Normalized defining polynomial
\( x^{10} - 3x^{9} + 3x^{8} - 2x^{7} + 5x^{6} - 6x^{5} + 5x^{4} - 2x^{3} + 3x^{2} - 3x + 1 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1538775332\) \(\medspace = -\,2^{2}\cdot 17\cdot 67^{2}\cdot 71^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(8.29\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 17^{1/2}67^{1/2}71^{1/2}\approx 568.7495054942905$ | ||
Ramified primes: | \(2\), \(17\), \(67\), \(71\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $2a^{9}-5a^{8}+2a^{7}+3a^{6}+2a^{5}-3a^{4}+a^{3}+5a^{2}-a-1$, $a$, $2a^{9}-6a^{8}+6a^{7}-4a^{6}+9a^{5}-9a^{4}+7a^{3}-3a^{2}+4a-3$, $a^{8}-3a^{7}+3a^{6}-a^{5}+2a^{4}-3a^{3}+3a^{2}+a$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3.11760635261 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 3.11760635261 \cdot 1}{2\cdot\sqrt{1538775332}}\cr\approx \mathstrut & 0.389137438730 \end{aligned}\]
Galois group
$C_2\wr S_5$ (as 10T39):
A non-solvable group of order 3840 |
The 36 conjugacy class representatives for $C_2 \wr S_5$ |
Character table for $C_2 \wr S_5$ |
Intermediate fields
5.1.4757.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 30 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }^{2}$ | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | R | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.4.0.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
2.4.0.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(17\) | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
17.8.0.1 | $x^{8} + 11 x^{4} + 12 x^{3} + 6 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(67\) | $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
67.4.2.1 | $x^{4} + 126 x^{3} + 4107 x^{2} + 8694 x + 270148$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
67.4.0.1 | $x^{4} + 8 x^{2} + 54 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(71\) | 71.2.1.2 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
71.2.1.2 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.3.0.1 | $x^{3} + 4 x + 64$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
71.3.0.1 | $x^{3} + 4 x + 64$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |