Base field \(\Q(\sqrt{85}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 21\); narrow class number \(2\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[4, 2, 2]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $10$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, w]$ | $-1$ |
3 | $[3, 3, w + 2]$ | $-1$ |
4 | $[4, 2, 2]$ | $-1$ |
5 | $[5, 5, w + 2]$ | $-4$ |
7 | $[7, 7, w]$ | $-2$ |
7 | $[7, 7, w + 6]$ | $-2$ |
17 | $[17, 17, w + 8]$ | $-2$ |
19 | $[19, 19, w + 1]$ | $-5$ |
19 | $[19, 19, w - 2]$ | $-5$ |
23 | $[23, 23, w + 9]$ | $\phantom{-}4$ |
23 | $[23, 23, w + 13]$ | $\phantom{-}4$ |
37 | $[37, 37, w + 11]$ | $-2$ |
37 | $[37, 37, w + 25]$ | $-2$ |
59 | $[59, 59, 3w + 10]$ | $-5$ |
59 | $[59, 59, 3w - 13]$ | $-5$ |
73 | $[73, 73, w + 15]$ | $-11$ |
73 | $[73, 73, w + 57]$ | $-11$ |
89 | $[89, 89, -w - 10]$ | $\phantom{-}5$ |
89 | $[89, 89, w - 11]$ | $\phantom{-}5$ |
97 | $[97, 97, w + 22]$ | $-7$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$4$ | $[4, 2, 2]$ | $1$ |