Properties

Label 2.2.28.1-432.4-g
Base field Q(7)\Q(\sqrt{7})
Weight [2,2][2, 2]
Level norm 432432
Level [432,108,8w4][432,108,-8 w - 4]
Dimension 11
CM no
Base change no

Related objects

Downloads

Learn more

Base field Q(7)\Q(\sqrt{7})

Generator ww, with minimal polynomial x27x^{2} - 7; narrow class number 22 and class number 11.

Form

Weight: [2,2][2, 2]
Level: [432,108,8w4][432,108,-8 w - 4]
Dimension: 11
CM: no
Base change: no
Newspace dimension: 3232

Hecke eigenvalues (qq-expansion)

The Hecke eigenvalue field is Q\Q.
Norm Prime Eigenvalue
2 [2,2,w3][2, 2, w - 3] 0\phantom{-}0
3 [3,3,w2][3, 3, w - 2] 1\phantom{-}1
3 [3,3,w+2][3, 3, w + 2] 0\phantom{-}0
7 [7,7,w][7, 7, w] 1\phantom{-}1
19 [19,19,2w3][19, 19, 2 w - 3] 8-8
19 [19,19,2w+3][19, 19, 2 w + 3] 2-2
25 [25,5,5][25, 5, 5] 2-2
29 [29,29,w6][29, 29, -w - 6] 3-3
29 [29,29,w6][29, 29, w - 6] 0\phantom{-}0
31 [31,31,4w+9][31, 31, 4 w + 9] 8\phantom{-}8
31 [31,31,4w+9][31, 31, -4 w + 9] 8\phantom{-}8
37 [37,37,3w+10][37, 37, -3 w + 10] 7\phantom{-}7
37 [37,37,6w+17][37, 37, -6 w + 17] 1\phantom{-}1
47 [47,47,3w4][47, 47, -3 w - 4] 3\phantom{-}3
47 [47,47,3w4][47, 47, 3 w - 4] 6\phantom{-}6
53 [53,53,2w9][53, 53, 2 w - 9] 12\phantom{-}12
53 [53,53,2w+9][53, 53, 2 w + 9] 3\phantom{-}3
59 [59,59,3w2][59, 59, 3 w - 2] 12\phantom{-}12
59 [59,59,3w2][59, 59, -3 w - 2] 0\phantom{-}0
83 [83,83,6w13][83, 83, -6 w - 13] 9\phantom{-}9
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
22 [2,2,w3][2,2,-w - 3] 11
33 [3,3,w2][3,3,-w - 2] 11