Base field \(\Q(\sqrt{145}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 36\); narrow class number \(4\) and class number \(4\).
Form
Weight: | $[2, 2]$ |
Level: | $[9, 3, 3]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $100$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $\phantom{-}2$ |
2 | $[2, 2, w + 1]$ | $\phantom{-}2$ |
3 | $[3, 3, w]$ | $-1$ |
3 | $[3, 3, w + 2]$ | $-1$ |
5 | $[5, 5, w + 2]$ | $\phantom{-}4$ |
17 | $[17, 17, w + 1]$ | $\phantom{-}6$ |
17 | $[17, 17, w + 15]$ | $\phantom{-}6$ |
29 | $[29, 29, w + 14]$ | $-4$ |
37 | $[37, 37, w + 10]$ | $\phantom{-}1$ |
37 | $[37, 37, w + 26]$ | $\phantom{-}1$ |
43 | $[43, 43, w + 19]$ | $\phantom{-}1$ |
43 | $[43, 43, w + 23]$ | $\phantom{-}1$ |
47 | $[47, 47, w + 22]$ | $-8$ |
47 | $[47, 47, w + 24]$ | $-8$ |
49 | $[49, 7, -7]$ | $-2$ |
59 | $[59, 59, w + 16]$ | $\phantom{-}8$ |
59 | $[59, 59, w + 42]$ | $\phantom{-}8$ |
71 | $[71, 71, w + 21]$ | $\phantom{-}2$ |
71 | $[71, 71, w + 49]$ | $\phantom{-}2$ |
73 | $[73, 73, w + 13]$ | $-15$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$3$ | $[3, 3, w]$ | $1$ |
$3$ | $[3, 3, w + 2]$ | $1$ |