Properties

Label 2.2.104.1-50.3-h
Base field \(\Q(\sqrt{26}) \)
Weight $[2, 2]$
Level norm $50$
Level $[50,50,-w + 24]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{26}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 26\); narrow class number \(2\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[50,50,-w + 24]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $78$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
5 $[5, 5, w + 1]$ $\phantom{-}0$
5 $[5, 5, w + 4]$ $-2$
9 $[9, 3, 3]$ $\phantom{-}5$
11 $[11, 11, w + 2]$ $-5$
11 $[11, 11, w + 9]$ $\phantom{-}0$
13 $[13, 13, w]$ $-4$
17 $[17, 17, w + 3]$ $\phantom{-}2$
17 $[17, 17, -w + 3]$ $-7$
19 $[19, 19, w + 8]$ $\phantom{-}1$
19 $[19, 19, w + 11]$ $-1$
23 $[23, 23, -w - 7]$ $-6$
23 $[23, 23, w - 7]$ $\phantom{-}6$
37 $[37, 37, w + 10]$ $\phantom{-}8$
37 $[37, 37, w + 27]$ $\phantom{-}8$
49 $[49, 7, -7]$ $\phantom{-}5$
59 $[59, 59, w + 12]$ $-1$
59 $[59, 59, w + 47]$ $-9$
67 $[67, 67, w + 19]$ $\phantom{-}7$
67 $[67, 67, w + 48]$ $\phantom{-}12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,-w]$ $1$
$5$ $[5,5,-w + 4]$ $-1$