Properties

Label 9984.2.a.p.1.2
Level $9984$
Weight $2$
Character 9984.1
Self dual yes
Analytic conductor $79.723$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9984,2,Mod(1,9984)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9984, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9984.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9984 = 2^{8} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9984.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.7226413780\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2496)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9984.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.41421 q^{5} +4.82843 q^{7} +1.00000 q^{9} -6.24264 q^{11} -1.00000 q^{13} +3.41421 q^{15} +4.82843 q^{17} +2.00000 q^{19} +4.82843 q^{21} -5.65685 q^{23} +6.65685 q^{25} +1.00000 q^{27} +0.828427 q^{29} -3.65685 q^{31} -6.24264 q^{33} +16.4853 q^{35} +3.17157 q^{37} -1.00000 q^{39} -3.41421 q^{41} +11.6569 q^{43} +3.41421 q^{45} -9.07107 q^{47} +16.3137 q^{49} +4.82843 q^{51} +7.17157 q^{53} -21.3137 q^{55} +2.00000 q^{57} +14.7279 q^{59} +7.65685 q^{61} +4.82843 q^{63} -3.41421 q^{65} -12.8284 q^{67} -5.65685 q^{69} -7.41421 q^{71} -10.4853 q^{73} +6.65685 q^{75} -30.1421 q^{77} +11.6569 q^{79} +1.00000 q^{81} +2.24264 q^{83} +16.4853 q^{85} +0.828427 q^{87} +0.585786 q^{89} -4.82843 q^{91} -3.65685 q^{93} +6.82843 q^{95} +3.17157 q^{97} -6.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 4 q^{5} + 4 q^{7} + 2 q^{9} - 4 q^{11} - 2 q^{13} + 4 q^{15} + 4 q^{17} + 4 q^{19} + 4 q^{21} + 2 q^{25} + 2 q^{27} - 4 q^{29} + 4 q^{31} - 4 q^{33} + 16 q^{35} + 12 q^{37} - 2 q^{39} - 4 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.41421 1.52688 0.763441 0.645877i \(-0.223508\pi\)
0.763441 + 0.645877i \(0.223508\pi\)
\(6\) 0 0
\(7\) 4.82843 1.82497 0.912487 0.409106i \(-0.134159\pi\)
0.912487 + 0.409106i \(0.134159\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.24264 −1.88223 −0.941113 0.338091i \(-0.890219\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.41421 0.881546
\(16\) 0 0
\(17\) 4.82843 1.17107 0.585533 0.810649i \(-0.300885\pi\)
0.585533 + 0.810649i \(0.300885\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 4.82843 1.05365
\(22\) 0 0
\(23\) −5.65685 −1.17954 −0.589768 0.807573i \(-0.700781\pi\)
−0.589768 + 0.807573i \(0.700781\pi\)
\(24\) 0 0
\(25\) 6.65685 1.33137
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) −3.65685 −0.656790 −0.328395 0.944540i \(-0.606508\pi\)
−0.328395 + 0.944540i \(0.606508\pi\)
\(32\) 0 0
\(33\) −6.24264 −1.08670
\(34\) 0 0
\(35\) 16.4853 2.78652
\(36\) 0 0
\(37\) 3.17157 0.521403 0.260702 0.965419i \(-0.416046\pi\)
0.260702 + 0.965419i \(0.416046\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −3.41421 −0.533211 −0.266605 0.963806i \(-0.585902\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(42\) 0 0
\(43\) 11.6569 1.77765 0.888827 0.458243i \(-0.151521\pi\)
0.888827 + 0.458243i \(0.151521\pi\)
\(44\) 0 0
\(45\) 3.41421 0.508961
\(46\) 0 0
\(47\) −9.07107 −1.32315 −0.661576 0.749878i \(-0.730112\pi\)
−0.661576 + 0.749878i \(0.730112\pi\)
\(48\) 0 0
\(49\) 16.3137 2.33053
\(50\) 0 0
\(51\) 4.82843 0.676115
\(52\) 0 0
\(53\) 7.17157 0.985091 0.492546 0.870287i \(-0.336066\pi\)
0.492546 + 0.870287i \(0.336066\pi\)
\(54\) 0 0
\(55\) −21.3137 −2.87394
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 14.7279 1.91741 0.958706 0.284399i \(-0.0917940\pi\)
0.958706 + 0.284399i \(0.0917940\pi\)
\(60\) 0 0
\(61\) 7.65685 0.980360 0.490180 0.871621i \(-0.336931\pi\)
0.490180 + 0.871621i \(0.336931\pi\)
\(62\) 0 0
\(63\) 4.82843 0.608325
\(64\) 0 0
\(65\) −3.41421 −0.423481
\(66\) 0 0
\(67\) −12.8284 −1.56724 −0.783621 0.621239i \(-0.786629\pi\)
−0.783621 + 0.621239i \(0.786629\pi\)
\(68\) 0 0
\(69\) −5.65685 −0.681005
\(70\) 0 0
\(71\) −7.41421 −0.879905 −0.439953 0.898021i \(-0.645005\pi\)
−0.439953 + 0.898021i \(0.645005\pi\)
\(72\) 0 0
\(73\) −10.4853 −1.22721 −0.613605 0.789613i \(-0.710281\pi\)
−0.613605 + 0.789613i \(0.710281\pi\)
\(74\) 0 0
\(75\) 6.65685 0.768667
\(76\) 0 0
\(77\) −30.1421 −3.43502
\(78\) 0 0
\(79\) 11.6569 1.31150 0.655749 0.754979i \(-0.272353\pi\)
0.655749 + 0.754979i \(0.272353\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.24264 0.246162 0.123081 0.992397i \(-0.460723\pi\)
0.123081 + 0.992397i \(0.460723\pi\)
\(84\) 0 0
\(85\) 16.4853 1.78808
\(86\) 0 0
\(87\) 0.828427 0.0888167
\(88\) 0 0
\(89\) 0.585786 0.0620932 0.0310466 0.999518i \(-0.490116\pi\)
0.0310466 + 0.999518i \(0.490116\pi\)
\(90\) 0 0
\(91\) −4.82843 −0.506157
\(92\) 0 0
\(93\) −3.65685 −0.379198
\(94\) 0 0
\(95\) 6.82843 0.700582
\(96\) 0 0
\(97\) 3.17157 0.322024 0.161012 0.986952i \(-0.448524\pi\)
0.161012 + 0.986952i \(0.448524\pi\)
\(98\) 0 0
\(99\) −6.24264 −0.627409
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 11.3137 1.11477 0.557386 0.830253i \(-0.311804\pi\)
0.557386 + 0.830253i \(0.311804\pi\)
\(104\) 0 0
\(105\) 16.4853 1.60880
\(106\) 0 0
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) 11.6569 1.11652 0.558262 0.829665i \(-0.311468\pi\)
0.558262 + 0.829665i \(0.311468\pi\)
\(110\) 0 0
\(111\) 3.17157 0.301032
\(112\) 0 0
\(113\) −3.65685 −0.344008 −0.172004 0.985096i \(-0.555024\pi\)
−0.172004 + 0.985096i \(0.555024\pi\)
\(114\) 0 0
\(115\) −19.3137 −1.80101
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 23.3137 2.13716
\(120\) 0 0
\(121\) 27.9706 2.54278
\(122\) 0 0
\(123\) −3.41421 −0.307849
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 8.34315 0.740334 0.370167 0.928965i \(-0.379300\pi\)
0.370167 + 0.928965i \(0.379300\pi\)
\(128\) 0 0
\(129\) 11.6569 1.02633
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 9.65685 0.837355
\(134\) 0 0
\(135\) 3.41421 0.293849
\(136\) 0 0
\(137\) −7.89949 −0.674899 −0.337450 0.941344i \(-0.609564\pi\)
−0.337450 + 0.941344i \(0.609564\pi\)
\(138\) 0 0
\(139\) 7.65685 0.649446 0.324723 0.945809i \(-0.394729\pi\)
0.324723 + 0.945809i \(0.394729\pi\)
\(140\) 0 0
\(141\) −9.07107 −0.763922
\(142\) 0 0
\(143\) 6.24264 0.522036
\(144\) 0 0
\(145\) 2.82843 0.234888
\(146\) 0 0
\(147\) 16.3137 1.34553
\(148\) 0 0
\(149\) −3.89949 −0.319459 −0.159730 0.987161i \(-0.551062\pi\)
−0.159730 + 0.987161i \(0.551062\pi\)
\(150\) 0 0
\(151\) −11.6569 −0.948621 −0.474311 0.880358i \(-0.657303\pi\)
−0.474311 + 0.880358i \(0.657303\pi\)
\(152\) 0 0
\(153\) 4.82843 0.390355
\(154\) 0 0
\(155\) −12.4853 −1.00284
\(156\) 0 0
\(157\) 2.34315 0.187003 0.0935017 0.995619i \(-0.470194\pi\)
0.0935017 + 0.995619i \(0.470194\pi\)
\(158\) 0 0
\(159\) 7.17157 0.568743
\(160\) 0 0
\(161\) −27.3137 −2.15262
\(162\) 0 0
\(163\) 11.6569 0.913035 0.456518 0.889714i \(-0.349097\pi\)
0.456518 + 0.889714i \(0.349097\pi\)
\(164\) 0 0
\(165\) −21.3137 −1.65927
\(166\) 0 0
\(167\) −4.58579 −0.354859 −0.177429 0.984134i \(-0.556778\pi\)
−0.177429 + 0.984134i \(0.556778\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 7.65685 0.582140 0.291070 0.956702i \(-0.405989\pi\)
0.291070 + 0.956702i \(0.405989\pi\)
\(174\) 0 0
\(175\) 32.1421 2.42972
\(176\) 0 0
\(177\) 14.7279 1.10702
\(178\) 0 0
\(179\) −8.48528 −0.634220 −0.317110 0.948389i \(-0.602712\pi\)
−0.317110 + 0.948389i \(0.602712\pi\)
\(180\) 0 0
\(181\) 19.3137 1.43558 0.717788 0.696261i \(-0.245155\pi\)
0.717788 + 0.696261i \(0.245155\pi\)
\(182\) 0 0
\(183\) 7.65685 0.566011
\(184\) 0 0
\(185\) 10.8284 0.796122
\(186\) 0 0
\(187\) −30.1421 −2.20421
\(188\) 0 0
\(189\) 4.82843 0.351216
\(190\) 0 0
\(191\) 10.1421 0.733859 0.366930 0.930249i \(-0.380409\pi\)
0.366930 + 0.930249i \(0.380409\pi\)
\(192\) 0 0
\(193\) −7.65685 −0.551152 −0.275576 0.961279i \(-0.588869\pi\)
−0.275576 + 0.961279i \(0.588869\pi\)
\(194\) 0 0
\(195\) −3.41421 −0.244497
\(196\) 0 0
\(197\) −6.72792 −0.479345 −0.239672 0.970854i \(-0.577040\pi\)
−0.239672 + 0.970854i \(0.577040\pi\)
\(198\) 0 0
\(199\) −21.3137 −1.51089 −0.755444 0.655213i \(-0.772579\pi\)
−0.755444 + 0.655213i \(0.772579\pi\)
\(200\) 0 0
\(201\) −12.8284 −0.904847
\(202\) 0 0
\(203\) 4.00000 0.280745
\(204\) 0 0
\(205\) −11.6569 −0.814150
\(206\) 0 0
\(207\) −5.65685 −0.393179
\(208\) 0 0
\(209\) −12.4853 −0.863625
\(210\) 0 0
\(211\) 1.65685 0.114063 0.0570313 0.998372i \(-0.481837\pi\)
0.0570313 + 0.998372i \(0.481837\pi\)
\(212\) 0 0
\(213\) −7.41421 −0.508014
\(214\) 0 0
\(215\) 39.7990 2.71427
\(216\) 0 0
\(217\) −17.6569 −1.19863
\(218\) 0 0
\(219\) −10.4853 −0.708530
\(220\) 0 0
\(221\) −4.82843 −0.324795
\(222\) 0 0
\(223\) 6.00000 0.401790 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(224\) 0 0
\(225\) 6.65685 0.443790
\(226\) 0 0
\(227\) −2.72792 −0.181059 −0.0905293 0.995894i \(-0.528856\pi\)
−0.0905293 + 0.995894i \(0.528856\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −30.1421 −1.98321
\(232\) 0 0
\(233\) −9.51472 −0.623330 −0.311665 0.950192i \(-0.600887\pi\)
−0.311665 + 0.950192i \(0.600887\pi\)
\(234\) 0 0
\(235\) −30.9706 −2.02030
\(236\) 0 0
\(237\) 11.6569 0.757194
\(238\) 0 0
\(239\) −2.92893 −0.189457 −0.0947284 0.995503i \(-0.530198\pi\)
−0.0947284 + 0.995503i \(0.530198\pi\)
\(240\) 0 0
\(241\) 14.4853 0.933079 0.466539 0.884500i \(-0.345501\pi\)
0.466539 + 0.884500i \(0.345501\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 55.6985 3.55845
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 2.24264 0.142122
\(250\) 0 0
\(251\) 5.17157 0.326427 0.163213 0.986591i \(-0.447814\pi\)
0.163213 + 0.986591i \(0.447814\pi\)
\(252\) 0 0
\(253\) 35.3137 2.22015
\(254\) 0 0
\(255\) 16.4853 1.03235
\(256\) 0 0
\(257\) 11.1716 0.696864 0.348432 0.937334i \(-0.386714\pi\)
0.348432 + 0.937334i \(0.386714\pi\)
\(258\) 0 0
\(259\) 15.3137 0.951548
\(260\) 0 0
\(261\) 0.828427 0.0512784
\(262\) 0 0
\(263\) −30.1421 −1.85864 −0.929322 0.369271i \(-0.879607\pi\)
−0.929322 + 0.369271i \(0.879607\pi\)
\(264\) 0 0
\(265\) 24.4853 1.50412
\(266\) 0 0
\(267\) 0.585786 0.0358495
\(268\) 0 0
\(269\) 18.4853 1.12707 0.563534 0.826093i \(-0.309441\pi\)
0.563534 + 0.826093i \(0.309441\pi\)
\(270\) 0 0
\(271\) −4.14214 −0.251617 −0.125808 0.992055i \(-0.540152\pi\)
−0.125808 + 0.992055i \(0.540152\pi\)
\(272\) 0 0
\(273\) −4.82843 −0.292230
\(274\) 0 0
\(275\) −41.5563 −2.50594
\(276\) 0 0
\(277\) −5.65685 −0.339887 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(278\) 0 0
\(279\) −3.65685 −0.218930
\(280\) 0 0
\(281\) 4.58579 0.273565 0.136783 0.990601i \(-0.456324\pi\)
0.136783 + 0.990601i \(0.456324\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 0 0
\(285\) 6.82843 0.404481
\(286\) 0 0
\(287\) −16.4853 −0.973095
\(288\) 0 0
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) 3.17157 0.185921
\(292\) 0 0
\(293\) 1.75736 0.102666 0.0513330 0.998682i \(-0.483653\pi\)
0.0513330 + 0.998682i \(0.483653\pi\)
\(294\) 0 0
\(295\) 50.2843 2.92766
\(296\) 0 0
\(297\) −6.24264 −0.362235
\(298\) 0 0
\(299\) 5.65685 0.327144
\(300\) 0 0
\(301\) 56.2843 3.24417
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) 26.1421 1.49689
\(306\) 0 0
\(307\) −25.7990 −1.47243 −0.736213 0.676750i \(-0.763388\pi\)
−0.736213 + 0.676750i \(0.763388\pi\)
\(308\) 0 0
\(309\) 11.3137 0.643614
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 0 0
\(313\) −24.2843 −1.37263 −0.686314 0.727305i \(-0.740772\pi\)
−0.686314 + 0.727305i \(0.740772\pi\)
\(314\) 0 0
\(315\) 16.4853 0.928840
\(316\) 0 0
\(317\) −22.7279 −1.27653 −0.638264 0.769818i \(-0.720347\pi\)
−0.638264 + 0.769818i \(0.720347\pi\)
\(318\) 0 0
\(319\) −5.17157 −0.289552
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 9.65685 0.537322
\(324\) 0 0
\(325\) −6.65685 −0.369256
\(326\) 0 0
\(327\) 11.6569 0.644626
\(328\) 0 0
\(329\) −43.7990 −2.41472
\(330\) 0 0
\(331\) −24.8284 −1.36469 −0.682347 0.731029i \(-0.739041\pi\)
−0.682347 + 0.731029i \(0.739041\pi\)
\(332\) 0 0
\(333\) 3.17157 0.173801
\(334\) 0 0
\(335\) −43.7990 −2.39299
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) −3.65685 −0.198613
\(340\) 0 0
\(341\) 22.8284 1.23623
\(342\) 0 0
\(343\) 44.9706 2.42818
\(344\) 0 0
\(345\) −19.3137 −1.03982
\(346\) 0 0
\(347\) 5.65685 0.303676 0.151838 0.988405i \(-0.451481\pi\)
0.151838 + 0.988405i \(0.451481\pi\)
\(348\) 0 0
\(349\) −21.7990 −1.16687 −0.583437 0.812159i \(-0.698292\pi\)
−0.583437 + 0.812159i \(0.698292\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −11.4142 −0.607517 −0.303759 0.952749i \(-0.598242\pi\)
−0.303759 + 0.952749i \(0.598242\pi\)
\(354\) 0 0
\(355\) −25.3137 −1.34351
\(356\) 0 0
\(357\) 23.3137 1.23389
\(358\) 0 0
\(359\) 26.2426 1.38503 0.692517 0.721402i \(-0.256502\pi\)
0.692517 + 0.721402i \(0.256502\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 27.9706 1.46807
\(364\) 0 0
\(365\) −35.7990 −1.87380
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) −3.41421 −0.177737
\(370\) 0 0
\(371\) 34.6274 1.79777
\(372\) 0 0
\(373\) −23.6569 −1.22491 −0.612453 0.790507i \(-0.709817\pi\)
−0.612453 + 0.790507i \(0.709817\pi\)
\(374\) 0 0
\(375\) 5.65685 0.292119
\(376\) 0 0
\(377\) −0.828427 −0.0426662
\(378\) 0 0
\(379\) −26.2843 −1.35013 −0.675066 0.737757i \(-0.735885\pi\)
−0.675066 + 0.737757i \(0.735885\pi\)
\(380\) 0 0
\(381\) 8.34315 0.427432
\(382\) 0 0
\(383\) −35.4142 −1.80958 −0.904791 0.425856i \(-0.859973\pi\)
−0.904791 + 0.425856i \(0.859973\pi\)
\(384\) 0 0
\(385\) −102.912 −5.24487
\(386\) 0 0
\(387\) 11.6569 0.592551
\(388\) 0 0
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) −27.3137 −1.38131
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 39.7990 2.00250
\(396\) 0 0
\(397\) −19.4558 −0.976461 −0.488230 0.872715i \(-0.662357\pi\)
−0.488230 + 0.872715i \(0.662357\pi\)
\(398\) 0 0
\(399\) 9.65685 0.483447
\(400\) 0 0
\(401\) −9.75736 −0.487259 −0.243630 0.969868i \(-0.578338\pi\)
−0.243630 + 0.969868i \(0.578338\pi\)
\(402\) 0 0
\(403\) 3.65685 0.182161
\(404\) 0 0
\(405\) 3.41421 0.169654
\(406\) 0 0
\(407\) −19.7990 −0.981399
\(408\) 0 0
\(409\) 9.79899 0.484529 0.242264 0.970210i \(-0.422110\pi\)
0.242264 + 0.970210i \(0.422110\pi\)
\(410\) 0 0
\(411\) −7.89949 −0.389653
\(412\) 0 0
\(413\) 71.1127 3.49923
\(414\) 0 0
\(415\) 7.65685 0.375860
\(416\) 0 0
\(417\) 7.65685 0.374958
\(418\) 0 0
\(419\) −14.3431 −0.700709 −0.350354 0.936617i \(-0.613939\pi\)
−0.350354 + 0.936617i \(0.613939\pi\)
\(420\) 0 0
\(421\) −22.9706 −1.11952 −0.559758 0.828656i \(-0.689106\pi\)
−0.559758 + 0.828656i \(0.689106\pi\)
\(422\) 0 0
\(423\) −9.07107 −0.441050
\(424\) 0 0
\(425\) 32.1421 1.55912
\(426\) 0 0
\(427\) 36.9706 1.78913
\(428\) 0 0
\(429\) 6.24264 0.301398
\(430\) 0 0
\(431\) −27.4142 −1.32050 −0.660248 0.751048i \(-0.729549\pi\)
−0.660248 + 0.751048i \(0.729549\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 2.82843 0.135613
\(436\) 0 0
\(437\) −11.3137 −0.541208
\(438\) 0 0
\(439\) −0.970563 −0.0463224 −0.0231612 0.999732i \(-0.507373\pi\)
−0.0231612 + 0.999732i \(0.507373\pi\)
\(440\) 0 0
\(441\) 16.3137 0.776843
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 2.00000 0.0948091
\(446\) 0 0
\(447\) −3.89949 −0.184440
\(448\) 0 0
\(449\) −26.7279 −1.26137 −0.630684 0.776039i \(-0.717226\pi\)
−0.630684 + 0.776039i \(0.717226\pi\)
\(450\) 0 0
\(451\) 21.3137 1.00362
\(452\) 0 0
\(453\) −11.6569 −0.547687
\(454\) 0 0
\(455\) −16.4853 −0.772842
\(456\) 0 0
\(457\) −20.1421 −0.942209 −0.471105 0.882077i \(-0.656145\pi\)
−0.471105 + 0.882077i \(0.656145\pi\)
\(458\) 0 0
\(459\) 4.82843 0.225372
\(460\) 0 0
\(461\) −17.0711 −0.795079 −0.397539 0.917585i \(-0.630136\pi\)
−0.397539 + 0.917585i \(0.630136\pi\)
\(462\) 0 0
\(463\) 24.1421 1.12198 0.560990 0.827823i \(-0.310421\pi\)
0.560990 + 0.827823i \(0.310421\pi\)
\(464\) 0 0
\(465\) −12.4853 −0.578991
\(466\) 0 0
\(467\) −25.4558 −1.17796 −0.588978 0.808149i \(-0.700470\pi\)
−0.588978 + 0.808149i \(0.700470\pi\)
\(468\) 0 0
\(469\) −61.9411 −2.86018
\(470\) 0 0
\(471\) 2.34315 0.107966
\(472\) 0 0
\(473\) −72.7696 −3.34595
\(474\) 0 0
\(475\) 13.3137 0.610875
\(476\) 0 0
\(477\) 7.17157 0.328364
\(478\) 0 0
\(479\) −13.2721 −0.606417 −0.303208 0.952924i \(-0.598058\pi\)
−0.303208 + 0.952924i \(0.598058\pi\)
\(480\) 0 0
\(481\) −3.17157 −0.144611
\(482\) 0 0
\(483\) −27.3137 −1.24282
\(484\) 0 0
\(485\) 10.8284 0.491694
\(486\) 0 0
\(487\) −23.6569 −1.07199 −0.535997 0.844220i \(-0.680064\pi\)
−0.535997 + 0.844220i \(0.680064\pi\)
\(488\) 0 0
\(489\) 11.6569 0.527141
\(490\) 0 0
\(491\) −1.17157 −0.0528723 −0.0264362 0.999651i \(-0.508416\pi\)
−0.0264362 + 0.999651i \(0.508416\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −21.3137 −0.957980
\(496\) 0 0
\(497\) −35.7990 −1.60580
\(498\) 0 0
\(499\) −31.4558 −1.40816 −0.704078 0.710122i \(-0.748640\pi\)
−0.704078 + 0.710122i \(0.748640\pi\)
\(500\) 0 0
\(501\) −4.58579 −0.204878
\(502\) 0 0
\(503\) 22.1421 0.987269 0.493635 0.869669i \(-0.335668\pi\)
0.493635 + 0.869669i \(0.335668\pi\)
\(504\) 0 0
\(505\) 34.1421 1.51931
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −3.21320 −0.142423 −0.0712114 0.997461i \(-0.522686\pi\)
−0.0712114 + 0.997461i \(0.522686\pi\)
\(510\) 0 0
\(511\) −50.6274 −2.23963
\(512\) 0 0
\(513\) 2.00000 0.0883022
\(514\) 0 0
\(515\) 38.6274 1.70213
\(516\) 0 0
\(517\) 56.6274 2.49047
\(518\) 0 0
\(519\) 7.65685 0.336099
\(520\) 0 0
\(521\) 25.3137 1.10901 0.554507 0.832179i \(-0.312907\pi\)
0.554507 + 0.832179i \(0.312907\pi\)
\(522\) 0 0
\(523\) 16.3431 0.714636 0.357318 0.933983i \(-0.383691\pi\)
0.357318 + 0.933983i \(0.383691\pi\)
\(524\) 0 0
\(525\) 32.1421 1.40280
\(526\) 0 0
\(527\) −17.6569 −0.769145
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 14.7279 0.639137
\(532\) 0 0
\(533\) 3.41421 0.147886
\(534\) 0 0
\(535\) 27.3137 1.18087
\(536\) 0 0
\(537\) −8.48528 −0.366167
\(538\) 0 0
\(539\) −101.841 −4.38659
\(540\) 0 0
\(541\) 42.0000 1.80572 0.902861 0.429934i \(-0.141463\pi\)
0.902861 + 0.429934i \(0.141463\pi\)
\(542\) 0 0
\(543\) 19.3137 0.828831
\(544\) 0 0
\(545\) 39.7990 1.70480
\(546\) 0 0
\(547\) −39.9411 −1.70776 −0.853880 0.520471i \(-0.825757\pi\)
−0.853880 + 0.520471i \(0.825757\pi\)
\(548\) 0 0
\(549\) 7.65685 0.326787
\(550\) 0 0
\(551\) 1.65685 0.0705844
\(552\) 0 0
\(553\) 56.2843 2.39345
\(554\) 0 0
\(555\) 10.8284 0.459641
\(556\) 0 0
\(557\) 20.8701 0.884293 0.442146 0.896943i \(-0.354217\pi\)
0.442146 + 0.896943i \(0.354217\pi\)
\(558\) 0 0
\(559\) −11.6569 −0.493032
\(560\) 0 0
\(561\) −30.1421 −1.27260
\(562\) 0 0
\(563\) 3.79899 0.160108 0.0800542 0.996791i \(-0.474491\pi\)
0.0800542 + 0.996791i \(0.474491\pi\)
\(564\) 0 0
\(565\) −12.4853 −0.525260
\(566\) 0 0
\(567\) 4.82843 0.202775
\(568\) 0 0
\(569\) −13.5147 −0.566566 −0.283283 0.959036i \(-0.591424\pi\)
−0.283283 + 0.959036i \(0.591424\pi\)
\(570\) 0 0
\(571\) −2.34315 −0.0980576 −0.0490288 0.998797i \(-0.515613\pi\)
−0.0490288 + 0.998797i \(0.515613\pi\)
\(572\) 0 0
\(573\) 10.1421 0.423694
\(574\) 0 0
\(575\) −37.6569 −1.57040
\(576\) 0 0
\(577\) −10.6863 −0.444876 −0.222438 0.974947i \(-0.571402\pi\)
−0.222438 + 0.974947i \(0.571402\pi\)
\(578\) 0 0
\(579\) −7.65685 −0.318208
\(580\) 0 0
\(581\) 10.8284 0.449239
\(582\) 0 0
\(583\) −44.7696 −1.85417
\(584\) 0 0
\(585\) −3.41421 −0.141160
\(586\) 0 0
\(587\) 14.9289 0.616183 0.308091 0.951357i \(-0.400310\pi\)
0.308091 + 0.951357i \(0.400310\pi\)
\(588\) 0 0
\(589\) −7.31371 −0.301356
\(590\) 0 0
\(591\) −6.72792 −0.276750
\(592\) 0 0
\(593\) 14.0416 0.576621 0.288310 0.957537i \(-0.406907\pi\)
0.288310 + 0.957537i \(0.406907\pi\)
\(594\) 0 0
\(595\) 79.5980 3.26320
\(596\) 0 0
\(597\) −21.3137 −0.872312
\(598\) 0 0
\(599\) −21.4558 −0.876662 −0.438331 0.898814i \(-0.644430\pi\)
−0.438331 + 0.898814i \(0.644430\pi\)
\(600\) 0 0
\(601\) −1.65685 −0.0675845 −0.0337922 0.999429i \(-0.510758\pi\)
−0.0337922 + 0.999429i \(0.510758\pi\)
\(602\) 0 0
\(603\) −12.8284 −0.522414
\(604\) 0 0
\(605\) 95.4975 3.88252
\(606\) 0 0
\(607\) 1.65685 0.0672496 0.0336248 0.999435i \(-0.489295\pi\)
0.0336248 + 0.999435i \(0.489295\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 9.07107 0.366976
\(612\) 0 0
\(613\) 30.7696 1.24277 0.621385 0.783505i \(-0.286570\pi\)
0.621385 + 0.783505i \(0.286570\pi\)
\(614\) 0 0
\(615\) −11.6569 −0.470050
\(616\) 0 0
\(617\) −5.75736 −0.231783 −0.115891 0.993262i \(-0.536972\pi\)
−0.115891 + 0.993262i \(0.536972\pi\)
\(618\) 0 0
\(619\) 17.5147 0.703976 0.351988 0.936005i \(-0.385506\pi\)
0.351988 + 0.936005i \(0.385506\pi\)
\(620\) 0 0
\(621\) −5.65685 −0.227002
\(622\) 0 0
\(623\) 2.82843 0.113319
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) 0 0
\(627\) −12.4853 −0.498614
\(628\) 0 0
\(629\) 15.3137 0.610598
\(630\) 0 0
\(631\) 30.9706 1.23292 0.616459 0.787387i \(-0.288566\pi\)
0.616459 + 0.787387i \(0.288566\pi\)
\(632\) 0 0
\(633\) 1.65685 0.0658540
\(634\) 0 0
\(635\) 28.4853 1.13040
\(636\) 0 0
\(637\) −16.3137 −0.646373
\(638\) 0 0
\(639\) −7.41421 −0.293302
\(640\) 0 0
\(641\) −5.79899 −0.229046 −0.114523 0.993421i \(-0.536534\pi\)
−0.114523 + 0.993421i \(0.536534\pi\)
\(642\) 0 0
\(643\) −8.14214 −0.321094 −0.160547 0.987028i \(-0.551326\pi\)
−0.160547 + 0.987028i \(0.551326\pi\)
\(644\) 0 0
\(645\) 39.7990 1.56708
\(646\) 0 0
\(647\) −7.02944 −0.276356 −0.138178 0.990407i \(-0.544125\pi\)
−0.138178 + 0.990407i \(0.544125\pi\)
\(648\) 0 0
\(649\) −91.9411 −3.60900
\(650\) 0 0
\(651\) −17.6569 −0.692027
\(652\) 0 0
\(653\) −9.79899 −0.383464 −0.191732 0.981447i \(-0.561410\pi\)
−0.191732 + 0.981447i \(0.561410\pi\)
\(654\) 0 0
\(655\) 13.6569 0.533617
\(656\) 0 0
\(657\) −10.4853 −0.409070
\(658\) 0 0
\(659\) −2.62742 −0.102350 −0.0511748 0.998690i \(-0.516297\pi\)
−0.0511748 + 0.998690i \(0.516297\pi\)
\(660\) 0 0
\(661\) −32.1421 −1.25018 −0.625092 0.780551i \(-0.714939\pi\)
−0.625092 + 0.780551i \(0.714939\pi\)
\(662\) 0 0
\(663\) −4.82843 −0.187521
\(664\) 0 0
\(665\) 32.9706 1.27854
\(666\) 0 0
\(667\) −4.68629 −0.181454
\(668\) 0 0
\(669\) 6.00000 0.231973
\(670\) 0 0
\(671\) −47.7990 −1.84526
\(672\) 0 0
\(673\) 18.0000 0.693849 0.346925 0.937893i \(-0.387226\pi\)
0.346925 + 0.937893i \(0.387226\pi\)
\(674\) 0 0
\(675\) 6.65685 0.256222
\(676\) 0 0
\(677\) 13.7990 0.530338 0.265169 0.964202i \(-0.414572\pi\)
0.265169 + 0.964202i \(0.414572\pi\)
\(678\) 0 0
\(679\) 15.3137 0.587686
\(680\) 0 0
\(681\) −2.72792 −0.104534
\(682\) 0 0
\(683\) −50.7279 −1.94105 −0.970525 0.241000i \(-0.922524\pi\)
−0.970525 + 0.241000i \(0.922524\pi\)
\(684\) 0 0
\(685\) −26.9706 −1.03049
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 0 0
\(689\) −7.17157 −0.273215
\(690\) 0 0
\(691\) −2.20101 −0.0837304 −0.0418652 0.999123i \(-0.513330\pi\)
−0.0418652 + 0.999123i \(0.513330\pi\)
\(692\) 0 0
\(693\) −30.1421 −1.14501
\(694\) 0 0
\(695\) 26.1421 0.991628
\(696\) 0 0
\(697\) −16.4853 −0.624425
\(698\) 0 0
\(699\) −9.51472 −0.359880
\(700\) 0 0
\(701\) −31.9411 −1.20640 −0.603200 0.797590i \(-0.706108\pi\)
−0.603200 + 0.797590i \(0.706108\pi\)
\(702\) 0 0
\(703\) 6.34315 0.239236
\(704\) 0 0
\(705\) −30.9706 −1.16642
\(706\) 0 0
\(707\) 48.2843 1.81592
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) 11.6569 0.437166
\(712\) 0 0
\(713\) 20.6863 0.774708
\(714\) 0 0
\(715\) 21.3137 0.797088
\(716\) 0 0
\(717\) −2.92893 −0.109383
\(718\) 0 0
\(719\) −21.6569 −0.807664 −0.403832 0.914833i \(-0.632322\pi\)
−0.403832 + 0.914833i \(0.632322\pi\)
\(720\) 0 0
\(721\) 54.6274 2.03443
\(722\) 0 0
\(723\) 14.4853 0.538713
\(724\) 0 0
\(725\) 5.51472 0.204812
\(726\) 0 0
\(727\) −10.9706 −0.406876 −0.203438 0.979088i \(-0.565211\pi\)
−0.203438 + 0.979088i \(0.565211\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 56.2843 2.08175
\(732\) 0 0
\(733\) −18.2843 −0.675345 −0.337672 0.941264i \(-0.609640\pi\)
−0.337672 + 0.941264i \(0.609640\pi\)
\(734\) 0 0
\(735\) 55.6985 2.05447
\(736\) 0 0
\(737\) 80.0833 2.94990
\(738\) 0 0
\(739\) −9.51472 −0.350005 −0.175002 0.984568i \(-0.555993\pi\)
−0.175002 + 0.984568i \(0.555993\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) 16.3848 0.601099 0.300550 0.953766i \(-0.402830\pi\)
0.300550 + 0.953766i \(0.402830\pi\)
\(744\) 0 0
\(745\) −13.3137 −0.487777
\(746\) 0 0
\(747\) 2.24264 0.0820539
\(748\) 0 0
\(749\) 38.6274 1.41142
\(750\) 0 0
\(751\) 8.97056 0.327340 0.163670 0.986515i \(-0.447667\pi\)
0.163670 + 0.986515i \(0.447667\pi\)
\(752\) 0 0
\(753\) 5.17157 0.188463
\(754\) 0 0
\(755\) −39.7990 −1.44843
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 35.3137 1.28181
\(760\) 0 0
\(761\) 42.0416 1.52401 0.762004 0.647572i \(-0.224216\pi\)
0.762004 + 0.647572i \(0.224216\pi\)
\(762\) 0 0
\(763\) 56.2843 2.03763
\(764\) 0 0
\(765\) 16.4853 0.596027
\(766\) 0 0
\(767\) −14.7279 −0.531794
\(768\) 0 0
\(769\) 24.6274 0.888087 0.444044 0.896005i \(-0.353543\pi\)
0.444044 + 0.896005i \(0.353543\pi\)
\(770\) 0 0
\(771\) 11.1716 0.402334
\(772\) 0 0
\(773\) 26.5269 0.954107 0.477053 0.878874i \(-0.341705\pi\)
0.477053 + 0.878874i \(0.341705\pi\)
\(774\) 0 0
\(775\) −24.3431 −0.874432
\(776\) 0 0
\(777\) 15.3137 0.549376
\(778\) 0 0
\(779\) −6.82843 −0.244654
\(780\) 0 0
\(781\) 46.2843 1.65618
\(782\) 0 0
\(783\) 0.828427 0.0296056
\(784\) 0 0
\(785\) 8.00000 0.285532
\(786\) 0 0
\(787\) 0.142136 0.00506659 0.00253329 0.999997i \(-0.499194\pi\)
0.00253329 + 0.999997i \(0.499194\pi\)
\(788\) 0 0
\(789\) −30.1421 −1.07309
\(790\) 0 0
\(791\) −17.6569 −0.627805
\(792\) 0 0
\(793\) −7.65685 −0.271903
\(794\) 0 0
\(795\) 24.4853 0.868403
\(796\) 0 0
\(797\) 9.31371 0.329908 0.164954 0.986301i \(-0.447252\pi\)
0.164954 + 0.986301i \(0.447252\pi\)
\(798\) 0 0
\(799\) −43.7990 −1.54950
\(800\) 0 0
\(801\) 0.585786 0.0206977
\(802\) 0 0
\(803\) 65.4558 2.30989
\(804\) 0 0
\(805\) −93.2548 −3.28680
\(806\) 0 0
\(807\) 18.4853 0.650713
\(808\) 0 0
\(809\) −4.62742 −0.162691 −0.0813457 0.996686i \(-0.525922\pi\)
−0.0813457 + 0.996686i \(0.525922\pi\)
\(810\) 0 0
\(811\) 14.9706 0.525688 0.262844 0.964838i \(-0.415340\pi\)
0.262844 + 0.964838i \(0.415340\pi\)
\(812\) 0 0
\(813\) −4.14214 −0.145271
\(814\) 0 0
\(815\) 39.7990 1.39410
\(816\) 0 0
\(817\) 23.3137 0.815643
\(818\) 0 0
\(819\) −4.82843 −0.168719
\(820\) 0 0
\(821\) −34.5269 −1.20500 −0.602499 0.798120i \(-0.705828\pi\)
−0.602499 + 0.798120i \(0.705828\pi\)
\(822\) 0 0
\(823\) 30.6274 1.06760 0.533802 0.845609i \(-0.320763\pi\)
0.533802 + 0.845609i \(0.320763\pi\)
\(824\) 0 0
\(825\) −41.5563 −1.44681
\(826\) 0 0
\(827\) 35.8995 1.24835 0.624174 0.781285i \(-0.285436\pi\)
0.624174 + 0.781285i \(0.285436\pi\)
\(828\) 0 0
\(829\) 10.6863 0.371150 0.185575 0.982630i \(-0.440585\pi\)
0.185575 + 0.982630i \(0.440585\pi\)
\(830\) 0 0
\(831\) −5.65685 −0.196234
\(832\) 0 0
\(833\) 78.7696 2.72920
\(834\) 0 0
\(835\) −15.6569 −0.541828
\(836\) 0 0
\(837\) −3.65685 −0.126399
\(838\) 0 0
\(839\) −50.7279 −1.75132 −0.875661 0.482926i \(-0.839574\pi\)
−0.875661 + 0.482926i \(0.839574\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) 4.58579 0.157943
\(844\) 0 0
\(845\) 3.41421 0.117453
\(846\) 0 0
\(847\) 135.054 4.64050
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) −17.9411 −0.615014
\(852\) 0 0
\(853\) 44.1421 1.51140 0.755699 0.654919i \(-0.227297\pi\)
0.755699 + 0.654919i \(0.227297\pi\)
\(854\) 0 0
\(855\) 6.82843 0.233527
\(856\) 0 0
\(857\) −20.8284 −0.711486 −0.355743 0.934584i \(-0.615772\pi\)
−0.355743 + 0.934584i \(0.615772\pi\)
\(858\) 0 0
\(859\) −36.9706 −1.26142 −0.630710 0.776019i \(-0.717236\pi\)
−0.630710 + 0.776019i \(0.717236\pi\)
\(860\) 0 0
\(861\) −16.4853 −0.561817
\(862\) 0 0
\(863\) 51.0122 1.73648 0.868238 0.496149i \(-0.165253\pi\)
0.868238 + 0.496149i \(0.165253\pi\)
\(864\) 0 0
\(865\) 26.1421 0.888859
\(866\) 0 0
\(867\) 6.31371 0.214425
\(868\) 0 0
\(869\) −72.7696 −2.46854
\(870\) 0 0
\(871\) 12.8284 0.434675
\(872\) 0 0
\(873\) 3.17157 0.107341
\(874\) 0 0
\(875\) 27.3137 0.923372
\(876\) 0 0
\(877\) 0.828427 0.0279740 0.0139870 0.999902i \(-0.495548\pi\)
0.0139870 + 0.999902i \(0.495548\pi\)
\(878\) 0 0
\(879\) 1.75736 0.0592743
\(880\) 0 0
\(881\) −3.45584 −0.116430 −0.0582152 0.998304i \(-0.518541\pi\)
−0.0582152 + 0.998304i \(0.518541\pi\)
\(882\) 0 0
\(883\) 4.68629 0.157706 0.0788531 0.996886i \(-0.474874\pi\)
0.0788531 + 0.996886i \(0.474874\pi\)
\(884\) 0 0
\(885\) 50.2843 1.69029
\(886\) 0 0
\(887\) −21.1716 −0.710872 −0.355436 0.934701i \(-0.615668\pi\)
−0.355436 + 0.934701i \(0.615668\pi\)
\(888\) 0 0
\(889\) 40.2843 1.35109
\(890\) 0 0
\(891\) −6.24264 −0.209136
\(892\) 0 0
\(893\) −18.1421 −0.607103
\(894\) 0 0
\(895\) −28.9706 −0.968379
\(896\) 0 0
\(897\) 5.65685 0.188877
\(898\) 0 0
\(899\) −3.02944 −0.101037
\(900\) 0 0
\(901\) 34.6274 1.15361
\(902\) 0 0
\(903\) 56.2843 1.87302
\(904\) 0 0
\(905\) 65.9411 2.19196
\(906\) 0 0
\(907\) −51.3137 −1.70384 −0.851922 0.523669i \(-0.824563\pi\)
−0.851922 + 0.523669i \(0.824563\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 17.4558 0.578338 0.289169 0.957278i \(-0.406621\pi\)
0.289169 + 0.957278i \(0.406621\pi\)
\(912\) 0 0
\(913\) −14.0000 −0.463332
\(914\) 0 0
\(915\) 26.1421 0.864232
\(916\) 0 0
\(917\) 19.3137 0.637795
\(918\) 0 0
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) −25.7990 −0.850106
\(922\) 0 0
\(923\) 7.41421 0.244042
\(924\) 0 0
\(925\) 21.1127 0.694181
\(926\) 0 0
\(927\) 11.3137 0.371591
\(928\) 0 0
\(929\) −37.3553 −1.22559 −0.612794 0.790242i \(-0.709955\pi\)
−0.612794 + 0.790242i \(0.709955\pi\)
\(930\) 0 0
\(931\) 32.6274 1.06932
\(932\) 0 0
\(933\) −11.3137 −0.370394
\(934\) 0 0
\(935\) −102.912 −3.36557
\(936\) 0 0
\(937\) 31.3137 1.02297 0.511487 0.859291i \(-0.329095\pi\)
0.511487 + 0.859291i \(0.329095\pi\)
\(938\) 0 0
\(939\) −24.2843 −0.792487
\(940\) 0 0
\(941\) −4.10051 −0.133673 −0.0668363 0.997764i \(-0.521291\pi\)
−0.0668363 + 0.997764i \(0.521291\pi\)
\(942\) 0 0
\(943\) 19.3137 0.628941
\(944\) 0 0
\(945\) 16.4853 0.536266
\(946\) 0 0
\(947\) 21.5563 0.700487 0.350244 0.936659i \(-0.386099\pi\)
0.350244 + 0.936659i \(0.386099\pi\)
\(948\) 0 0
\(949\) 10.4853 0.340367
\(950\) 0 0
\(951\) −22.7279 −0.737003
\(952\) 0 0
\(953\) 45.1127 1.46134 0.730672 0.682729i \(-0.239207\pi\)
0.730672 + 0.682729i \(0.239207\pi\)
\(954\) 0 0
\(955\) 34.6274 1.12052
\(956\) 0 0
\(957\) −5.17157 −0.167173
\(958\) 0 0
\(959\) −38.1421 −1.23167
\(960\) 0 0
\(961\) −17.6274 −0.568626
\(962\) 0 0
\(963\) 8.00000 0.257796
\(964\) 0 0
\(965\) −26.1421 −0.841545
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 0 0
\(969\) 9.65685 0.310223
\(970\) 0 0
\(971\) −33.6569 −1.08010 −0.540050 0.841633i \(-0.681595\pi\)
−0.540050 + 0.841633i \(0.681595\pi\)
\(972\) 0 0
\(973\) 36.9706 1.18522
\(974\) 0 0
\(975\) −6.65685 −0.213190
\(976\) 0 0
\(977\) −60.8701 −1.94741 −0.973703 0.227822i \(-0.926840\pi\)
−0.973703 + 0.227822i \(0.926840\pi\)
\(978\) 0 0
\(979\) −3.65685 −0.116874
\(980\) 0 0
\(981\) 11.6569 0.372175
\(982\) 0 0
\(983\) 34.5269 1.10124 0.550619 0.834757i \(-0.314392\pi\)
0.550619 + 0.834757i \(0.314392\pi\)
\(984\) 0 0
\(985\) −22.9706 −0.731903
\(986\) 0 0
\(987\) −43.7990 −1.39414
\(988\) 0 0
\(989\) −65.9411 −2.09681
\(990\) 0 0
\(991\) −27.5980 −0.876679 −0.438339 0.898810i \(-0.644433\pi\)
−0.438339 + 0.898810i \(0.644433\pi\)
\(992\) 0 0
\(993\) −24.8284 −0.787906
\(994\) 0 0
\(995\) −72.7696 −2.30695
\(996\) 0 0
\(997\) 56.0000 1.77354 0.886769 0.462213i \(-0.152944\pi\)
0.886769 + 0.462213i \(0.152944\pi\)
\(998\) 0 0
\(999\) 3.17157 0.100344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9984.2.a.p.1.2 2
4.3 odd 2 9984.2.a.h.1.2 2
8.3 odd 2 9984.2.a.i.1.1 2
8.5 even 2 9984.2.a.a.1.1 2
16.3 odd 4 2496.2.g.c.1249.1 yes 4
16.5 even 4 2496.2.g.b.1249.2 4
16.11 odd 4 2496.2.g.c.1249.4 yes 4
16.13 even 4 2496.2.g.b.1249.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.2.g.b.1249.2 4 16.5 even 4
2496.2.g.b.1249.3 yes 4 16.13 even 4
2496.2.g.c.1249.1 yes 4 16.3 odd 4
2496.2.g.c.1249.4 yes 4 16.11 odd 4
9984.2.a.a.1.1 2 8.5 even 2
9984.2.a.h.1.2 2 4.3 odd 2
9984.2.a.i.1.1 2 8.3 odd 2
9984.2.a.p.1.2 2 1.1 even 1 trivial