Properties

Label 10.0.1538775332.1
Degree 1010
Signature [0,5][0, 5]
Discriminant 1538775332-1538775332
Root discriminant 8.298.29
Ramified primes 2,17,67,712,17,67,71
Class number 11
Class group trivial
Galois group C2S5C_2 \wr S_5 (as 10T39)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1)
 
Copy content gp:K = bnfinit(y^10 - 3*y^9 + 3*y^8 - 2*y^7 + 5*y^6 - 6*y^5 + 5*y^4 - 2*y^3 + 3*y^2 - 3*y + 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1)
 

x103x9+3x82x7+5x66x5+5x42x3+3x23x+1 x^{10} - 3x^{9} + 3x^{8} - 2x^{7} + 5x^{6} - 6x^{5} + 5x^{4} - 2x^{3} + 3x^{2} - 3x + 1 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  1010
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [0,5][0, 5]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   1538775332-1538775332 =2217672712\medspace = -\,2^{2}\cdot 17\cdot 67^{2}\cdot 71^{2} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  8.298.29
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  2171/2671/2711/2568.74950549429052\cdot 17^{1/2}67^{1/2}71^{1/2}\approx 568.7495054942905
Ramified primes:   22, 1717, 6767, 7171 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(17)\Q(\sqrt{-17})
Aut(K/Q)\Aut(K/\Q):   C2C_2
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Yes
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order 11
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  44
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   2a95a8+2a7+3a6+2a53a4+a3+5a2a12a^{9}-5a^{8}+2a^{7}+3a^{6}+2a^{5}-3a^{4}+a^{3}+5a^{2}-a-1, aa, 2a96a8+6a74a6+9a59a4+7a33a2+4a32a^{9}-6a^{8}+6a^{7}-4a^{6}+9a^{5}-9a^{4}+7a^{3}-3a^{2}+4a-3, a83a7+3a6a5+2a43a3+3a2+aa^{8}-3a^{7}+3a^{6}-a^{5}+2a^{4}-3a^{3}+3a^{2}+a Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  3.11760635261 3.11760635261
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)53.11760635261121538775332(0.389137438730 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 3.11760635261 \cdot 1}{2\cdot\sqrt{1538775332}}\cr\approx \mathstrut & 0.389137438730 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 + 3*x^8 - 2*x^7 + 5*x^6 - 6*x^5 + 5*x^4 - 2*x^3 + 3*x^2 - 3*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C2S5C_2\wr S_5 (as 10T39):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for C2S5C_2 \wr S_5
Character table for C2S5C_2 \wr S_5

Intermediate fields

5.1.4757.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 6,4{\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} } 4,32{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2} 52{\href{/padicField/7.5.0.1}{5} }^{2} 52{\href{/padicField/11.5.0.1}{5} }^{2} 52{\href{/padicField/13.5.0.1}{5} }^{2} R 10{\href{/padicField/19.10.0.1}{10} } 8,2{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} } 42,2{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} } 6,2,12{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2} 10{\href{/padicField/37.10.0.1}{10} } 42,2{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} } 8,12{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} 6,22{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2} 6,2,12{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2} 8,12{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.2.2a1.1x2+2x+2x^{2} + 2 x + 2221122C2C_2[2][2]
2.4.1.0a1.1x4+x+1x^{4} + x + 1114400C4C_4[ ]4[\ ]^{4}
2.4.1.0a1.1x4+x+1x^{4} + x + 1114400C4C_4[ ]4[\ ]^{4}
1717 Copy content Toggle raw display 17.1.2.1a1.2x2+51x^{2} + 51221111C2C_2[ ]2[\ ]_{2}
17.8.1.0a1.1x8+11x4+12x3+6x+3x^{8} + 11 x^{4} + 12 x^{3} + 6 x + 3118800C8C_8[ ]8[\ ]^{8}
6767 Copy content Toggle raw display Q67\Q_{67}x+65x + 65111100Trivial[ ][\ ]
Q67\Q_{67}x+65x + 65111100Trivial[ ][\ ]
67.2.2.2a1.2x4+126x3+3973x2+252x+71x^{4} + 126 x^{3} + 3973 x^{2} + 252 x + 71222222C22C_2^2[ ]22[\ ]_{2}^{2}
67.4.1.0a1.1x4+8x2+54x+2x^{4} + 8 x^{2} + 54 x + 2114400C4C_4[ ]4[\ ]^{4}
7171 Copy content Toggle raw display 71.1.2.1a1.1x2+71x^{2} + 71221111C2C_2[ ]2[\ ]_{2}
71.1.2.1a1.1x2+71x^{2} + 71221111C2C_2[ ]2[\ ]_{2}
71.3.1.0a1.1x3+4x+64x^{3} + 4 x + 64113300C3C_3[ ]3[\ ]^{3}
71.3.1.0a1.1x3+4x+64x^{3} + 4 x + 64113300C3C_3[ ]3[\ ]^{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)