Properties

Label 2.2.21.1-300.2-o
Base field \(\Q(\sqrt{21}) \)
Weight $[2, 2]$
Level norm $300$
Level $[300, 150, 8w + 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{21}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 5\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[300, 150, 8w + 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $18$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}1$
4 $[4, 2, 2]$ $-1$
5 $[5, 5, w]$ $\phantom{-}1$
5 $[5, 5, w - 1]$ $\phantom{-}0$
7 $[7, 7, -w - 3]$ $-5$
17 $[17, 17, -2w + 3]$ $\phantom{-}5$
17 $[17, 17, -2w - 1]$ $-5$
37 $[37, 37, w + 6]$ $-1$
37 $[37, 37, -w + 7]$ $-4$
41 $[41, 41, 3w + 1]$ $\phantom{-}0$
41 $[41, 41, -3w + 4]$ $\phantom{-}10$
43 $[43, 43, 3w + 8]$ $-4$
43 $[43, 43, 3w - 11]$ $-11$
47 $[47, 47, 3w - 2]$ $-8$
47 $[47, 47, 3w - 1]$ $\phantom{-}7$
59 $[59, 59, -5w - 6]$ $-6$
59 $[59, 59, -4w - 3]$ $-14$
67 $[67, 67, -w - 8]$ $\phantom{-}1$
67 $[67, 67, w - 9]$ $-1$
79 $[79, 79, 2w - 11]$ $\phantom{-}3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 1]$ $-1$
$4$ $[4, 2, 2]$ $1$
$5$ $[5, 5, w - 1]$ $1$