Properties

Label 2.2.145.1-9.1-a
Base field \(\Q(\sqrt{145}) \)
Weight $[2, 2]$
Level norm $9$
Level $[9, 3, 3]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{145}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 36\); narrow class number \(4\) and class number \(4\).

Form

Weight: $[2, 2]$
Level: $[9, 3, 3]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $100$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}2$
2 $[2, 2, w + 1]$ $\phantom{-}2$
3 $[3, 3, w]$ $-1$
3 $[3, 3, w + 2]$ $-1$
5 $[5, 5, w + 2]$ $\phantom{-}4$
17 $[17, 17, w + 1]$ $\phantom{-}6$
17 $[17, 17, w + 15]$ $\phantom{-}6$
29 $[29, 29, w + 14]$ $-4$
37 $[37, 37, w + 10]$ $\phantom{-}1$
37 $[37, 37, w + 26]$ $\phantom{-}1$
43 $[43, 43, w + 19]$ $\phantom{-}1$
43 $[43, 43, w + 23]$ $\phantom{-}1$
47 $[47, 47, w + 22]$ $-8$
47 $[47, 47, w + 24]$ $-8$
49 $[49, 7, -7]$ $-2$
59 $[59, 59, w + 16]$ $\phantom{-}8$
59 $[59, 59, w + 42]$ $\phantom{-}8$
71 $[71, 71, w + 21]$ $\phantom{-}2$
71 $[71, 71, w + 49]$ $\phantom{-}2$
73 $[73, 73, w + 13]$ $-15$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w]$ $1$
$3$ $[3, 3, w + 2]$ $1$