Properties

Label 2.2.24.1-169.1-d
Base field \(\Q(\sqrt{6}) \)
Weight $[2, 2]$
Level norm $169$
Level $[169, 13, -13]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{6}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 6\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[169, 13, -13]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $44$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}2$
3 $[3, 3, w - 3]$ $-2$
5 $[5, 5, w + 1]$ $\phantom{-}2$
5 $[5, 5, w - 1]$ $-2$
19 $[19, 19, w + 5]$ $\phantom{-}0$
19 $[19, 19, -w + 5]$ $-4$
23 $[23, 23, -2w + 1]$ $\phantom{-}0$
23 $[23, 23, -2w - 1]$ $\phantom{-}0$
29 $[29, 29, -3w + 5]$ $-8$
29 $[29, 29, -3w - 5]$ $\phantom{-}0$
43 $[43, 43, -w - 7]$ $-2$
43 $[43, 43, w - 7]$ $\phantom{-}6$
47 $[47, 47, 4w - 7]$ $-12$
47 $[47, 47, 6w - 13]$ $\phantom{-}0$
49 $[49, 7, -7]$ $-6$
53 $[53, 53, -3w - 1]$ $\phantom{-}12$
53 $[53, 53, 3w - 1]$ $-4$
67 $[67, 67, -7w + 19]$ $\phantom{-}12$
67 $[67, 67, -3w + 11]$ $-8$
71 $[71, 71, -4w - 5]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$169$ $[169, 13, -13]$ $-1$