Normalized defining polynomial
\( x^{10} - x^{9} - x^{8} - 3x^{6} - x^{5} + 7x^{4} - 3x^{2} + 3x - 1 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-15382321408\) \(\medspace = -\,2^{8}\cdot 59\cdot 89\cdot 11443\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.44\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}59^{1/2}89^{1/2}11443^{1/2}\approx 28432.968243602874$ | ||
Ramified primes: | \(2\), \(59\), \(89\), \(11443\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-60087193}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{6}-\frac{3}{4}a^{4}-a^{3}+a^{2}+a-\frac{5}{4}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}+\frac{1}{2}a^{6}-\frac{1}{4}a^{5}+a^{4}+\frac{7}{2}a^{3}-\frac{1}{2}a^{2}-\frac{11}{4}a+\frac{1}{2}$, $\frac{1}{4}a^{9}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{5}{4}a^{5}-\frac{7}{4}a^{4}+\frac{1}{2}a^{3}+2a^{2}+\frac{1}{4}a+\frac{3}{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{3}{2}a^{5}-\frac{1}{2}a^{4}+4a^{3}-2a+\frac{3}{2}$, $\frac{1}{2}a^{9}-a^{8}-\frac{1}{2}a^{7}+a^{6}-a^{5}+a^{4}+\frac{11}{2}a^{3}-3a^{2}-\frac{11}{2}a+3$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 14.634461215941819 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 14.634461215941819 \cdot 1}{2\cdot\sqrt{15382321408}}\cr\approx \mathstrut & 0.234150661649348 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.8.8.9 | $x^{8} + 8 x^{7} + 56 x^{6} + 216 x^{5} + 680 x^{4} + 1296 x^{3} + 2016 x^{2} + 1728 x + 1296$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
\(59\) | 59.2.1.1 | $x^{2} + 118$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
59.8.0.1 | $x^{8} + 16 x^{4} + 32 x^{3} + 2 x^{2} + 50 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(89\) | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
89.8.0.1 | $x^{8} + 65 x^{3} + 40 x^{2} + 79 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(11443\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |