sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321)
gp: K = bnfinit(y^12 - 4*y^11 + 48*y^10 - 204*y^9 + 2323*y^8 - 3348*y^7 + 45974*y^6 - 100824*y^5 + 707976*y^4 + 849892*y^3 + 16302428*y^2 + 25990548*y + 84787321, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321)
x 12 − 4 x 11 + 48 x 10 − 204 x 9 + 2323 x 8 − 3348 x 7 + 45974 x 6 − 100824 x 5 + ⋯ + 84787321 x^{12} - 4 x^{11} + 48 x^{10} - 204 x^{9} + 2323 x^{8} - 3348 x^{7} + 45974 x^{6} - 100824 x^{5} + \cdots + 84787321 x 1 2 − 4 x 1 1 + 4 8 x 1 0 − 2 0 4 x 9 + 2 3 2 3 x 8 − 3 3 4 8 x 7 + 4 5 9 7 4 x 6 − 1 0 0 8 2 4 x 5 + ⋯ + 8 4 7 8 7 3 2 1
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Degree : 12 12 1 2
sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
Signature : [ 0 , 6 ] [0, 6] [ 0 , 6 ]
sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
Discriminant :
1311025931217105408000000000 1311025931217105408000000000 1 3 1 1 0 2 5 9 3 1 2 1 7 1 0 5 4 0 8 0 0 0 0 0 0 0 0 0
= 2 18 ⋅ 3 6 ⋅ 5 9 ⋅ 3 7 8 \medspace = 2^{18}\cdot 3^{6}\cdot 5^{9}\cdot 37^{8} = 2 1 8 ⋅ 3 6 ⋅ 5 9 ⋅ 3 7 8
sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
Root discriminant : 181.89 181.89 1 8 1 . 8 9
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
Galois root discriminant : 2 3 / 2 3 1 / 2 5 3 / 4 3 7 2 / 3 ≈ 181.88669857681768 2^{3/2}3^{1/2}5^{3/4}37^{2/3}\approx 181.88669857681768 2 3 / 2 3 1 / 2 5 3 / 4 3 7 2 / 3 ≈ 1 8 1 . 8 8 6 6 9 8 5 7 6 8 1 7 6 8
Ramified primes :
2 2 2 , 3 3 3 , 5 5 5 , 37 37 3 7
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
Discriminant root field : Q ( 5 ) \Q(\sqrt{5}) Q ( 5 )
Aut ( K / Q ) \Aut(K/\Q) A u t ( K / Q )
= = =
Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) :
C 12 C_{12} C 1 2
sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
This field is Galois and abelian over Q \Q Q .
Conductor : 4440 = 2 3 ⋅ 3 ⋅ 5 ⋅ 37 4440=2^{3}\cdot 3\cdot 5\cdot 37 4 4 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 3 7
Dirichlet character group :
{ \lbrace { χ 4440 ( 1 , ⋅ ) \chi_{4440}(1,·) χ 4 4 4 0 ( 1 , ⋅ ) , χ 4440 ( 803 , ⋅ ) \chi_{4440}(803,·) χ 4 4 4 0 ( 8 0 3 , ⋅ ) , χ 4440 ( 2209 , ⋅ ) \chi_{4440}(2209,·) χ 4 4 4 0 ( 2 2 0 9 , ⋅ ) , χ 4440 ( 1321 , ⋅ ) \chi_{4440}(1321,·) χ 4 4 4 0 ( 1 3 2 1 , ⋅ ) , χ 4440 ( 4043 , ⋅ ) \chi_{4440}(4043,·) χ 4 4 4 0 ( 4 0 4 3 , ⋅ ) , χ 4440 ( 1009 , ⋅ ) \chi_{4440}(1009,·) χ 4 4 4 0 ( 1 0 0 9 , ⋅ ) , χ 4440 ( 2147 , ⋅ ) \chi_{4440}(2147,·) χ 4 4 4 0 ( 2 1 4 7 , ⋅ ) , χ 4440 ( 121 , ⋅ ) \chi_{4440}(121,·) χ 4 4 4 0 ( 1 2 1 , ⋅ ) , χ 4440 ( 889 , ⋅ ) \chi_{4440}(889,·) χ 4 4 4 0 ( 8 8 9 , ⋅ ) , χ 4440 ( 3923 , ⋅ ) \chi_{4440}(3923,·) χ 4 4 4 0 ( 3 9 2 3 , ⋅ ) , χ 4440 ( 2267 , ⋅ ) \chi_{4440}(2267,·) χ 4 4 4 0 ( 2 2 6 7 , ⋅ ) , χ 4440 ( 3467 , ⋅ ) \chi_{4440}(3467,·) χ 4 4 4 0 ( 3 4 6 7 , ⋅ ) } \rbrace }
This is a CM field .
Reflex fields : 4.0.72000.2 2 ^{2} 2 , 12.0.1311025931217105408000000000.1 30 ^{30} 3 0
1 1 1 , a a a , a 2 a^{2} a 2 , a 3 a^{3} a 3 , a 4 a^{4} a 4 , a 5 a^{5} a 5 , 1 6 a 6 − 1 3 a 5 + 1 6 a 4 + 1 3 a 3 − 1 3 a 2 + 1 6 \frac{1}{6}a^{6}-\frac{1}{3}a^{5}+\frac{1}{6}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{6} 6 1 a 6 − 3 1 a 5 + 6 1 a 4 + 3 1 a 3 − 3 1 a 2 + 6 1 , 1 6 a 7 − 1 2 a 5 − 1 3 a 4 + 1 3 a 3 + 1 3 a 2 + 1 6 a + 1 3 \frac{1}{6}a^{7}-\frac{1}{2}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{6}a+\frac{1}{3} 6 1 a 7 − 2 1 a 5 − 3 1 a 4 + 3 1 a 3 + 3 1 a 2 + 6 1 a + 3 1 , 1 6 a 8 − 1 3 a 5 − 1 6 a 4 + 1 3 a 3 + 1 6 a 2 + 1 3 a − 1 2 \frac{1}{6}a^{8}-\frac{1}{3}a^{5}-\frac{1}{6}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}+\frac{1}{3}a-\frac{1}{2} 6 1 a 8 − 3 1 a 5 − 6 1 a 4 + 3 1 a 3 + 6 1 a 2 + 3 1 a − 2 1 , 1 6 a 9 + 1 6 a 5 − 1 3 a 4 − 1 6 a 3 − 1 3 a 2 − 1 2 a + 1 3 \frac{1}{6}a^{9}+\frac{1}{6}a^{5}-\frac{1}{3}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{2}a+\frac{1}{3} 6 1 a 9 + 6 1 a 5 − 3 1 a 4 − 6 1 a 3 − 3 1 a 2 − 2 1 a + 3 1 , 1 19505211846 a 10 − 215260179 3250868641 a 9 − 362522491 6501737282 a 8 − 229289295 3250868641 a 7 + 1531693213 19505211846 a 6 − 4486701928 9752605923 a 5 + 829701352 9752605923 a 4 − 572638384 9752605923 a 3 + 1361186715 3250868641 a 2 + 2519903635 9752605923 a + 177035843 6501737282 \frac{1}{19505211846}a^{10}-\frac{215260179}{3250868641}a^{9}-\frac{362522491}{6501737282}a^{8}-\frac{229289295}{3250868641}a^{7}+\frac{1531693213}{19505211846}a^{6}-\frac{4486701928}{9752605923}a^{5}+\frac{829701352}{9752605923}a^{4}-\frac{572638384}{9752605923}a^{3}+\frac{1361186715}{3250868641}a^{2}+\frac{2519903635}{9752605923}a+\frac{177035843}{6501737282} 1 9 5 0 5 2 1 1 8 4 6 1 a 1 0 − 3 2 5 0 8 6 8 6 4 1 2 1 5 2 6 0 1 7 9 a 9 − 6 5 0 1 7 3 7 2 8 2 3 6 2 5 2 2 4 9 1 a 8 − 3 2 5 0 8 6 8 6 4 1 2 2 9 2 8 9 2 9 5 a 7 + 1 9 5 0 5 2 1 1 8 4 6 1 5 3 1 6 9 3 2 1 3 a 6 − 9 7 5 2 6 0 5 9 2 3 4 4 8 6 7 0 1 9 2 8 a 5 + 9 7 5 2 6 0 5 9 2 3 8 2 9 7 0 1 3 5 2 a 4 − 9 7 5 2 6 0 5 9 2 3 5 7 2 6 3 8 3 8 4 a 3 + 3 2 5 0 8 6 8 6 4 1 1 3 6 1 1 8 6 7 1 5 a 2 + 9 7 5 2 6 0 5 9 2 3 2 5 1 9 9 0 3 6 3 5 a + 6 5 0 1 7 3 7 2 8 2 1 7 7 0 3 5 8 4 3 , 1 42 ⋯ 46 a 11 + 10150227647 71 ⋯ 41 a 10 + 51 ⋯ 86 71 ⋯ 41 a 9 − 40 ⋯ 07 71 ⋯ 41 a 8 + 10 ⋯ 79 14 ⋯ 82 a 7 − 17 ⋯ 49 21 ⋯ 23 a 6 + 64 ⋯ 87 14 ⋯ 82 a 5 − 68 ⋯ 81 21 ⋯ 23 a 4 − 35 ⋯ 23 14 ⋯ 82 a 3 + 43 ⋯ 42 21 ⋯ 23 a 2 − 61 ⋯ 55 21 ⋯ 23 a − 67 ⋯ 75 21 ⋯ 23 \frac{1}{42\cdots 46}a^{11}+\frac{10150227647}{71\cdots 41}a^{10}+\frac{51\cdots 86}{71\cdots 41}a^{9}-\frac{40\cdots 07}{71\cdots 41}a^{8}+\frac{10\cdots 79}{14\cdots 82}a^{7}-\frac{17\cdots 49}{21\cdots 23}a^{6}+\frac{64\cdots 87}{14\cdots 82}a^{5}-\frac{68\cdots 81}{21\cdots 23}a^{4}-\frac{35\cdots 23}{14\cdots 82}a^{3}+\frac{43\cdots 42}{21\cdots 23}a^{2}-\frac{61\cdots 55}{21\cdots 23}a-\frac{67\cdots 75}{21\cdots 23} 4 2 ⋯ 4 6 1 a 1 1 + 7 1 ⋯ 4 1 1 0 1 5 0 2 2 7 6 4 7 a 1 0 + 7 1 ⋯ 4 1 5 1 ⋯ 8 6 a 9 − 7 1 ⋯ 4 1 4 0 ⋯ 0 7 a 8 + 1 4 ⋯ 8 2 1 0 ⋯ 7 9 a 7 − 2 1 ⋯ 2 3 1 7 ⋯ 4 9 a 6 + 1 4 ⋯ 8 2 6 4 ⋯ 8 7 a 5 − 2 1 ⋯ 2 3 6 8 ⋯ 8 1 a 4 − 1 4 ⋯ 8 2 3 5 ⋯ 2 3 a 3 + 2 1 ⋯ 2 3 4 3 ⋯ 4 2 a 2 − 2 1 ⋯ 2 3 6 1 ⋯ 5 5 a − 2 1 ⋯ 2 3 6 7 ⋯ 7 5
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
oscar: basis(OK)
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank : 5 5 5
sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
Torsion generator :
− 1 -1 − 1
(order 2 2 2 )
sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
Fundamental units :
814 9752605923 a 11 − 2067 3250868641 a 10 + 43055 9752605923 a 9 − 384065 19505211846 a 8 + 1729520 9752605923 a 7 − 4739363 9752605923 a 6 + 5698428 3250868641 a 5 − 112773575 19505211846 a 4 + 440926960 9752605923 a 3 + 804174619 19505211846 a 2 + 3115594568 9752605923 a − 11526220443 6501737282 \frac{814}{9752605923}a^{11}-\frac{2067}{3250868641}a^{10}+\frac{43055}{9752605923}a^{9}-\frac{384065}{19505211846}a^{8}+\frac{1729520}{9752605923}a^{7}-\frac{4739363}{9752605923}a^{6}+\frac{5698428}{3250868641}a^{5}-\frac{112773575}{19505211846}a^{4}+\frac{440926960}{9752605923}a^{3}+\frac{804174619}{19505211846}a^{2}+\frac{3115594568}{9752605923}a-\frac{11526220443}{6501737282} 9 7 5 2 6 0 5 9 2 3 8 1 4 a 1 1 − 3 2 5 0 8 6 8 6 4 1 2 0 6 7 a 1 0 + 9 7 5 2 6 0 5 9 2 3 4 3 0 5 5 a 9 − 1 9 5 0 5 2 1 1 8 4 6 3 8 4 0 6 5 a 8 + 9 7 5 2 6 0 5 9 2 3 1 7 2 9 5 2 0 a 7 − 9 7 5 2 6 0 5 9 2 3 4 7 3 9 3 6 3 a 6 + 3 2 5 0 8 6 8 6 4 1 5 6 9 8 4 2 8 a 5 − 1 9 5 0 5 2 1 1 8 4 6 1 1 2 7 7 3 5 7 5 a 4 + 9 7 5 2 6 0 5 9 2 3 4 4 0 9 2 6 9 6 0 a 3 + 1 9 5 0 5 2 1 1 8 4 6 8 0 4 1 7 4 6 1 9 a 2 + 9 7 5 2 6 0 5 9 2 3 3 1 1 5 5 9 4 5 6 8 a − 6 5 0 1 7 3 7 2 8 2 1 1 5 2 6 2 2 0 4 4 3 , 24543571663260 71 ⋯ 41 a 11 − 14 ⋯ 86 71 ⋯ 41 a 10 + 10 ⋯ 00 71 ⋯ 41 a 9 − 85 ⋯ 05 71 ⋯ 41 a 8 + 45 ⋯ 20 71 ⋯ 41 a 7 − 34 ⋯ 70 71 ⋯ 41 a 6 + 11 ⋯ 08 71 ⋯ 41 a 5 − 56 ⋯ 05 71 ⋯ 41 a 4 + 17 ⋯ 60 71 ⋯ 41 a 3 − 77 ⋯ 40 71 ⋯ 41 a 2 + 12 ⋯ 40 71 ⋯ 41 a − 99 ⋯ 54 71 ⋯ 41 \frac{24543571663260}{71\cdots 41}a^{11}-\frac{14\cdots 86}{71\cdots 41}a^{10}+\frac{10\cdots 00}{71\cdots 41}a^{9}-\frac{85\cdots 05}{71\cdots 41}a^{8}+\frac{45\cdots 20}{71\cdots 41}a^{7}-\frac{34\cdots 70}{71\cdots 41}a^{6}+\frac{11\cdots 08}{71\cdots 41}a^{5}-\frac{56\cdots 05}{71\cdots 41}a^{4}+\frac{17\cdots 60}{71\cdots 41}a^{3}-\frac{77\cdots 40}{71\cdots 41}a^{2}+\frac{12\cdots 40}{71\cdots 41}a-\frac{99\cdots 54}{71\cdots 41} 7 1 ⋯ 4 1 2 4 5 4 3 5 7 1 6 6 3 2 6 0 a 1 1 − 7 1 ⋯ 4 1 1 4 ⋯ 8 6 a 1 0 + 7 1 ⋯ 4 1 1 0 ⋯ 0 0 a 9 − 7 1 ⋯ 4 1 8 5 ⋯ 0 5 a 8 + 7 1 ⋯ 4 1 4 5 ⋯ 2 0 a 7 − 7 1 ⋯ 4 1 3 4 ⋯ 7 0 a 6 + 7 1 ⋯ 4 1 1 1 ⋯ 0 8 a 5 − 7 1 ⋯ 4 1 5 6 ⋯ 0 5 a 4 + 7 1 ⋯ 4 1 1 7 ⋯ 6 0 a 3 − 7 1 ⋯ 4 1 7 7 ⋯ 4 0 a 2 + 7 1 ⋯ 4 1 1 2 ⋯ 4 0 a − 7 1 ⋯ 4 1 9 9 ⋯ 5 4 , 14306404853200 71 ⋯ 41 a 11 − 233851486444444 71 ⋯ 41 a 10 + 25 ⋯ 00 71 ⋯ 41 a 9 − 15 ⋯ 55 71 ⋯ 41 a 8 + 10 ⋯ 80 71 ⋯ 41 a 7 − 55 ⋯ 00 71 ⋯ 41 a 6 + 28 ⋯ 48 71 ⋯ 41 a 5 − 80 ⋯ 90 71 ⋯ 41 a 4 + 42 ⋯ 00 71 ⋯ 41 a 3 − 13 ⋯ 40 71 ⋯ 41 a 2 + 45 ⋯ 00 71 ⋯ 41 a − 17 ⋯ 70 71 ⋯ 41 \frac{14306404853200}{71\cdots 41}a^{11}-\frac{233851486444444}{71\cdots 41}a^{10}+\frac{25\cdots 00}{71\cdots 41}a^{9}-\frac{15\cdots 55}{71\cdots 41}a^{8}+\frac{10\cdots 80}{71\cdots 41}a^{7}-\frac{55\cdots 00}{71\cdots 41}a^{6}+\frac{28\cdots 48}{71\cdots 41}a^{5}-\frac{80\cdots 90}{71\cdots 41}a^{4}+\frac{42\cdots 00}{71\cdots 41}a^{3}-\frac{13\cdots 40}{71\cdots 41}a^{2}+\frac{45\cdots 00}{71\cdots 41}a-\frac{17\cdots 70}{71\cdots 41} 7 1 ⋯ 4 1 1 4 3 0 6 4 0 4 8 5 3 2 0 0 a 1 1 − 7 1 ⋯ 4 1 2 3 3 8 5 1 4 8 6 4 4 4 4 4 4 a 1 0 + 7 1 ⋯ 4 1 2 5 ⋯ 0 0 a 9 − 7 1 ⋯ 4 1 1 5 ⋯ 5 5 a 8 + 7 1 ⋯ 4 1 1 0 ⋯ 8 0 a 7 − 7 1 ⋯ 4 1 5 5 ⋯ 0 0 a 6 + 7 1 ⋯ 4 1 2 8 ⋯ 4 8 a 5 − 7 1 ⋯ 4 1 8 0 ⋯ 9 0 a 4 + 7 1 ⋯ 4 1 4 2 ⋯ 0 0 a 3 − 7 1 ⋯ 4 1 1 3 ⋯ 4 0 a 2 + 7 1 ⋯ 4 1 4 5 ⋯ 0 0 a − 7 1 ⋯ 4 1 1 7 ⋯ 7 0 , 286442831992848 71 ⋯ 41 a 11 − 62 ⋯ 61 14 ⋯ 82 a 10 + 21 ⋯ 31 71 ⋯ 41 a 9 − 89 ⋯ 87 42 ⋯ 46 a 8 + 33 ⋯ 18 21 ⋯ 23 a 7 − 17 ⋯ 77 21 ⋯ 23 a 6 + 64 ⋯ 55 21 ⋯ 23 a 5 − 65 ⋯ 49 42 ⋯ 46 a 4 + 42 ⋯ 12 71 ⋯ 41 a 3 − 27 ⋯ 22 21 ⋯ 23 a 2 + 18 ⋯ 65 71 ⋯ 41 a − 17 ⋯ 04 71 ⋯ 41 \frac{286442831992848}{71\cdots 41}a^{11}-\frac{62\cdots 61}{14\cdots 82}a^{10}+\frac{21\cdots 31}{71\cdots 41}a^{9}-\frac{89\cdots 87}{42\cdots 46}a^{8}+\frac{33\cdots 18}{21\cdots 23}a^{7}-\frac{17\cdots 77}{21\cdots 23}a^{6}+\frac{64\cdots 55}{21\cdots 23}a^{5}-\frac{65\cdots 49}{42\cdots 46}a^{4}+\frac{42\cdots 12}{71\cdots 41}a^{3}-\frac{27\cdots 22}{21\cdots 23}a^{2}+\frac{18\cdots 65}{71\cdots 41}a-\frac{17\cdots 04}{71\cdots 41} 7 1 ⋯ 4 1 2 8 6 4 4 2 8 3 1 9 9 2 8 4 8 a 1 1 − 1 4 ⋯ 8 2 6 2 ⋯ 6 1 a 1 0 + 7 1 ⋯ 4 1 2 1 ⋯ 3 1 a 9 − 4 2 ⋯ 4 6 8 9 ⋯ 8 7 a 8 + 2 1 ⋯ 2 3 3 3 ⋯ 1 8 a 7 − 2 1 ⋯ 2 3 1 7 ⋯ 7 7 a 6 + 2 1 ⋯ 2 3 6 4 ⋯ 5 5 a 5 − 4 2 ⋯ 4 6 6 5 ⋯ 4 9 a 4 + 7 1 ⋯ 4 1 4 2 ⋯ 1 2 a 3 − 2 1 ⋯ 2 3 2 7 ⋯ 2 2 a 2 + 7 1 ⋯ 4 1 1 8 ⋯ 6 5 a − 7 1 ⋯ 4 1 1 7 ⋯ 0 4 , 214959577178152 21 ⋯ 23 a 11 + 13 ⋯ 81 14 ⋯ 82 a 10 − 13 ⋯ 03 21 ⋯ 23 a 9 + 13 ⋯ 31 21 ⋯ 23 a 8 − 13 ⋯ 64 21 ⋯ 23 a 7 + 30 ⋯ 99 14 ⋯ 82 a 6 − 58 ⋯ 73 21 ⋯ 23 a 5 + 11 ⋯ 39 42 ⋯ 46 a 4 + 36 ⋯ 04 21 ⋯ 23 a 3 + 28 ⋯ 43 42 ⋯ 46 a 2 + 23 ⋯ 56 21 ⋯ 23 a + 29 ⋯ 65 71 ⋯ 41 \frac{214959577178152}{21\cdots 23}a^{11}+\frac{13\cdots 81}{14\cdots 82}a^{10}-\frac{13\cdots 03}{21\cdots 23}a^{9}+\frac{13\cdots 31}{21\cdots 23}a^{8}-\frac{13\cdots 64}{21\cdots 23}a^{7}+\frac{30\cdots 99}{14\cdots 82}a^{6}-\frac{58\cdots 73}{21\cdots 23}a^{5}+\frac{11\cdots 39}{42\cdots 46}a^{4}+\frac{36\cdots 04}{21\cdots 23}a^{3}+\frac{28\cdots 43}{42\cdots 46}a^{2}+\frac{23\cdots 56}{21\cdots 23}a+\frac{29\cdots 65}{71\cdots 41} 2 1 ⋯ 2 3 2 1 4 9 5 9 5 7 7 1 7 8 1 5 2 a 1 1 + 1 4 ⋯ 8 2 1 3 ⋯ 8 1 a 1 0 − 2 1 ⋯ 2 3 1 3 ⋯ 0 3 a 9 + 2 1 ⋯ 2 3 1 3 ⋯ 3 1 a 8 − 2 1 ⋯ 2 3 1 3 ⋯ 6 4 a 7 + 1 4 ⋯ 8 2 3 0 ⋯ 9 9 a 6 − 2 1 ⋯ 2 3 5 8 ⋯ 7 3 a 5 + 4 2 ⋯ 4 6 1 1 ⋯ 3 9 a 4 + 2 1 ⋯ 2 3 3 6 ⋯ 0 4 a 3 + 4 2 ⋯ 4 6 2 8 ⋯ 4 3 a 2 + 2 1 ⋯ 2 3 2 3 ⋯ 5 6 a + 7 1 ⋯ 4 1 2 9 ⋯ 6 5
(assuming GRH )
sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
Regulator : 5133.821582106669 5133.821582106669 5 1 3 3 . 8 2 1 5 8 2 1 0 6 6 6 9
(assuming GRH )
sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
lim s → 1 ( s − 1 ) ζ K ( s ) = ( 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h w ⋅ ∣ D ∣ ≈ ( 2 0 ⋅ ( 2 π ) 6 ⋅ 5133.821582106669 ⋅ 30964 2 ⋅ 1311025931217105408000000000 ≈ ( 0.135064558634208
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 5133.821582106669 \cdot 30964}{2\cdot\sqrt{1311025931217105408000000000}}\cr\approx \mathstrut & 0.135064558634208
\end{aligned} s → 1 lim ( s − 1 ) ζ K ( s ) = ( ≈ ( ≈ ( w ⋅ ∣ D ∣ 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h 2 ⋅ 1 3 1 1 0 2 5 9 3 1 2 1 7 1 0 5 4 0 8 0 0 0 0 0 0 0 0 0 2 0 ⋅ ( 2 π ) 6 ⋅ 5 1 3 3 . 8 2 1 5 8 2 1 0 6 6 6 9 ⋅ 3 0 9 6 4 0 . 1 3 5 0 6 4 5 5 8 6 3 4 2 0 8
(assuming GRH )
sage: # self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
gp: \\ self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
magma: /* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
oscar: # self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 48*x^10 - 204*x^9 + 2323*x^8 - 3348*x^7 + 45974*x^6 - 100824*x^5 + 707976*x^4 + 849892*x^3 + 16302428*x^2 + 25990548*x + 84787321);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
C 12 C_{12} C 1 2 (as 12T1 ):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
p p p
2 2 2
3 3 3
5 5 5
7 7 7
11 11 1 1
13 13 1 3
17 17 1 7
19 19 1 9
23 23 2 3
29 29 2 9
31 31 3 1
37 37 3 7
41 41 4 1
43 43 4 3
47 47 4 7
53 53 5 3
59 59 5 9
Cycle type
R
R
R
12 {\href{/padicField/7.12.0.1}{12} } 1 2
2 6 {\href{/padicField/11.2.0.1}{2} }^{6} 2 6
12 {\href{/padicField/13.12.0.1}{12} } 1 2
12 {\href{/padicField/17.12.0.1}{12} } 1 2
6 2 {\href{/padicField/19.6.0.1}{6} }^{2} 6 2
4 3 {\href{/padicField/23.4.0.1}{4} }^{3} 4 3
2 6 {\href{/padicField/29.2.0.1}{2} }^{6} 2 6
2 6 {\href{/padicField/31.2.0.1}{2} }^{6} 2 6
R
6 2 {\href{/padicField/41.6.0.1}{6} }^{2} 6 2
4 3 {\href{/padicField/43.4.0.1}{4} }^{3} 4 3
4 3 {\href{/padicField/47.4.0.1}{4} }^{3} 4 3
12 {\href{/padicField/53.12.0.1}{12} } 1 2
3 4 {\href{/padicField/59.3.0.1}{3} }^{4} 3 4
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
sage: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
magma: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
oscar: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
p p p Label Polynomial
e e e
f f f
c c c
Galois group
Slope content
2 2 2
2.6.2.18a1.2 x 12 + 2 x 10 + 2 x 9 + x 8 + 4 x 7 + 3 x 6 + 2 x 5 + 4 x 4 + 10 x 3 + x 2 + 2 x + 3 x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 10 x^{3} + x^{2} + 2 x + 3 x 1 2 + 2 x 1 0 + 2 x 9 + x 8 + 4 x 7 + 3 x 6 + 2 x 5 + 4 x 4 + 1 0 x 3 + x 2 + 2 x + 3 2 2 2 6 6 6 18 18 1 8 C 12 C_{12} C 1 2 [ 3 ] 6 [3]^{6} [ 3 ] 6
3 3 3
3.6.2.6a1.1 x 12 + 4 x 10 + 6 x 8 + 4 x 7 + 8 x 6 + 8 x 5 + 9 x 4 + 4 x 3 + 8 x 2 + 11 x + 4 x^{12} + 4 x^{10} + 6 x^{8} + 4 x^{7} + 8 x^{6} + 8 x^{5} + 9 x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4 x 1 2 + 4 x 1 0 + 6 x 8 + 4 x 7 + 8 x 6 + 8 x 5 + 9 x 4 + 4 x 3 + 8 x 2 + 1 1 x + 4 2 2 2 6 6 6 6 6 6 C 12 C_{12} C 1 2 [ ] 2 6 [\ ]_{2}^{6} [ ] 2 6
5 5 5
5.3.4.9a1.3 x 12 + 12 x 10 + 12 x 9 + 54 x 8 + 108 x 7 + 162 x 6 + 324 x 5 + 405 x 4 + 432 x 3 + 486 x 2 + 324 x + 86 x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 486 x^{2} + 324 x + 86 x 1 2 + 1 2 x 1 0 + 1 2 x 9 + 5 4 x 8 + 1 0 8 x 7 + 1 6 2 x 6 + 3 2 4 x 5 + 4 0 5 x 4 + 4 3 2 x 3 + 4 8 6 x 2 + 3 2 4 x + 8 6 4 4 4 3 3 3 9 9 9 C 12 C_{12} C 1 2 [ ] 4 3 [\ ]_{4}^{3} [ ] 4 3
37 37 3 7
37.4.3.8a1.3 x 12 + 18 x 10 + 72 x 9 + 114 x 8 + 864 x 7 + 2016 x 6 + 2880 x 5 + 10596 x 4 + 15552 x 3 + 3528 x 2 + 288 x + 45 x^{12} + 18 x^{10} + 72 x^{9} + 114 x^{8} + 864 x^{7} + 2016 x^{6} + 2880 x^{5} + 10596 x^{4} + 15552 x^{3} + 3528 x^{2} + 288 x + 45 x 1 2 + 1 8 x 1 0 + 7 2 x 9 + 1 1 4 x 8 + 8 6 4 x 7 + 2 0 1 6 x 6 + 2 8 8 0 x 5 + 1 0 5 9 6 x 4 + 1 5 5 5 2 x 3 + 3 5 2 8 x 2 + 2 8 8 x + 4 5 3 3 3 4 4 4 8 8 8 C 12 C_{12} C 1 2 [ ] 3 4 [\ ]_{3}^{4} [ ] 3 4
(0) (0) (2) (3) (5) (7) (11) (13) (17) (19) (23) (29) (31) (37) (41) (43) (47) (53) (59)