Properties

Label 9984.2.a.l.1.1
Level $9984$
Weight $2$
Character 9984.1
Self dual yes
Analytic conductor $79.723$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9984,2,Mod(1,9984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4992)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.82843 q^{5} +1.41421 q^{7} +1.00000 q^{9} -0.585786 q^{11} -1.00000 q^{13} -2.82843 q^{15} -2.82843 q^{17} -5.41421 q^{19} +1.41421 q^{21} +2.82843 q^{23} +3.00000 q^{25} +1.00000 q^{27} +3.65685 q^{29} +5.41421 q^{31} -0.585786 q^{33} -4.00000 q^{35} +2.00000 q^{37} -1.00000 q^{39} +6.82843 q^{41} +5.65685 q^{43} -2.82843 q^{45} +3.41421 q^{47} -5.00000 q^{49} -2.82843 q^{51} +1.17157 q^{53} +1.65685 q^{55} -5.41421 q^{57} +2.24264 q^{59} -9.65685 q^{61} +1.41421 q^{63} +2.82843 q^{65} -3.75736 q^{67} +2.82843 q^{69} +11.8995 q^{71} -7.65685 q^{73} +3.00000 q^{75} -0.828427 q^{77} +2.82843 q^{79} +1.00000 q^{81} -14.7279 q^{83} +8.00000 q^{85} +3.65685 q^{87} +2.82843 q^{89} -1.41421 q^{91} +5.41421 q^{93} +15.3137 q^{95} -11.6569 q^{97} -0.585786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9} - 4 q^{11} - 2 q^{13} - 8 q^{19} + 6 q^{25} + 2 q^{27} - 4 q^{29} + 8 q^{31} - 4 q^{33} - 8 q^{35} + 4 q^{37} - 2 q^{39} + 8 q^{41} + 4 q^{47} - 10 q^{49} + 8 q^{53} - 8 q^{55} - 8 q^{57}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.82843 −1.26491 −0.632456 0.774597i \(-0.717953\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 1.41421 0.534522 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.585786 −0.176621 −0.0883106 0.996093i \(-0.528147\pi\)
−0.0883106 + 0.996093i \(0.528147\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −2.82843 −0.730297
\(16\) 0 0
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) 0 0
\(19\) −5.41421 −1.24211 −0.621053 0.783769i \(-0.713295\pi\)
−0.621053 + 0.783769i \(0.713295\pi\)
\(20\) 0 0
\(21\) 1.41421 0.308607
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.65685 0.679061 0.339530 0.940595i \(-0.389732\pi\)
0.339530 + 0.940595i \(0.389732\pi\)
\(30\) 0 0
\(31\) 5.41421 0.972421 0.486211 0.873842i \(-0.338379\pi\)
0.486211 + 0.873842i \(0.338379\pi\)
\(32\) 0 0
\(33\) −0.585786 −0.101972
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 6.82843 1.06642 0.533211 0.845983i \(-0.320985\pi\)
0.533211 + 0.845983i \(0.320985\pi\)
\(42\) 0 0
\(43\) 5.65685 0.862662 0.431331 0.902194i \(-0.358044\pi\)
0.431331 + 0.902194i \(0.358044\pi\)
\(44\) 0 0
\(45\) −2.82843 −0.421637
\(46\) 0 0
\(47\) 3.41421 0.498014 0.249007 0.968502i \(-0.419896\pi\)
0.249007 + 0.968502i \(0.419896\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) −2.82843 −0.396059
\(52\) 0 0
\(53\) 1.17157 0.160928 0.0804640 0.996758i \(-0.474360\pi\)
0.0804640 + 0.996758i \(0.474360\pi\)
\(54\) 0 0
\(55\) 1.65685 0.223410
\(56\) 0 0
\(57\) −5.41421 −0.717130
\(58\) 0 0
\(59\) 2.24264 0.291967 0.145983 0.989287i \(-0.453365\pi\)
0.145983 + 0.989287i \(0.453365\pi\)
\(60\) 0 0
\(61\) −9.65685 −1.23643 −0.618217 0.786008i \(-0.712145\pi\)
−0.618217 + 0.786008i \(0.712145\pi\)
\(62\) 0 0
\(63\) 1.41421 0.178174
\(64\) 0 0
\(65\) 2.82843 0.350823
\(66\) 0 0
\(67\) −3.75736 −0.459034 −0.229517 0.973305i \(-0.573715\pi\)
−0.229517 + 0.973305i \(0.573715\pi\)
\(68\) 0 0
\(69\) 2.82843 0.340503
\(70\) 0 0
\(71\) 11.8995 1.41221 0.706105 0.708107i \(-0.250451\pi\)
0.706105 + 0.708107i \(0.250451\pi\)
\(72\) 0 0
\(73\) −7.65685 −0.896167 −0.448084 0.893992i \(-0.647893\pi\)
−0.448084 + 0.893992i \(0.647893\pi\)
\(74\) 0 0
\(75\) 3.00000 0.346410
\(76\) 0 0
\(77\) −0.828427 −0.0944080
\(78\) 0 0
\(79\) 2.82843 0.318223 0.159111 0.987261i \(-0.449137\pi\)
0.159111 + 0.987261i \(0.449137\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −14.7279 −1.61660 −0.808300 0.588771i \(-0.799612\pi\)
−0.808300 + 0.588771i \(0.799612\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 3.65685 0.392056
\(88\) 0 0
\(89\) 2.82843 0.299813 0.149906 0.988700i \(-0.452103\pi\)
0.149906 + 0.988700i \(0.452103\pi\)
\(90\) 0 0
\(91\) −1.41421 −0.148250
\(92\) 0 0
\(93\) 5.41421 0.561428
\(94\) 0 0
\(95\) 15.3137 1.57115
\(96\) 0 0
\(97\) −11.6569 −1.18357 −0.591787 0.806094i \(-0.701577\pi\)
−0.591787 + 0.806094i \(0.701577\pi\)
\(98\) 0 0
\(99\) −0.585786 −0.0588738
\(100\) 0 0
\(101\) −9.17157 −0.912606 −0.456303 0.889825i \(-0.650827\pi\)
−0.456303 + 0.889825i \(0.650827\pi\)
\(102\) 0 0
\(103\) −9.17157 −0.903702 −0.451851 0.892093i \(-0.649236\pi\)
−0.451851 + 0.892093i \(0.649236\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 1.17157 0.113260 0.0566301 0.998395i \(-0.481964\pi\)
0.0566301 + 0.998395i \(0.481964\pi\)
\(108\) 0 0
\(109\) −7.65685 −0.733394 −0.366697 0.930341i \(-0.619511\pi\)
−0.366697 + 0.930341i \(0.619511\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −8.48528 −0.798228 −0.399114 0.916901i \(-0.630682\pi\)
−0.399114 + 0.916901i \(0.630682\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −10.6569 −0.968805
\(122\) 0 0
\(123\) 6.82843 0.615699
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 13.6569 1.21185 0.605925 0.795522i \(-0.292803\pi\)
0.605925 + 0.795522i \(0.292803\pi\)
\(128\) 0 0
\(129\) 5.65685 0.498058
\(130\) 0 0
\(131\) −9.17157 −0.801324 −0.400662 0.916226i \(-0.631220\pi\)
−0.400662 + 0.916226i \(0.631220\pi\)
\(132\) 0 0
\(133\) −7.65685 −0.663933
\(134\) 0 0
\(135\) −2.82843 −0.243432
\(136\) 0 0
\(137\) 0.485281 0.0414604 0.0207302 0.999785i \(-0.493401\pi\)
0.0207302 + 0.999785i \(0.493401\pi\)
\(138\) 0 0
\(139\) −14.1421 −1.19952 −0.599760 0.800180i \(-0.704737\pi\)
−0.599760 + 0.800180i \(0.704737\pi\)
\(140\) 0 0
\(141\) 3.41421 0.287529
\(142\) 0 0
\(143\) 0.585786 0.0489859
\(144\) 0 0
\(145\) −10.3431 −0.858952
\(146\) 0 0
\(147\) −5.00000 −0.412393
\(148\) 0 0
\(149\) 9.17157 0.751365 0.375682 0.926749i \(-0.377408\pi\)
0.375682 + 0.926749i \(0.377408\pi\)
\(150\) 0 0
\(151\) −0.242641 −0.0197458 −0.00987291 0.999951i \(-0.503143\pi\)
−0.00987291 + 0.999951i \(0.503143\pi\)
\(152\) 0 0
\(153\) −2.82843 −0.228665
\(154\) 0 0
\(155\) −15.3137 −1.23003
\(156\) 0 0
\(157\) −17.3137 −1.38178 −0.690892 0.722958i \(-0.742782\pi\)
−0.690892 + 0.722958i \(0.742782\pi\)
\(158\) 0 0
\(159\) 1.17157 0.0929118
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 11.5563 0.905163 0.452582 0.891723i \(-0.350503\pi\)
0.452582 + 0.891723i \(0.350503\pi\)
\(164\) 0 0
\(165\) 1.65685 0.128986
\(166\) 0 0
\(167\) −12.5858 −0.973917 −0.486959 0.873425i \(-0.661894\pi\)
−0.486959 + 0.873425i \(0.661894\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −5.41421 −0.414035
\(172\) 0 0
\(173\) 12.4853 0.949238 0.474619 0.880191i \(-0.342586\pi\)
0.474619 + 0.880191i \(0.342586\pi\)
\(174\) 0 0
\(175\) 4.24264 0.320713
\(176\) 0 0
\(177\) 2.24264 0.168567
\(178\) 0 0
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) −13.3137 −0.989600 −0.494800 0.869007i \(-0.664759\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(182\) 0 0
\(183\) −9.65685 −0.713855
\(184\) 0 0
\(185\) −5.65685 −0.415900
\(186\) 0 0
\(187\) 1.65685 0.121161
\(188\) 0 0
\(189\) 1.41421 0.102869
\(190\) 0 0
\(191\) −1.65685 −0.119886 −0.0599429 0.998202i \(-0.519092\pi\)
−0.0599429 + 0.998202i \(0.519092\pi\)
\(192\) 0 0
\(193\) 1.31371 0.0945628 0.0472814 0.998882i \(-0.484944\pi\)
0.0472814 + 0.998882i \(0.484944\pi\)
\(194\) 0 0
\(195\) 2.82843 0.202548
\(196\) 0 0
\(197\) −18.8284 −1.34147 −0.670735 0.741697i \(-0.734021\pi\)
−0.670735 + 0.741697i \(0.734021\pi\)
\(198\) 0 0
\(199\) −16.9706 −1.20301 −0.601506 0.798869i \(-0.705432\pi\)
−0.601506 + 0.798869i \(0.705432\pi\)
\(200\) 0 0
\(201\) −3.75736 −0.265024
\(202\) 0 0
\(203\) 5.17157 0.362973
\(204\) 0 0
\(205\) −19.3137 −1.34893
\(206\) 0 0
\(207\) 2.82843 0.196589
\(208\) 0 0
\(209\) 3.17157 0.219382
\(210\) 0 0
\(211\) −23.3137 −1.60498 −0.802491 0.596664i \(-0.796492\pi\)
−0.802491 + 0.596664i \(0.796492\pi\)
\(212\) 0 0
\(213\) 11.8995 0.815340
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 7.65685 0.519781
\(218\) 0 0
\(219\) −7.65685 −0.517402
\(220\) 0 0
\(221\) 2.82843 0.190261
\(222\) 0 0
\(223\) 8.24264 0.551968 0.275984 0.961162i \(-0.410996\pi\)
0.275984 + 0.961162i \(0.410996\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) 2.72792 0.181059 0.0905293 0.995894i \(-0.471144\pi\)
0.0905293 + 0.995894i \(0.471144\pi\)
\(228\) 0 0
\(229\) 8.34315 0.551331 0.275665 0.961254i \(-0.411102\pi\)
0.275665 + 0.961254i \(0.411102\pi\)
\(230\) 0 0
\(231\) −0.828427 −0.0545065
\(232\) 0 0
\(233\) 18.9706 1.24280 0.621401 0.783492i \(-0.286564\pi\)
0.621401 + 0.783492i \(0.286564\pi\)
\(234\) 0 0
\(235\) −9.65685 −0.629944
\(236\) 0 0
\(237\) 2.82843 0.183726
\(238\) 0 0
\(239\) 21.0711 1.36297 0.681487 0.731830i \(-0.261334\pi\)
0.681487 + 0.731830i \(0.261334\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 14.1421 0.903508
\(246\) 0 0
\(247\) 5.41421 0.344498
\(248\) 0 0
\(249\) −14.7279 −0.933344
\(250\) 0 0
\(251\) 14.1421 0.892644 0.446322 0.894873i \(-0.352734\pi\)
0.446322 + 0.894873i \(0.352734\pi\)
\(252\) 0 0
\(253\) −1.65685 −0.104166
\(254\) 0 0
\(255\) 8.00000 0.500979
\(256\) 0 0
\(257\) −11.6569 −0.727135 −0.363567 0.931568i \(-0.618441\pi\)
−0.363567 + 0.931568i \(0.618441\pi\)
\(258\) 0 0
\(259\) 2.82843 0.175750
\(260\) 0 0
\(261\) 3.65685 0.226354
\(262\) 0 0
\(263\) −4.48528 −0.276574 −0.138287 0.990392i \(-0.544160\pi\)
−0.138287 + 0.990392i \(0.544160\pi\)
\(264\) 0 0
\(265\) −3.31371 −0.203559
\(266\) 0 0
\(267\) 2.82843 0.173097
\(268\) 0 0
\(269\) −0.343146 −0.0209220 −0.0104610 0.999945i \(-0.503330\pi\)
−0.0104610 + 0.999945i \(0.503330\pi\)
\(270\) 0 0
\(271\) −12.7279 −0.773166 −0.386583 0.922255i \(-0.626345\pi\)
−0.386583 + 0.922255i \(0.626345\pi\)
\(272\) 0 0
\(273\) −1.41421 −0.0855921
\(274\) 0 0
\(275\) −1.75736 −0.105973
\(276\) 0 0
\(277\) 14.3431 0.861796 0.430898 0.902401i \(-0.358197\pi\)
0.430898 + 0.902401i \(0.358197\pi\)
\(278\) 0 0
\(279\) 5.41421 0.324140
\(280\) 0 0
\(281\) −16.4853 −0.983429 −0.491715 0.870756i \(-0.663630\pi\)
−0.491715 + 0.870756i \(0.663630\pi\)
\(282\) 0 0
\(283\) 15.7990 0.939152 0.469576 0.882892i \(-0.344407\pi\)
0.469576 + 0.882892i \(0.344407\pi\)
\(284\) 0 0
\(285\) 15.3137 0.907106
\(286\) 0 0
\(287\) 9.65685 0.570026
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) −11.6569 −0.683337
\(292\) 0 0
\(293\) −2.82843 −0.165238 −0.0826192 0.996581i \(-0.526329\pi\)
−0.0826192 + 0.996581i \(0.526329\pi\)
\(294\) 0 0
\(295\) −6.34315 −0.369312
\(296\) 0 0
\(297\) −0.585786 −0.0339908
\(298\) 0 0
\(299\) −2.82843 −0.163572
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) −9.17157 −0.526893
\(304\) 0 0
\(305\) 27.3137 1.56398
\(306\) 0 0
\(307\) −11.7574 −0.671028 −0.335514 0.942035i \(-0.608910\pi\)
−0.335514 + 0.942035i \(0.608910\pi\)
\(308\) 0 0
\(309\) −9.17157 −0.521753
\(310\) 0 0
\(311\) −10.8284 −0.614024 −0.307012 0.951706i \(-0.599329\pi\)
−0.307012 + 0.951706i \(0.599329\pi\)
\(312\) 0 0
\(313\) 20.9706 1.18533 0.592663 0.805450i \(-0.298077\pi\)
0.592663 + 0.805450i \(0.298077\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 18.1421 1.01896 0.509482 0.860481i \(-0.329837\pi\)
0.509482 + 0.860481i \(0.329837\pi\)
\(318\) 0 0
\(319\) −2.14214 −0.119937
\(320\) 0 0
\(321\) 1.17157 0.0653908
\(322\) 0 0
\(323\) 15.3137 0.852078
\(324\) 0 0
\(325\) −3.00000 −0.166410
\(326\) 0 0
\(327\) −7.65685 −0.423425
\(328\) 0 0
\(329\) 4.82843 0.266200
\(330\) 0 0
\(331\) −23.5563 −1.29477 −0.647387 0.762161i \(-0.724138\pi\)
−0.647387 + 0.762161i \(0.724138\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 10.6274 0.580638
\(336\) 0 0
\(337\) 3.31371 0.180509 0.0902546 0.995919i \(-0.471232\pi\)
0.0902546 + 0.995919i \(0.471232\pi\)
\(338\) 0 0
\(339\) −8.48528 −0.460857
\(340\) 0 0
\(341\) −3.17157 −0.171750
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) −8.00000 −0.430706
\(346\) 0 0
\(347\) −12.9706 −0.696296 −0.348148 0.937440i \(-0.613189\pi\)
−0.348148 + 0.937440i \(0.613189\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −11.7990 −0.627997 −0.313998 0.949424i \(-0.601669\pi\)
−0.313998 + 0.949424i \(0.601669\pi\)
\(354\) 0 0
\(355\) −33.6569 −1.78632
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) 4.58579 0.242029 0.121014 0.992651i \(-0.461385\pi\)
0.121014 + 0.992651i \(0.461385\pi\)
\(360\) 0 0
\(361\) 10.3137 0.542827
\(362\) 0 0
\(363\) −10.6569 −0.559340
\(364\) 0 0
\(365\) 21.6569 1.13357
\(366\) 0 0
\(367\) −31.3137 −1.63456 −0.817281 0.576239i \(-0.804520\pi\)
−0.817281 + 0.576239i \(0.804520\pi\)
\(368\) 0 0
\(369\) 6.82843 0.355474
\(370\) 0 0
\(371\) 1.65685 0.0860196
\(372\) 0 0
\(373\) −2.68629 −0.139091 −0.0695455 0.997579i \(-0.522155\pi\)
−0.0695455 + 0.997579i \(0.522155\pi\)
\(374\) 0 0
\(375\) 5.65685 0.292119
\(376\) 0 0
\(377\) −3.65685 −0.188338
\(378\) 0 0
\(379\) 30.3848 1.56076 0.780381 0.625305i \(-0.215025\pi\)
0.780381 + 0.625305i \(0.215025\pi\)
\(380\) 0 0
\(381\) 13.6569 0.699662
\(382\) 0 0
\(383\) −11.2132 −0.572968 −0.286484 0.958085i \(-0.592487\pi\)
−0.286484 + 0.958085i \(0.592487\pi\)
\(384\) 0 0
\(385\) 2.34315 0.119418
\(386\) 0 0
\(387\) 5.65685 0.287554
\(388\) 0 0
\(389\) 12.6274 0.640235 0.320118 0.947378i \(-0.396278\pi\)
0.320118 + 0.947378i \(0.396278\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) −9.17157 −0.462645
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −6.68629 −0.335575 −0.167788 0.985823i \(-0.553662\pi\)
−0.167788 + 0.985823i \(0.553662\pi\)
\(398\) 0 0
\(399\) −7.65685 −0.383322
\(400\) 0 0
\(401\) 32.4853 1.62224 0.811119 0.584881i \(-0.198859\pi\)
0.811119 + 0.584881i \(0.198859\pi\)
\(402\) 0 0
\(403\) −5.41421 −0.269701
\(404\) 0 0
\(405\) −2.82843 −0.140546
\(406\) 0 0
\(407\) −1.17157 −0.0580727
\(408\) 0 0
\(409\) −5.31371 −0.262746 −0.131373 0.991333i \(-0.541939\pi\)
−0.131373 + 0.991333i \(0.541939\pi\)
\(410\) 0 0
\(411\) 0.485281 0.0239372
\(412\) 0 0
\(413\) 3.17157 0.156063
\(414\) 0 0
\(415\) 41.6569 2.04485
\(416\) 0 0
\(417\) −14.1421 −0.692543
\(418\) 0 0
\(419\) −28.4853 −1.39160 −0.695799 0.718237i \(-0.744949\pi\)
−0.695799 + 0.718237i \(0.744949\pi\)
\(420\) 0 0
\(421\) −11.6569 −0.568120 −0.284060 0.958806i \(-0.591682\pi\)
−0.284060 + 0.958806i \(0.591682\pi\)
\(422\) 0 0
\(423\) 3.41421 0.166005
\(424\) 0 0
\(425\) −8.48528 −0.411597
\(426\) 0 0
\(427\) −13.6569 −0.660901
\(428\) 0 0
\(429\) 0.585786 0.0282820
\(430\) 0 0
\(431\) −26.0416 −1.25438 −0.627191 0.778866i \(-0.715795\pi\)
−0.627191 + 0.778866i \(0.715795\pi\)
\(432\) 0 0
\(433\) −20.6274 −0.991290 −0.495645 0.868525i \(-0.665068\pi\)
−0.495645 + 0.868525i \(0.665068\pi\)
\(434\) 0 0
\(435\) −10.3431 −0.495916
\(436\) 0 0
\(437\) −15.3137 −0.732554
\(438\) 0 0
\(439\) −18.1421 −0.865877 −0.432938 0.901423i \(-0.642523\pi\)
−0.432938 + 0.901423i \(0.642523\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) −3.51472 −0.166989 −0.0834947 0.996508i \(-0.526608\pi\)
−0.0834947 + 0.996508i \(0.526608\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) 9.17157 0.433801
\(448\) 0 0
\(449\) 24.4853 1.15553 0.577766 0.816203i \(-0.303925\pi\)
0.577766 + 0.816203i \(0.303925\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) −0.242641 −0.0114003
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −5.31371 −0.248565 −0.124282 0.992247i \(-0.539663\pi\)
−0.124282 + 0.992247i \(0.539663\pi\)
\(458\) 0 0
\(459\) −2.82843 −0.132020
\(460\) 0 0
\(461\) 26.8284 1.24952 0.624762 0.780815i \(-0.285196\pi\)
0.624762 + 0.780815i \(0.285196\pi\)
\(462\) 0 0
\(463\) −18.3848 −0.854413 −0.427207 0.904154i \(-0.640502\pi\)
−0.427207 + 0.904154i \(0.640502\pi\)
\(464\) 0 0
\(465\) −15.3137 −0.710156
\(466\) 0 0
\(467\) −25.4558 −1.17796 −0.588978 0.808149i \(-0.700470\pi\)
−0.588978 + 0.808149i \(0.700470\pi\)
\(468\) 0 0
\(469\) −5.31371 −0.245364
\(470\) 0 0
\(471\) −17.3137 −0.797774
\(472\) 0 0
\(473\) −3.31371 −0.152364
\(474\) 0 0
\(475\) −16.2426 −0.745263
\(476\) 0 0
\(477\) 1.17157 0.0536426
\(478\) 0 0
\(479\) −14.0416 −0.641578 −0.320789 0.947151i \(-0.603948\pi\)
−0.320789 + 0.947151i \(0.603948\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 4.00000 0.182006
\(484\) 0 0
\(485\) 32.9706 1.49712
\(486\) 0 0
\(487\) 22.8701 1.03634 0.518171 0.855277i \(-0.326613\pi\)
0.518171 + 0.855277i \(0.326613\pi\)
\(488\) 0 0
\(489\) 11.5563 0.522596
\(490\) 0 0
\(491\) 36.7696 1.65939 0.829693 0.558219i \(-0.188515\pi\)
0.829693 + 0.558219i \(0.188515\pi\)
\(492\) 0 0
\(493\) −10.3431 −0.465832
\(494\) 0 0
\(495\) 1.65685 0.0744701
\(496\) 0 0
\(497\) 16.8284 0.754858
\(498\) 0 0
\(499\) −41.0122 −1.83596 −0.917979 0.396629i \(-0.870180\pi\)
−0.917979 + 0.396629i \(0.870180\pi\)
\(500\) 0 0
\(501\) −12.5858 −0.562291
\(502\) 0 0
\(503\) 28.4853 1.27010 0.635048 0.772473i \(-0.280980\pi\)
0.635048 + 0.772473i \(0.280980\pi\)
\(504\) 0 0
\(505\) 25.9411 1.15436
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −19.7990 −0.877575 −0.438787 0.898591i \(-0.644592\pi\)
−0.438787 + 0.898591i \(0.644592\pi\)
\(510\) 0 0
\(511\) −10.8284 −0.479021
\(512\) 0 0
\(513\) −5.41421 −0.239043
\(514\) 0 0
\(515\) 25.9411 1.14310
\(516\) 0 0
\(517\) −2.00000 −0.0879599
\(518\) 0 0
\(519\) 12.4853 0.548043
\(520\) 0 0
\(521\) −6.14214 −0.269092 −0.134546 0.990907i \(-0.542958\pi\)
−0.134546 + 0.990907i \(0.542958\pi\)
\(522\) 0 0
\(523\) 5.17157 0.226137 0.113069 0.993587i \(-0.463932\pi\)
0.113069 + 0.993587i \(0.463932\pi\)
\(524\) 0 0
\(525\) 4.24264 0.185164
\(526\) 0 0
\(527\) −15.3137 −0.667076
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 2.24264 0.0973223
\(532\) 0 0
\(533\) −6.82843 −0.295772
\(534\) 0 0
\(535\) −3.31371 −0.143264
\(536\) 0 0
\(537\) −16.0000 −0.690451
\(538\) 0 0
\(539\) 2.92893 0.126158
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) −13.3137 −0.571346
\(544\) 0 0
\(545\) 21.6569 0.927678
\(546\) 0 0
\(547\) −31.1127 −1.33028 −0.665141 0.746717i \(-0.731629\pi\)
−0.665141 + 0.746717i \(0.731629\pi\)
\(548\) 0 0
\(549\) −9.65685 −0.412144
\(550\) 0 0
\(551\) −19.7990 −0.843465
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) −5.65685 −0.240120
\(556\) 0 0
\(557\) −25.4558 −1.07860 −0.539299 0.842114i \(-0.681311\pi\)
−0.539299 + 0.842114i \(0.681311\pi\)
\(558\) 0 0
\(559\) −5.65685 −0.239259
\(560\) 0 0
\(561\) 1.65685 0.0699524
\(562\) 0 0
\(563\) −28.2843 −1.19204 −0.596020 0.802970i \(-0.703252\pi\)
−0.596020 + 0.802970i \(0.703252\pi\)
\(564\) 0 0
\(565\) 24.0000 1.00969
\(566\) 0 0
\(567\) 1.41421 0.0593914
\(568\) 0 0
\(569\) 9.02944 0.378534 0.189267 0.981926i \(-0.439389\pi\)
0.189267 + 0.981926i \(0.439389\pi\)
\(570\) 0 0
\(571\) −38.8284 −1.62492 −0.812460 0.583018i \(-0.801872\pi\)
−0.812460 + 0.583018i \(0.801872\pi\)
\(572\) 0 0
\(573\) −1.65685 −0.0692161
\(574\) 0 0
\(575\) 8.48528 0.353861
\(576\) 0 0
\(577\) −45.3137 −1.88643 −0.943217 0.332177i \(-0.892217\pi\)
−0.943217 + 0.332177i \(0.892217\pi\)
\(578\) 0 0
\(579\) 1.31371 0.0545959
\(580\) 0 0
\(581\) −20.8284 −0.864109
\(582\) 0 0
\(583\) −0.686292 −0.0284233
\(584\) 0 0
\(585\) 2.82843 0.116941
\(586\) 0 0
\(587\) −35.4142 −1.46170 −0.730851 0.682538i \(-0.760876\pi\)
−0.730851 + 0.682538i \(0.760876\pi\)
\(588\) 0 0
\(589\) −29.3137 −1.20785
\(590\) 0 0
\(591\) −18.8284 −0.774498
\(592\) 0 0
\(593\) 29.4558 1.20961 0.604803 0.796375i \(-0.293252\pi\)
0.604803 + 0.796375i \(0.293252\pi\)
\(594\) 0 0
\(595\) 11.3137 0.463817
\(596\) 0 0
\(597\) −16.9706 −0.694559
\(598\) 0 0
\(599\) −28.4853 −1.16388 −0.581939 0.813233i \(-0.697706\pi\)
−0.581939 + 0.813233i \(0.697706\pi\)
\(600\) 0 0
\(601\) 36.9706 1.50806 0.754030 0.656840i \(-0.228107\pi\)
0.754030 + 0.656840i \(0.228107\pi\)
\(602\) 0 0
\(603\) −3.75736 −0.153011
\(604\) 0 0
\(605\) 30.1421 1.22545
\(606\) 0 0
\(607\) −34.6274 −1.40548 −0.702742 0.711445i \(-0.748041\pi\)
−0.702742 + 0.711445i \(0.748041\pi\)
\(608\) 0 0
\(609\) 5.17157 0.209563
\(610\) 0 0
\(611\) −3.41421 −0.138124
\(612\) 0 0
\(613\) 3.37258 0.136217 0.0681087 0.997678i \(-0.478304\pi\)
0.0681087 + 0.997678i \(0.478304\pi\)
\(614\) 0 0
\(615\) −19.3137 −0.778804
\(616\) 0 0
\(617\) −4.48528 −0.180571 −0.0902853 0.995916i \(-0.528778\pi\)
−0.0902853 + 0.995916i \(0.528778\pi\)
\(618\) 0 0
\(619\) 18.8701 0.758452 0.379226 0.925304i \(-0.376190\pi\)
0.379226 + 0.925304i \(0.376190\pi\)
\(620\) 0 0
\(621\) 2.82843 0.113501
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 3.17157 0.126660
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) 36.0416 1.43479 0.717397 0.696664i \(-0.245333\pi\)
0.717397 + 0.696664i \(0.245333\pi\)
\(632\) 0 0
\(633\) −23.3137 −0.926637
\(634\) 0 0
\(635\) −38.6274 −1.53288
\(636\) 0 0
\(637\) 5.00000 0.198107
\(638\) 0 0
\(639\) 11.8995 0.470737
\(640\) 0 0
\(641\) 34.8284 1.37564 0.687820 0.725881i \(-0.258568\pi\)
0.687820 + 0.725881i \(0.258568\pi\)
\(642\) 0 0
\(643\) 16.0416 0.632620 0.316310 0.948656i \(-0.397556\pi\)
0.316310 + 0.948656i \(0.397556\pi\)
\(644\) 0 0
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) −3.31371 −0.130275 −0.0651377 0.997876i \(-0.520749\pi\)
−0.0651377 + 0.997876i \(0.520749\pi\)
\(648\) 0 0
\(649\) −1.31371 −0.0515676
\(650\) 0 0
\(651\) 7.65685 0.300096
\(652\) 0 0
\(653\) −38.2843 −1.49818 −0.749090 0.662469i \(-0.769509\pi\)
−0.749090 + 0.662469i \(0.769509\pi\)
\(654\) 0 0
\(655\) 25.9411 1.01360
\(656\) 0 0
\(657\) −7.65685 −0.298722
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 35.6569 1.38689 0.693445 0.720509i \(-0.256092\pi\)
0.693445 + 0.720509i \(0.256092\pi\)
\(662\) 0 0
\(663\) 2.82843 0.109847
\(664\) 0 0
\(665\) 21.6569 0.839817
\(666\) 0 0
\(667\) 10.3431 0.400488
\(668\) 0 0
\(669\) 8.24264 0.318679
\(670\) 0 0
\(671\) 5.65685 0.218380
\(672\) 0 0
\(673\) 10.6274 0.409657 0.204828 0.978798i \(-0.434336\pi\)
0.204828 + 0.978798i \(0.434336\pi\)
\(674\) 0 0
\(675\) 3.00000 0.115470
\(676\) 0 0
\(677\) −6.82843 −0.262438 −0.131219 0.991353i \(-0.541889\pi\)
−0.131219 + 0.991353i \(0.541889\pi\)
\(678\) 0 0
\(679\) −16.4853 −0.632647
\(680\) 0 0
\(681\) 2.72792 0.104534
\(682\) 0 0
\(683\) −26.9289 −1.03041 −0.515203 0.857068i \(-0.672284\pi\)
−0.515203 + 0.857068i \(0.672284\pi\)
\(684\) 0 0
\(685\) −1.37258 −0.0524437
\(686\) 0 0
\(687\) 8.34315 0.318311
\(688\) 0 0
\(689\) −1.17157 −0.0446334
\(690\) 0 0
\(691\) 9.89949 0.376595 0.188297 0.982112i \(-0.439703\pi\)
0.188297 + 0.982112i \(0.439703\pi\)
\(692\) 0 0
\(693\) −0.828427 −0.0314693
\(694\) 0 0
\(695\) 40.0000 1.51729
\(696\) 0 0
\(697\) −19.3137 −0.731559
\(698\) 0 0
\(699\) 18.9706 0.717533
\(700\) 0 0
\(701\) −24.6274 −0.930165 −0.465082 0.885267i \(-0.653975\pi\)
−0.465082 + 0.885267i \(0.653975\pi\)
\(702\) 0 0
\(703\) −10.8284 −0.408402
\(704\) 0 0
\(705\) −9.65685 −0.363698
\(706\) 0 0
\(707\) −12.9706 −0.487808
\(708\) 0 0
\(709\) 18.9706 0.712454 0.356227 0.934399i \(-0.384063\pi\)
0.356227 + 0.934399i \(0.384063\pi\)
\(710\) 0 0
\(711\) 2.82843 0.106074
\(712\) 0 0
\(713\) 15.3137 0.573503
\(714\) 0 0
\(715\) −1.65685 −0.0619628
\(716\) 0 0
\(717\) 21.0711 0.786913
\(718\) 0 0
\(719\) −7.51472 −0.280252 −0.140126 0.990134i \(-0.544751\pi\)
−0.140126 + 0.990134i \(0.544751\pi\)
\(720\) 0 0
\(721\) −12.9706 −0.483049
\(722\) 0 0
\(723\) 2.00000 0.0743808
\(724\) 0 0
\(725\) 10.9706 0.407436
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) −20.6274 −0.761891 −0.380946 0.924597i \(-0.624401\pi\)
−0.380946 + 0.924597i \(0.624401\pi\)
\(734\) 0 0
\(735\) 14.1421 0.521641
\(736\) 0 0
\(737\) 2.20101 0.0810753
\(738\) 0 0
\(739\) 6.10051 0.224411 0.112205 0.993685i \(-0.464209\pi\)
0.112205 + 0.993685i \(0.464209\pi\)
\(740\) 0 0
\(741\) 5.41421 0.198896
\(742\) 0 0
\(743\) 3.89949 0.143059 0.0715293 0.997438i \(-0.477212\pi\)
0.0715293 + 0.997438i \(0.477212\pi\)
\(744\) 0 0
\(745\) −25.9411 −0.950409
\(746\) 0 0
\(747\) −14.7279 −0.538866
\(748\) 0 0
\(749\) 1.65685 0.0605401
\(750\) 0 0
\(751\) −0.201010 −0.00733496 −0.00366748 0.999993i \(-0.501167\pi\)
−0.00366748 + 0.999993i \(0.501167\pi\)
\(752\) 0 0
\(753\) 14.1421 0.515368
\(754\) 0 0
\(755\) 0.686292 0.0249767
\(756\) 0 0
\(757\) −23.3137 −0.847351 −0.423676 0.905814i \(-0.639260\pi\)
−0.423676 + 0.905814i \(0.639260\pi\)
\(758\) 0 0
\(759\) −1.65685 −0.0601400
\(760\) 0 0
\(761\) 21.8579 0.792347 0.396173 0.918176i \(-0.370338\pi\)
0.396173 + 0.918176i \(0.370338\pi\)
\(762\) 0 0
\(763\) −10.8284 −0.392015
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) −2.24264 −0.0809771
\(768\) 0 0
\(769\) 40.6274 1.46506 0.732531 0.680734i \(-0.238339\pi\)
0.732531 + 0.680734i \(0.238339\pi\)
\(770\) 0 0
\(771\) −11.6569 −0.419811
\(772\) 0 0
\(773\) −11.7990 −0.424380 −0.212190 0.977228i \(-0.568060\pi\)
−0.212190 + 0.977228i \(0.568060\pi\)
\(774\) 0 0
\(775\) 16.2426 0.583453
\(776\) 0 0
\(777\) 2.82843 0.101469
\(778\) 0 0
\(779\) −36.9706 −1.32461
\(780\) 0 0
\(781\) −6.97056 −0.249426
\(782\) 0 0
\(783\) 3.65685 0.130685
\(784\) 0 0
\(785\) 48.9706 1.74783
\(786\) 0 0
\(787\) 42.8701 1.52815 0.764076 0.645126i \(-0.223195\pi\)
0.764076 + 0.645126i \(0.223195\pi\)
\(788\) 0 0
\(789\) −4.48528 −0.159680
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 9.65685 0.342925
\(794\) 0 0
\(795\) −3.31371 −0.117525
\(796\) 0 0
\(797\) −36.6274 −1.29741 −0.648705 0.761040i \(-0.724689\pi\)
−0.648705 + 0.761040i \(0.724689\pi\)
\(798\) 0 0
\(799\) −9.65685 −0.341635
\(800\) 0 0
\(801\) 2.82843 0.0999376
\(802\) 0 0
\(803\) 4.48528 0.158282
\(804\) 0 0
\(805\) −11.3137 −0.398756
\(806\) 0 0
\(807\) −0.343146 −0.0120793
\(808\) 0 0
\(809\) 30.1421 1.05974 0.529871 0.848079i \(-0.322241\pi\)
0.529871 + 0.848079i \(0.322241\pi\)
\(810\) 0 0
\(811\) −30.3848 −1.06695 −0.533477 0.845815i \(-0.679115\pi\)
−0.533477 + 0.845815i \(0.679115\pi\)
\(812\) 0 0
\(813\) −12.7279 −0.446388
\(814\) 0 0
\(815\) −32.6863 −1.14495
\(816\) 0 0
\(817\) −30.6274 −1.07152
\(818\) 0 0
\(819\) −1.41421 −0.0494166
\(820\) 0 0
\(821\) 29.4558 1.02802 0.514008 0.857785i \(-0.328160\pi\)
0.514008 + 0.857785i \(0.328160\pi\)
\(822\) 0 0
\(823\) 38.8284 1.35347 0.676737 0.736225i \(-0.263393\pi\)
0.676737 + 0.736225i \(0.263393\pi\)
\(824\) 0 0
\(825\) −1.75736 −0.0611834
\(826\) 0 0
\(827\) 32.1838 1.11914 0.559570 0.828783i \(-0.310966\pi\)
0.559570 + 0.828783i \(0.310966\pi\)
\(828\) 0 0
\(829\) 33.9411 1.17882 0.589412 0.807833i \(-0.299359\pi\)
0.589412 + 0.807833i \(0.299359\pi\)
\(830\) 0 0
\(831\) 14.3431 0.497558
\(832\) 0 0
\(833\) 14.1421 0.489996
\(834\) 0 0
\(835\) 35.5980 1.23192
\(836\) 0 0
\(837\) 5.41421 0.187143
\(838\) 0 0
\(839\) −39.4142 −1.36073 −0.680365 0.732874i \(-0.738179\pi\)
−0.680365 + 0.732874i \(0.738179\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) −16.4853 −0.567783
\(844\) 0 0
\(845\) −2.82843 −0.0973009
\(846\) 0 0
\(847\) −15.0711 −0.517848
\(848\) 0 0
\(849\) 15.7990 0.542220
\(850\) 0 0
\(851\) 5.65685 0.193914
\(852\) 0 0
\(853\) 46.2843 1.58474 0.792372 0.610039i \(-0.208846\pi\)
0.792372 + 0.610039i \(0.208846\pi\)
\(854\) 0 0
\(855\) 15.3137 0.523718
\(856\) 0 0
\(857\) −12.3431 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(858\) 0 0
\(859\) −32.2843 −1.10153 −0.550763 0.834662i \(-0.685663\pi\)
−0.550763 + 0.834662i \(0.685663\pi\)
\(860\) 0 0
\(861\) 9.65685 0.329105
\(862\) 0 0
\(863\) 32.8701 1.11891 0.559455 0.828861i \(-0.311011\pi\)
0.559455 + 0.828861i \(0.311011\pi\)
\(864\) 0 0
\(865\) −35.3137 −1.20070
\(866\) 0 0
\(867\) −9.00000 −0.305656
\(868\) 0 0
\(869\) −1.65685 −0.0562049
\(870\) 0 0
\(871\) 3.75736 0.127313
\(872\) 0 0
\(873\) −11.6569 −0.394525
\(874\) 0 0
\(875\) 8.00000 0.270449
\(876\) 0 0
\(877\) 14.2843 0.482346 0.241173 0.970482i \(-0.422468\pi\)
0.241173 + 0.970482i \(0.422468\pi\)
\(878\) 0 0
\(879\) −2.82843 −0.0954005
\(880\) 0 0
\(881\) 38.9706 1.31295 0.656476 0.754347i \(-0.272046\pi\)
0.656476 + 0.754347i \(0.272046\pi\)
\(882\) 0 0
\(883\) 16.2010 0.545207 0.272604 0.962126i \(-0.412115\pi\)
0.272604 + 0.962126i \(0.412115\pi\)
\(884\) 0 0
\(885\) −6.34315 −0.213223
\(886\) 0 0
\(887\) 38.3431 1.28744 0.643718 0.765262i \(-0.277391\pi\)
0.643718 + 0.765262i \(0.277391\pi\)
\(888\) 0 0
\(889\) 19.3137 0.647761
\(890\) 0 0
\(891\) −0.585786 −0.0196246
\(892\) 0 0
\(893\) −18.4853 −0.618586
\(894\) 0 0
\(895\) 45.2548 1.51270
\(896\) 0 0
\(897\) −2.82843 −0.0944384
\(898\) 0 0
\(899\) 19.7990 0.660333
\(900\) 0 0
\(901\) −3.31371 −0.110396
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) 37.6569 1.25176
\(906\) 0 0
\(907\) 27.1127 0.900262 0.450131 0.892962i \(-0.351377\pi\)
0.450131 + 0.892962i \(0.351377\pi\)
\(908\) 0 0
\(909\) −9.17157 −0.304202
\(910\) 0 0
\(911\) −57.6569 −1.91026 −0.955128 0.296192i \(-0.904283\pi\)
−0.955128 + 0.296192i \(0.904283\pi\)
\(912\) 0 0
\(913\) 8.62742 0.285526
\(914\) 0 0
\(915\) 27.3137 0.902963
\(916\) 0 0
\(917\) −12.9706 −0.428326
\(918\) 0 0
\(919\) 23.1127 0.762418 0.381209 0.924489i \(-0.375508\pi\)
0.381209 + 0.924489i \(0.375508\pi\)
\(920\) 0 0
\(921\) −11.7574 −0.387418
\(922\) 0 0
\(923\) −11.8995 −0.391677
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) −9.17157 −0.301234
\(928\) 0 0
\(929\) −1.17157 −0.0384381 −0.0192190 0.999815i \(-0.506118\pi\)
−0.0192190 + 0.999815i \(0.506118\pi\)
\(930\) 0 0
\(931\) 27.0711 0.887218
\(932\) 0 0
\(933\) −10.8284 −0.354507
\(934\) 0 0
\(935\) −4.68629 −0.153258
\(936\) 0 0
\(937\) 43.9411 1.43549 0.717747 0.696304i \(-0.245173\pi\)
0.717747 + 0.696304i \(0.245173\pi\)
\(938\) 0 0
\(939\) 20.9706 0.684348
\(940\) 0 0
\(941\) 32.7696 1.06826 0.534128 0.845403i \(-0.320640\pi\)
0.534128 + 0.845403i \(0.320640\pi\)
\(942\) 0 0
\(943\) 19.3137 0.628941
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 43.2132 1.40424 0.702120 0.712058i \(-0.252237\pi\)
0.702120 + 0.712058i \(0.252237\pi\)
\(948\) 0 0
\(949\) 7.65685 0.248552
\(950\) 0 0
\(951\) 18.1421 0.588299
\(952\) 0 0
\(953\) 2.28427 0.0739948 0.0369974 0.999315i \(-0.488221\pi\)
0.0369974 + 0.999315i \(0.488221\pi\)
\(954\) 0 0
\(955\) 4.68629 0.151645
\(956\) 0 0
\(957\) −2.14214 −0.0692454
\(958\) 0 0
\(959\) 0.686292 0.0221615
\(960\) 0 0
\(961\) −1.68629 −0.0543965
\(962\) 0 0
\(963\) 1.17157 0.0377534
\(964\) 0 0
\(965\) −3.71573 −0.119614
\(966\) 0 0
\(967\) −2.58579 −0.0831533 −0.0415766 0.999135i \(-0.513238\pi\)
−0.0415766 + 0.999135i \(0.513238\pi\)
\(968\) 0 0
\(969\) 15.3137 0.491947
\(970\) 0 0
\(971\) −29.9411 −0.960856 −0.480428 0.877034i \(-0.659519\pi\)
−0.480428 + 0.877034i \(0.659519\pi\)
\(972\) 0 0
\(973\) −20.0000 −0.641171
\(974\) 0 0
\(975\) −3.00000 −0.0960769
\(976\) 0 0
\(977\) −54.4264 −1.74126 −0.870628 0.491943i \(-0.836287\pi\)
−0.870628 + 0.491943i \(0.836287\pi\)
\(978\) 0 0
\(979\) −1.65685 −0.0529533
\(980\) 0 0
\(981\) −7.65685 −0.244465
\(982\) 0 0
\(983\) 25.7574 0.821532 0.410766 0.911741i \(-0.365261\pi\)
0.410766 + 0.911741i \(0.365261\pi\)
\(984\) 0 0
\(985\) 53.2548 1.69684
\(986\) 0 0
\(987\) 4.82843 0.153691
\(988\) 0 0
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) −11.0294 −0.350362 −0.175181 0.984536i \(-0.556051\pi\)
−0.175181 + 0.984536i \(0.556051\pi\)
\(992\) 0 0
\(993\) −23.5563 −0.747538
\(994\) 0 0
\(995\) 48.0000 1.52170
\(996\) 0 0
\(997\) 11.3137 0.358309 0.179154 0.983821i \(-0.442664\pi\)
0.179154 + 0.983821i \(0.442664\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9984.2.a.l.1.1 2
4.3 odd 2 9984.2.a.d.1.1 2
8.3 odd 2 9984.2.a.m.1.2 2
8.5 even 2 9984.2.a.e.1.2 2
16.3 odd 4 4992.2.g.b.2497.2 4
16.5 even 4 4992.2.g.c.2497.1 yes 4
16.11 odd 4 4992.2.g.b.2497.3 yes 4
16.13 even 4 4992.2.g.c.2497.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4992.2.g.b.2497.2 4 16.3 odd 4
4992.2.g.b.2497.3 yes 4 16.11 odd 4
4992.2.g.c.2497.1 yes 4 16.5 even 4
4992.2.g.c.2497.4 yes 4 16.13 even 4
9984.2.a.d.1.1 2 4.3 odd 2
9984.2.a.e.1.2 2 8.5 even 2
9984.2.a.l.1.1 2 1.1 even 1 trivial
9984.2.a.m.1.2 2 8.3 odd 2