34.7477 1.35358 0.676789 0.736177i \(-0.263371\pi\)
0.676789 + 0.736177i \(0.263371\pi\)
\(660\) 0 0
\(661\) −42.5576 −1.65530 −0.827650 0.561245i \(-0.810323\pi\)
−0.827650 + 0.561245i \(0.810323\pi\)
\(662\) 0 0
\(663\) −7.60367 −0.295302
\(664\) 0 0
\(665\) 4.55809 0.176755
\(666\) 0 0
\(667\) 17.6818 0.684644
\(668\) 0 0
\(669\) 8.42115 0.325581
\(670\) 0 0
\(671\) −52.5997 −2.03059
\(672\) 0 0
\(673\) −30.8129 −1.18775 −0.593875 0.804557i \(-0.702403\pi\)
−0.593875 + 0.804557i \(0.702403\pi\)
\(674\) 0 0
\(675\) −4.95224 −0.190612
\(676\) 0 0
\(677\) −28.1235 −1.08087 −0.540436 0.841385i \(-0.681741\pi\)
−0.540436 + 0.841385i \(0.681741\pi\)
\(678\) 0 0
\(679\) −71.7468 −2.75339
\(680\) 0 0
\(681\) −21.0875 −0.808075
\(682\) 0 0
\(683\) 10.1192 0.387199 0.193600 0.981081i \(-0.437984\pi\)
0.193600 + 0.981081i \(0.437984\pi\)
\(684\) 0 0
\(685\) −0.210026 −0.00802468
\(686\) 0 0
\(687\) −12.0289 −0.458932
\(688\) 0 0
\(689\) 1.18362 0.0450923
\(690\) 0 0
\(691\) 25.1776 0.957803 0.478901 0.877869i \(-0.341035\pi\)
0.478901 + 0.877869i \(0.341035\pi\)
\(692\) 0 0
\(693\) 16.0434 0.609440
\(694\) 0 0
\(695\) −1.21173 −0.0459635
\(696\) 0 0
\(697\) 8.92572 0.338086
\(698\) 0 0
\(699\) 14.3048 0.541058
\(700\) 0 0
\(701\) 7.53851 0.284725 0.142363 0.989815i \(-0.454530\pi\)
0.142363 + 0.989815i \(0.454530\pi\)
\(702\) 0 0
\(703\) −14.2863 −0.538820
\(704\) 0 0
\(705\) 1.46336 0.0551133
\(706\) 0 0
\(707\) −17.5045 −0.658326
\(708\) 0 0
\(709\) 13.5851 0.510201 0.255100 0.966915i \(-0.417892\pi\)
0.255100 + 0.966915i \(0.417892\pi\)
\(710\) 0 0
\(711\) −2.12278 −0.0796105
\(712\) 0 0
\(713\) −8.92800 −0.334356
\(714\) 0 0
\(715\) 0.782966 0.0292813
\(716\) 0 0
\(717\) 5.22763 0.195229
\(718\) 0 0
\(719\) 20.6991 0.771947 0.385973 0.922510i \(-0.373866\pi\)
0.385973 + 0.922510i \(0.373866\pi\)
\(720\) 0 0
\(721\) 15.1473 0.564114
\(722\) 0 0
\(723\) −2.04161 −0.0759284
\(724\) 0 0
\(725\) 16.8000 0.623936
\(726\) 0 0
\(727\) 15.2057 0.563947 0.281974 0.959422i \(-0.409011\pi\)
0.281974 + 0.959422i \(0.409011\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −49.7025 −1.83831
\(732\) 0 0
\(733\) −43.4506 −1.60488 −0.802442 0.596730i \(-0.796466\pi\)
−0.802442 + 0.596730i \(0.796466\pi\)
\(734\) 0 0
\(735\) −2.85203 −0.105199
\(736\) 0 0
\(737\) −7.54868 −0.278059
\(738\) 0 0
\(739\) 4.52267 0.166369 0.0831845 0.996534i \(-0.473491\pi\)
0.0831845 + 0.996534i \(0.473491\pi\)
\(740\) 0 0
\(741\) 4.65804 0.171117
\(742\) 0 0
\(743\) −36.1002 −1.32439 −0.662194 0.749332i \(-0.730375\pi\)
−0.662194 + 0.749332i \(0.730375\pi\)
\(744\) 0 0
\(745\) −4.57396 −0.167577
\(746\) 0 0
\(747\) 11.9086 0.435711
\(748\) 0 0
\(749\) −9.00137 −0.328903
\(750\) 0 0
\(751\) −17.6770 −0.645043 −0.322522 0.946562i \(-0.604531\pi\)
−0.322522 + 0.946562i \(0.604531\pi\)
\(752\) 0 0
\(753\) −22.1961 −0.808871
\(754\) 0 0
\(755\) 0.0876710 0.00319067
\(756\) 0 0
\(757\) −30.7650 −1.11817 −0.559086 0.829110i \(-0.688848\pi\)
−0.559086 + 0.829110i \(0.688848\pi\)
\(758\) 0 0
\(759\) 18.6746 0.677844
\(760\) 0 0
\(761\) 36.6808 1.32968 0.664838 0.746987i \(-0.268500\pi\)
0.664838 + 0.746987i \(0.268500\pi\)
\(762\) 0 0
\(763\) 71.6595 2.59425
\(764\) 0 0
\(765\) 1.66164 0.0600766
\(766\) 0 0
\(767\) −9.33654 −0.337123
\(768\) 0 0
\(769\) −43.9664 −1.58547 −0.792735 0.609566i \(-0.791344\pi\)
−0.792735 + 0.609566i \(0.791344\pi\)
\(770\) 0 0
\(771\) −3.71742 −0.133880
\(772\) 0 0
\(773\) −18.1079 −0.651296 −0.325648 0.945491i \(-0.605582\pi\)
−0.325648 + 0.945491i \(0.605582\pi\)
\(774\) 0 0
\(775\) −8.48274 −0.304709
\(776\) 0 0
\(777\) 13.7336 0.492691
\(778\) 0 0
\(779\) −5.46793 −0.195909
\(780\) 0 0
\(781\) 42.8978 1.53500
\(782\) 0 0
\(783\) −3.39240 −0.121235
\(784\) 0 0
\(785\) 4.13196 0.147476
\(786\) 0 0
\(787\) 34.2703 1.22160 0.610801 0.791784i \(-0.290847\pi\)
0.610801 + 0.791784i \(0.290847\pi\)
\(788\) 0 0
\(789\) −2.09245 −0.0744931
\(790\) 0 0
\(791\) −26.4491 −0.940420
\(792\) 0 0
\(793\) 14.6809 0.521334
\(794\) 0 0
\(795\) −0.258657 −0.00917363
\(796\) 0 0
\(797\) −23.3407 −0.826770 −0.413385 0.910556i \(-0.635654\pi\)
−0.413385 + 0.910556i \(0.635654\pi\)
\(798\) 0 0
\(799\) 50.9169 1.80131
\(800\) 0 0
\(801\) 10.2015 0.360453
\(802\) 0 0
\(803\) −49.6292 −1.75138
\(804\) 0 0
\(805\) −5.10035 −0.179764
\(806\) 0 0
\(807\) 5.16604 0.181853
\(808\) 0 0
\(809\) −48.3125 −1.69858 −0.849289 0.527928i \(-0.822969\pi\)
−0.849289 + 0.527928i \(0.822969\pi\)
\(810\) 0 0
\(811\) 25.5793 0.898210 0.449105 0.893479i \(-0.351743\pi\)
0.449105 + 0.893479i \(0.351743\pi\)
\(812\) 0 0
\(813\) 12.0412 0.422305
\(814\) 0 0
\(815\) −4.06220 −0.142293
\(816\) 0 0
\(817\) 30.4479 1.06524
\(818\) 0 0
\(819\) −4.47783 −0.156468
\(820\) 0 0
\(821\) −49.7894 −1.73766 −0.868832 0.495108i \(-0.835129\pi\)
−0.868832 + 0.495108i \(0.835129\pi\)
\(822\) 0 0
\(823\) 20.4403 0.712504 0.356252 0.934390i \(-0.384054\pi\)
0.356252 + 0.934390i \(0.384054\pi\)
\(824\) 0 0
\(825\) 17.7432 0.617740
\(826\) 0 0
\(827\) −36.4382 −1.26708 −0.633540 0.773710i \(-0.718399\pi\)
−0.633540 + 0.773710i \(0.718399\pi\)
\(828\) 0 0
\(829\) 45.7206 1.58794 0.793971 0.607956i \(-0.208010\pi\)
0.793971 + 0.607956i \(0.208010\pi\)
\(830\) 0 0
\(831\) 16.5584 0.574406
\(832\) 0 0
\(833\) −99.2351 −3.43829
\(834\) 0 0
\(835\) 3.47910 0.120399
\(836\) 0 0
\(837\) 1.71291 0.0592067
\(838\) 0 0
\(839\) −17.2215 −0.594554 −0.297277 0.954791i \(-0.596078\pi\)
−0.297277 + 0.954791i \(0.596078\pi\)
\(840\) 0 0
\(841\) −17.4916 −0.603159
\(842\) 0 0
\(843\) −4.99219 −0.171940
\(844\) 0 0
\(845\) −0.218531 −0.00751769
\(846\) 0 0
\(847\) −8.22539 −0.282628
\(848\) 0 0
\(849\) 4.99175 0.171316
\(850\) 0 0
\(851\) 15.9860 0.547991
\(852\) 0 0
\(853\) 39.1565 1.34069 0.670347 0.742048i \(-0.266145\pi\)
0.670347 + 0.742048i \(0.266145\pi\)
\(854\) 0 0
\(855\) −1.01792 −0.0348123
\(856\) 0 0
\(857\) −41.8926 −1.43102 −0.715511 0.698601i \(-0.753806\pi\)
−0.715511 + 0.698601i \(0.753806\pi\)
\(858\) 0 0
\(859\) −10.2063 −0.348236 −0.174118 0.984725i \(-0.555707\pi\)
−0.174118 + 0.984725i \(0.555707\pi\)
\(860\) 0 0
\(861\) 5.25639 0.179137
\(862\) 0 0
\(863\) 18.6974 0.636466 0.318233 0.948013i \(-0.396911\pi\)
0.318233 + 0.948013i \(0.396911\pi\)
\(864\) 0 0
\(865\) 0.741626 0.0252160
\(866\) 0 0
\(867\) 40.8158 1.38618
\(868\) 0 0
\(869\) 7.60564 0.258004
\(870\) 0 0
\(871\) 2.10688 0.0713890
\(872\) 0 0
\(873\) 16.0227 0.542286
\(874\) 0 0
\(875\) −9.73870 −0.329228
\(876\) 0 0
\(877\) 0.583295 0.0196965 0.00984824 0.999952i \(-0.496865\pi\)
0.00984824 + 0.999952i \(0.496865\pi\)
\(878\) 0 0
\(879\) 3.02283 0.101958
\(880\) 0 0
\(881\) 30.7506 1.03601 0.518007 0.855377i \(-0.326674\pi\)
0.518007 + 0.855377i \(0.326674\pi\)
\(882\) 0 0
\(883\) 2.72627 0.0917464 0.0458732 0.998947i \(-0.485393\pi\)
0.0458732 + 0.998947i \(0.485393\pi\)
\(884\) 0 0
\(885\) 2.04032 0.0685846
\(886\) 0 0
\(887\) 5.52841 0.185626 0.0928130 0.995684i \(-0.470414\pi\)
0.0928130 + 0.995684i \(0.470414\pi\)
\(888\) 0 0
\(889\) 30.8718 1.03541
\(890\) 0 0
\(891\) −3.58286 −0.120030
\(892\) 0 0
\(893\) −31.1919 −1.04380
\(894\) 0 0
\(895\) 0.213842 0.00714794
\(896\) 0 0
\(897\) −5.21219 −0.174030
\(898\) 0 0
\(899\) −5.81087 −0.193803
\(900\) 0 0
\(901\) −8.99986 −0.299829
\(902\) 0 0
\(903\) −29.2699 −0.974043
\(904\) 0 0
\(905\) −2.66693 −0.0886519
\(906\) 0 0
\(907\) −41.3739 −1.37380 −0.686900 0.726752i \(-0.741029\pi\)
−0.686900 + 0.726752i \(0.741029\pi\)
\(908\) 0 0
\(909\) 3.90916 0.129659
\(910\) 0 0
\(911\) 29.6950 0.983839 0.491920 0.870641i \(-0.336295\pi\)
0.491920 + 0.870641i \(0.336295\pi\)
\(912\) 0 0
\(913\) −42.6667 −1.41206
\(914\) 0 0
\(915\) −3.20823 −0.106061
\(916\) 0 0
\(917\) 8.90994 0.294232
\(918\) 0 0
\(919\) 52.9480 1.74659 0.873297 0.487188i \(-0.161977\pi\)
0.873297 + 0.487188i \(0.161977\pi\)
\(920\) 0 0
\(921\) −22.8741 −0.753727
\(922\) 0 0
\(923\) −11.9731 −0.394098
\(924\) 0 0
\(925\) 15.1887 0.499401
\(926\) 0 0
\(927\) −3.38273 −0.111103
\(928\) 0 0
\(929\) 35.6986 1.17123 0.585617 0.810588i \(-0.300852\pi\)
0.585617 + 0.810588i \(0.300852\pi\)
\(930\) 0 0
\(931\) 60.7918 1.99237
\(932\) 0 0
\(933\) 22.1117 0.723905
\(934\) 0 0
\(935\) −5.95342 −0.194697
\(936\) 0 0
\(937\) 59.7049 1.95047 0.975237 0.221163i \(-0.0709853\pi\)
0.975237 + 0.221163i \(0.0709853\pi\)
\(938\) 0 0
\(939\) 15.6954 0.512199
\(940\) 0 0
\(941\) 22.1999 0.723697 0.361849 0.932237i \(-0.382146\pi\)
0.361849 + 0.932237i \(0.382146\pi\)
\(942\) 0 0
\(943\) 6.11844 0.199244
\(944\) 0 0
\(945\) 0.978543 0.0318320
\(946\) 0 0
\(947\) −8.89010 −0.288889 −0.144445 0.989513i \(-0.546140\pi\)
−0.144445 + 0.989513i \(0.546140\pi\)
\(948\) 0 0
\(949\) 13.8518 0.449649
\(950\) 0 0
\(951\) 24.6083 0.797979
\(952\) 0 0
\(953\) 8.55786 0.277216 0.138608 0.990347i \(-0.455737\pi\)
0.138608 + 0.990347i \(0.455737\pi\)
\(954\) 0 0
\(955\) 1.99216 0.0644647
\(956\) 0 0
\(957\) 12.1545 0.392900
\(958\) 0 0
\(959\) −4.30356 −0.138969
\(960\) 0 0
\(961\) −28.0659 −0.905353
\(962\) 0 0
\(963\) 2.01021 0.0647781
\(964\) 0 0
\(965\) −1.74411 −0.0561449
\(966\) 0 0
\(967\) −47.2162 −1.51837 −0.759186 0.650874i \(-0.774403\pi\)
−0.759186 + 0.650874i \(0.774403\pi\)
\(968\) 0 0
\(969\) −35.4182 −1.13780
\(970\) 0 0
\(971\) −28.5324 −0.915648 −0.457824 0.889043i \(-0.651371\pi\)
−0.457824 + 0.889043i \(0.651371\pi\)
\(972\) 0 0
\(973\) −24.8291 −0.795984
\(974\) 0 0
\(975\) −4.95224 −0.158599
\(976\) 0 0
\(977\) −42.2487 −1.35165 −0.675827 0.737060i \(-0.736213\pi\)
−0.675827 + 0.737060i \(0.736213\pi\)
\(978\) 0 0
\(979\) −36.5507 −1.16816
\(980\) 0 0
\(981\) −16.0032 −0.510942
\(982\) 0 0
\(983\) 28.6115 0.912565 0.456283 0.889835i \(-0.349181\pi\)
0.456283 + 0.889835i \(0.349181\pi\)
\(984\) 0 0
\(985\) −2.75349 −0.0877334
\(986\) 0 0
\(987\) 29.9851 0.954438
\(988\) 0 0
\(989\) −34.0702 −1.08337
\(990\) 0 0
\(991\) −51.5651 −1.63802 −0.819009 0.573780i \(-0.805476\pi\)
−0.819009 + 0.573780i \(0.805476\pi\)
\(992\) 0 0
\(993\) 6.29568 0.199788
\(994\) 0 0
\(995\) 4.18689 0.132733
\(996\) 0 0
\(997\) 37.0106 1.17214 0.586069 0.810261i \(-0.300675\pi\)
0.586069 + 0.810261i \(0.300675\pi\)
\(998\) 0 0
\(999\) −3.06703 −0.0970366
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9984.2.a.bv.1.4 8
4.3 odd 2 9984.2.a.bt.1.4 8
8.3 odd 2 9984.2.a.bu.1.5 8
8.5 even 2 9984.2.a.bs.1.5 8
16.3 odd 4 312.2.g.b.157.8 yes 16
16.5 even 4 1248.2.g.b.625.4 16
16.11 odd 4 312.2.g.b.157.7 16
16.13 even 4 1248.2.g.b.625.13 16
48.5 odd 4 3744.2.g.e.1873.9 16
48.11 even 4 936.2.g.e.469.10 16
48.29 odd 4 3744.2.g.e.1873.8 16
48.35 even 4 936.2.g.e.469.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.b.157.7 16 16.11 odd 4
312.2.g.b.157.8 yes 16 16.3 odd 4
936.2.g.e.469.9 16 48.35 even 4
936.2.g.e.469.10 16 48.11 even 4
1248.2.g.b.625.4 16 16.5 even 4
1248.2.g.b.625.13 16 16.13 even 4
3744.2.g.e.1873.8 16 48.29 odd 4
3744.2.g.e.1873.9 16 48.5 odd 4
9984.2.a.bs.1.5 8 8.5 even 2
9984.2.a.bt.1.4 8 4.3 odd 2
9984.2.a.bu.1.5 8 8.3 odd 2
9984.2.a.bv.1.4 8 1.1 even 1 trivial