Properties

Label 6.6.453789.1-41.5-c
Base field \(\Q(\zeta_{21})^+\)
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $41$
Level $[41,41,-w^{4} - 2 w^{3} + 4 w^{2} + 6 w - 3]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{21})^+\)

Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[41,41,-w^{4} - 2 w^{3} + 4 w^{2} + 6 w - 3]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
7 $[7, 7, -w^{5} + 5 w^{3} - 5 w - 1]$ $-2$
27 $[27, 3, -2 w^{5} + 10 w^{3} - w^{2} - 10 w + 2]$ $-9$
41 $[41, 41, -w^{5} + 6 w^{3} - w^{2} - 7 w + 2]$ $-3$
41 $[41, 41, w^{4} - w^{3} - 4 w^{2} + 3 w + 1]$ $-6$
41 $[41, 41, -2 w^{5} + 12 w^{3} - 2 w^{2} - 17 w + 5]$ $-6$
41 $[41, 41, w^{5} - 5 w^{3} + 2 w^{2} + 5 w - 5]$ $-3$
41 $[41, 41, -w^{4} - 2 w^{3} + 4 w^{2} + 6 w - 3]$ $\phantom{-}1$
41 $[41, 41, -2 w^{5} + 10 w^{3} - w^{2} - 10 w + 3]$ $\phantom{-}6$
43 $[43, 43, -w^{5} + w^{4} + 6 w^{3} - 5 w^{2} - 9 w + 4]$ $\phantom{-}7$
43 $[43, 43, -w^{4} - w^{3} + 4 w^{2} + 4 w - 3]$ $-8$
43 $[43, 43, -w^{4} + 3 w^{2} + 1]$ $\phantom{-}1$
43 $[43, 43, -w^{3} + w^{2} + 4 w - 2]$ $\phantom{-}1$
43 $[43, 43, -w^{5} + w^{4} + 6 w^{3} - 4 w^{2} - 8 w + 3]$ $-8$
43 $[43, 43, -w^{2} - w + 3]$ $\phantom{-}10$
64 $[64, 2, -2]$ $-11$
83 $[83, 83, -w^{5} + 6 w^{3} - w^{2} - 10 w + 4]$ $-12$
83 $[83, 83, -2 w^{5} + w^{4} + 12 w^{3} - 6 w^{2} - 17 w + 6]$ $-9$
83 $[83, 83, w^{5} - 6 w^{3} + 2 w^{2} + 8 w - 3]$ $-15$
83 $[83, 83, w^{5} - 4 w^{3} + w - 1]$ $-9$
83 $[83, 83, -2 w^{5} + 11 w^{3} - w^{2} - 13 w + 1]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$41$ $[41,41,-w^{4} - 2 w^{3} + 4 w^{2} + 6 w - 3]$ $-1$