Normalized defining polynomial
\( x^{12} - 4 x^{11} + 48 x^{10} - 204 x^{9} + 2323 x^{8} - 3348 x^{7} + 45974 x^{6} - 100824 x^{5} + \cdots + 84787321 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1311025931217105408000000000\) \(\medspace = 2^{18}\cdot 3^{6}\cdot 5^{9}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(181.89\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{3/4}37^{2/3}\approx 181.88669857681768$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(4440=2^{3}\cdot 3\cdot 5\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{4440}(1,·)$, $\chi_{4440}(803,·)$, $\chi_{4440}(2209,·)$, $\chi_{4440}(1321,·)$, $\chi_{4440}(4043,·)$, $\chi_{4440}(1009,·)$, $\chi_{4440}(2147,·)$, $\chi_{4440}(121,·)$, $\chi_{4440}(889,·)$, $\chi_{4440}(3923,·)$, $\chi_{4440}(2267,·)$, $\chi_{4440}(3467,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.72000.2$^{2}$, 12.0.1311025931217105408000000000.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6}a^{6}-\frac{1}{3}a^{5}+\frac{1}{6}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6}$, $\frac{1}{6}a^{7}-\frac{1}{2}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{6}a+\frac{1}{3}$, $\frac{1}{6}a^{8}-\frac{1}{3}a^{5}-\frac{1}{6}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}+\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{6}a^{9}+\frac{1}{6}a^{5}-\frac{1}{3}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{2}a+\frac{1}{3}$, $\frac{1}{19505211846}a^{10}-\frac{215260179}{3250868641}a^{9}-\frac{362522491}{6501737282}a^{8}-\frac{229289295}{3250868641}a^{7}+\frac{1531693213}{19505211846}a^{6}-\frac{4486701928}{9752605923}a^{5}+\frac{829701352}{9752605923}a^{4}-\frac{572638384}{9752605923}a^{3}+\frac{1361186715}{3250868641}a^{2}+\frac{2519903635}{9752605923}a+\frac{177035843}{6501737282}$, $\frac{1}{42\!\cdots\!46}a^{11}+\frac{10150227647}{71\!\cdots\!41}a^{10}+\frac{51\!\cdots\!86}{71\!\cdots\!41}a^{9}-\frac{40\!\cdots\!07}{71\!\cdots\!41}a^{8}+\frac{10\!\cdots\!79}{14\!\cdots\!82}a^{7}-\frac{17\!\cdots\!49}{21\!\cdots\!23}a^{6}+\frac{64\!\cdots\!87}{14\!\cdots\!82}a^{5}-\frac{68\!\cdots\!81}{21\!\cdots\!23}a^{4}-\frac{35\!\cdots\!23}{14\!\cdots\!82}a^{3}+\frac{43\!\cdots\!42}{21\!\cdots\!23}a^{2}-\frac{61\!\cdots\!55}{21\!\cdots\!23}a-\frac{67\!\cdots\!75}{21\!\cdots\!23}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{15482}$, which has order $30964$ (assuming GRH)
Relative class number: $30964$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{814}{9752605923}a^{11}-\frac{2067}{3250868641}a^{10}+\frac{43055}{9752605923}a^{9}-\frac{384065}{19505211846}a^{8}+\frac{1729520}{9752605923}a^{7}-\frac{4739363}{9752605923}a^{6}+\frac{5698428}{3250868641}a^{5}-\frac{112773575}{19505211846}a^{4}+\frac{440926960}{9752605923}a^{3}+\frac{804174619}{19505211846}a^{2}+\frac{3115594568}{9752605923}a-\frac{11526220443}{6501737282}$, $\frac{24543571663260}{71\!\cdots\!41}a^{11}-\frac{14\!\cdots\!86}{71\!\cdots\!41}a^{10}+\frac{10\!\cdots\!00}{71\!\cdots\!41}a^{9}-\frac{85\!\cdots\!05}{71\!\cdots\!41}a^{8}+\frac{45\!\cdots\!20}{71\!\cdots\!41}a^{7}-\frac{34\!\cdots\!70}{71\!\cdots\!41}a^{6}+\frac{11\!\cdots\!08}{71\!\cdots\!41}a^{5}-\frac{56\!\cdots\!05}{71\!\cdots\!41}a^{4}+\frac{17\!\cdots\!60}{71\!\cdots\!41}a^{3}-\frac{77\!\cdots\!40}{71\!\cdots\!41}a^{2}+\frac{12\!\cdots\!40}{71\!\cdots\!41}a-\frac{99\!\cdots\!54}{71\!\cdots\!41}$, $\frac{14306404853200}{71\!\cdots\!41}a^{11}-\frac{233851486444444}{71\!\cdots\!41}a^{10}+\frac{25\!\cdots\!00}{71\!\cdots\!41}a^{9}-\frac{15\!\cdots\!55}{71\!\cdots\!41}a^{8}+\frac{10\!\cdots\!80}{71\!\cdots\!41}a^{7}-\frac{55\!\cdots\!00}{71\!\cdots\!41}a^{6}+\frac{28\!\cdots\!48}{71\!\cdots\!41}a^{5}-\frac{80\!\cdots\!90}{71\!\cdots\!41}a^{4}+\frac{42\!\cdots\!00}{71\!\cdots\!41}a^{3}-\frac{13\!\cdots\!40}{71\!\cdots\!41}a^{2}+\frac{45\!\cdots\!00}{71\!\cdots\!41}a-\frac{17\!\cdots\!70}{71\!\cdots\!41}$, $\frac{286442831992848}{71\!\cdots\!41}a^{11}-\frac{62\!\cdots\!61}{14\!\cdots\!82}a^{10}+\frac{21\!\cdots\!31}{71\!\cdots\!41}a^{9}-\frac{89\!\cdots\!87}{42\!\cdots\!46}a^{8}+\frac{33\!\cdots\!18}{21\!\cdots\!23}a^{7}-\frac{17\!\cdots\!77}{21\!\cdots\!23}a^{6}+\frac{64\!\cdots\!55}{21\!\cdots\!23}a^{5}-\frac{65\!\cdots\!49}{42\!\cdots\!46}a^{4}+\frac{42\!\cdots\!12}{71\!\cdots\!41}a^{3}-\frac{27\!\cdots\!22}{21\!\cdots\!23}a^{2}+\frac{18\!\cdots\!65}{71\!\cdots\!41}a-\frac{17\!\cdots\!04}{71\!\cdots\!41}$, $\frac{214959577178152}{21\!\cdots\!23}a^{11}+\frac{13\!\cdots\!81}{14\!\cdots\!82}a^{10}-\frac{13\!\cdots\!03}{21\!\cdots\!23}a^{9}+\frac{13\!\cdots\!31}{21\!\cdots\!23}a^{8}-\frac{13\!\cdots\!64}{21\!\cdots\!23}a^{7}+\frac{30\!\cdots\!99}{14\!\cdots\!82}a^{6}-\frac{58\!\cdots\!73}{21\!\cdots\!23}a^{5}+\frac{11\!\cdots\!39}{42\!\cdots\!46}a^{4}+\frac{36\!\cdots\!04}{21\!\cdots\!23}a^{3}+\frac{28\!\cdots\!43}{42\!\cdots\!46}a^{2}+\frac{23\!\cdots\!56}{21\!\cdots\!23}a+\frac{29\!\cdots\!65}{71\!\cdots\!41}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5133.821582106669 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 5133.821582106669 \cdot 30964}{2\cdot\sqrt{1311025931217105408000000000}}\cr\approx \mathstrut & 0.135064558634208 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.3.1369.1, 4.0.72000.2, 6.6.234270125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.27 | $x^{12} + 24 x^{11} + 300 x^{10} + 2480 x^{9} + 15084 x^{8} + 70848 x^{7} + 263968 x^{6} + 785280 x^{5} + 1858672 x^{4} + 3423104 x^{3} + 4742336 x^{2} + 4511488 x + 2639680$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(5\) | 5.12.9.2 | $x^{12} + 12 x^{10} + 12 x^{9} + 69 x^{8} + 108 x^{7} + 42 x^{6} - 396 x^{5} + 840 x^{4} + 252 x^{3} + 1476 x^{2} + 684 x + 1601$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(37\) | 37.12.8.1 | $x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |