Properties

Label 12.0.161...125.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.614\times 10^{23}$
Root discriminant \(85.90\)
Ramified primes $5,7,13$
Class number $1014$ (GRH)
Class group [13, 78] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881)
 
gp: K = bnfinit(y^12 - y^11 + 66*y^10 - 170*y^9 + 1249*y^8 - 3446*y^7 + 12689*y^6 - 57227*y^5 + 67939*y^4 - 83461*y^3 + 539865*y^2 - 552644*y + 152881, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881)
 

\( x^{12} - x^{11} + 66 x^{10} - 170 x^{9} + 1249 x^{8} - 3446 x^{7} + 12689 x^{6} - 57227 x^{5} + \cdots + 152881 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(161428875495388931828125\) \(\medspace = 5^{6}\cdot 7^{8}\cdot 13^{11}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(85.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}7^{2/3}13^{11/12}\approx 85.90104262646453$
Ramified primes:   \(5\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(455=5\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(99,·)$, $\chi_{455}(214,·)$, $\chi_{455}(296,·)$, $\chi_{455}(239,·)$, $\chi_{455}(16,·)$, $\chi_{455}(246,·)$, $\chi_{455}(184,·)$, $\chi_{455}(186,·)$, $\chi_{455}(219,·)$, $\chi_{455}(319,·)$$\rbrace$
This is a CM field.
Reflex fields:  4.0.54925.1$^{2}$, 12.0.161428875495388931828125.1$^{30}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{782}a^{9}-\frac{71}{782}a^{8}-\frac{4}{23}a^{7}+\frac{121}{782}a^{6}-\frac{5}{46}a^{5}+\frac{337}{782}a^{4}-\frac{12}{391}a^{3}+\frac{89}{782}a^{2}+\frac{227}{782}a$, $\frac{1}{782}a^{10}-\frac{47}{391}a^{8}+\frac{120}{391}a^{7}-\frac{48}{391}a^{6}+\frac{167}{782}a^{5}+\frac{26}{391}a^{4}+\frac{10}{23}a^{3}+\frac{145}{391}a^{2}+\frac{43}{391}a-\frac{1}{2}$, $\frac{1}{16\!\cdots\!86}a^{11}-\frac{44\!\cdots\!53}{99\!\cdots\!58}a^{10}+\frac{82\!\cdots\!88}{84\!\cdots\!93}a^{9}-\frac{86\!\cdots\!50}{84\!\cdots\!93}a^{8}+\frac{20\!\cdots\!61}{84\!\cdots\!93}a^{7}-\frac{82\!\cdots\!33}{16\!\cdots\!86}a^{6}+\frac{84\!\cdots\!87}{16\!\cdots\!86}a^{5}+\frac{42\!\cdots\!94}{84\!\cdots\!93}a^{4}+\frac{79\!\cdots\!65}{49\!\cdots\!29}a^{3}-\frac{41\!\cdots\!76}{84\!\cdots\!93}a^{2}-\frac{34\!\cdots\!05}{73\!\cdots\!82}a-\frac{21\!\cdots\!01}{18\!\cdots\!02}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{13}\times C_{78}$, which has order $1014$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $338$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{553359443973002}{65\!\cdots\!57}a^{11}-\frac{32\!\cdots\!61}{65\!\cdots\!57}a^{10}+\frac{24\!\cdots\!78}{38\!\cdots\!21}a^{9}-\frac{15\!\cdots\!16}{38\!\cdots\!21}a^{8}+\frac{13\!\cdots\!46}{65\!\cdots\!57}a^{7}-\frac{53\!\cdots\!16}{65\!\cdots\!57}a^{6}+\frac{18\!\cdots\!08}{65\!\cdots\!57}a^{5}-\frac{64\!\cdots\!04}{65\!\cdots\!57}a^{4}+\frac{17\!\cdots\!06}{65\!\cdots\!57}a^{3}-\frac{25\!\cdots\!78}{65\!\cdots\!57}a^{2}+\frac{70\!\cdots\!38}{28\!\cdots\!59}a-\frac{59\!\cdots\!23}{16\!\cdots\!27}$, $\frac{73\!\cdots\!77}{16\!\cdots\!86}a^{11}+\frac{29\!\cdots\!47}{16\!\cdots\!86}a^{10}+\frac{30\!\cdots\!73}{16\!\cdots\!86}a^{9}+\frac{93\!\cdots\!09}{84\!\cdots\!93}a^{8}-\frac{33\!\cdots\!59}{16\!\cdots\!86}a^{7}+\frac{97\!\cdots\!90}{49\!\cdots\!29}a^{6}-\frac{74\!\cdots\!47}{16\!\cdots\!86}a^{5}+\frac{14\!\cdots\!14}{84\!\cdots\!93}a^{4}-\frac{14\!\cdots\!45}{16\!\cdots\!86}a^{3}+\frac{10\!\cdots\!55}{16\!\cdots\!86}a^{2}+\frac{10\!\cdots\!61}{73\!\cdots\!82}a+\frac{47\!\cdots\!29}{94\!\cdots\!01}$, $\frac{80\!\cdots\!87}{16\!\cdots\!86}a^{11}+\frac{19\!\cdots\!21}{16\!\cdots\!86}a^{10}+\frac{54\!\cdots\!61}{16\!\cdots\!86}a^{9}+\frac{23\!\cdots\!32}{84\!\cdots\!93}a^{8}+\frac{81\!\cdots\!47}{16\!\cdots\!86}a^{7}+\frac{16\!\cdots\!87}{84\!\cdots\!93}a^{6}+\frac{54\!\cdots\!47}{16\!\cdots\!86}a^{5}-\frac{57\!\cdots\!04}{49\!\cdots\!29}a^{4}-\frac{64\!\cdots\!35}{16\!\cdots\!86}a^{3}-\frac{79\!\cdots\!65}{16\!\cdots\!86}a^{2}+\frac{70\!\cdots\!75}{73\!\cdots\!82}a+\frac{31\!\cdots\!17}{94\!\cdots\!01}$, $\frac{33\!\cdots\!67}{99\!\cdots\!58}a^{11}+\frac{34\!\cdots\!37}{16\!\cdots\!86}a^{10}+\frac{19\!\cdots\!54}{84\!\cdots\!93}a^{9}+\frac{83\!\cdots\!41}{84\!\cdots\!93}a^{8}+\frac{17\!\cdots\!09}{84\!\cdots\!93}a^{7}+\frac{23\!\cdots\!61}{16\!\cdots\!86}a^{6}-\frac{16\!\cdots\!43}{16\!\cdots\!86}a^{5}+\frac{29\!\cdots\!68}{84\!\cdots\!93}a^{4}-\frac{69\!\cdots\!46}{84\!\cdots\!93}a^{3}+\frac{54\!\cdots\!89}{49\!\cdots\!29}a^{2}+\frac{46\!\cdots\!27}{73\!\cdots\!82}a+\frac{18\!\cdots\!05}{18\!\cdots\!02}$, $\frac{11\!\cdots\!21}{16\!\cdots\!86}a^{11}+\frac{12\!\cdots\!69}{16\!\cdots\!86}a^{10}+\frac{33\!\cdots\!63}{84\!\cdots\!93}a^{9}+\frac{17\!\cdots\!67}{84\!\cdots\!93}a^{8}+\frac{25\!\cdots\!19}{84\!\cdots\!93}a^{7}+\frac{17\!\cdots\!61}{16\!\cdots\!86}a^{6}-\frac{21\!\cdots\!53}{16\!\cdots\!86}a^{5}-\frac{13\!\cdots\!52}{84\!\cdots\!93}a^{4}-\frac{10\!\cdots\!38}{84\!\cdots\!93}a^{3}-\frac{22\!\cdots\!01}{84\!\cdots\!93}a^{2}+\frac{11\!\cdots\!41}{73\!\cdots\!82}a+\frac{11\!\cdots\!39}{18\!\cdots\!02}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6176.96689838 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 6176.96689838 \cdot 1014}{2\cdot\sqrt{161428875495388931828125}}\cr\approx \mathstrut & 0.479591892500 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 + 66*x^10 - 170*x^9 + 1249*x^8 - 3446*x^7 + 12689*x^6 - 57227*x^5 + 67939*x^4 - 83461*x^3 + 539865*x^2 - 552644*x + 152881);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.8281.1, 4.0.54925.1, 6.6.891474493.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{3}$ ${\href{/padicField/3.6.0.1}{6} }^{2}$ R R ${\href{/padicField/11.12.0.1}{12} }$ R ${\href{/padicField/17.1.0.1}{1} }^{12}$ ${\href{/padicField/19.12.0.1}{12} }$ ${\href{/padicField/23.1.0.1}{1} }^{12}$ ${\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.4.0.1}{4} }^{3}$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.12.0.1}{12} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.12.6.2$x^{12} + 25 x^{8} - 500 x^{6} + 625 x^{4} + 31250$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.12.8.2$x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
\(13\) Copy content Toggle raw display 13.12.11.1$x^{12} + 156$$12$$1$$11$$C_{12}$$[\ ]_{12}$