Normalized defining polynomial
\( x^{10} - x^{9} + 2x^{8} - x^{7} + x^{6} + 2x^{5} - 3x^{4} + 4x^{3} - 2x + 2 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-2004910832\) \(\medspace = -\,2^{4}\cdot 89\cdot 787\cdot 1789\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(8.52\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{7/6}89^{1/2}787^{1/2}1789^{1/2}\approx 25129.80979036174$ | ||
Ramified primes: | \(2\), \(89\), \(787\), \(1789\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-125306927}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $4$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{9}-a^{8}+a^{7}-2a^{6}-a^{5}-4a^{3}+a^{2}-3$, $a^{9}-a^{8}+2a^{7}-2a^{6}+a^{5}-3a^{3}+3a^{2}-a-1$, $a^{8}+a^{7}+2a^{6}+2a^{5}+a^{4}+3a^{3}+a+3$, $a^{9}+2a^{7}+2a^{5}+2a^{4}+2a^{2}+a+1$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3.9690436919094463 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 3.9690436919094463 \cdot 1}{2\cdot\sqrt{2004910832}}\cr\approx \mathstrut & 0.434017953411262 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(89\) | 89.2.1.1 | $x^{2} + 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
89.8.0.1 | $x^{8} + 65 x^{3} + 40 x^{2} + 79 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(787\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
\(1789\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |