Normalized defining polynomial
\( x^{12} - 4 x^{11} - 62 x^{10} + 232 x^{9} + 1679 x^{8} - 5668 x^{7} - 20398 x^{6} + 62556 x^{5} + \cdots + 689057 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1646753279454715263844352\) \(\medspace = 2^{33}\cdot 61^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(104.24\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{11/4}61^{2/3}\approx 104.24431456608558$ | ||
Ramified primes: | \(2\), \(61\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(976=2^{4}\cdot 61\) | ||
Dirichlet character group: | $\lbrace$$\chi_{976}(1,·)$, $\chi_{976}(611,·)$, $\chi_{976}(257,·)$, $\chi_{976}(379,·)$, $\chi_{976}(169,·)$, $\chi_{976}(779,·)$, $\chi_{976}(291,·)$, $\chi_{976}(657,·)$, $\chi_{976}(867,·)$, $\chi_{976}(489,·)$, $\chi_{976}(745,·)$, $\chi_{976}(123,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.2048.2$^{2}$, 12.0.1646753279454715263844352.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{7402519347}a^{10}+\frac{270407626}{7402519347}a^{9}+\frac{946349771}{7402519347}a^{8}+\frac{1239941788}{7402519347}a^{7}-\frac{3591468503}{7402519347}a^{6}-\frac{1163401546}{7402519347}a^{5}+\frac{1188125090}{2467506449}a^{4}-\frac{1045951274}{2467506449}a^{3}-\frac{1215930049}{7402519347}a^{2}+\frac{686887660}{2467506449}a-\frac{1156431118}{2467506449}$, $\frac{1}{34\!\cdots\!11}a^{11}-\frac{1033590347}{34\!\cdots\!11}a^{10}+\frac{51\!\cdots\!17}{11\!\cdots\!37}a^{9}-\frac{31\!\cdots\!02}{11\!\cdots\!37}a^{8}-\frac{16\!\cdots\!86}{34\!\cdots\!11}a^{7}+\frac{14\!\cdots\!26}{34\!\cdots\!11}a^{6}+\frac{17\!\cdots\!04}{34\!\cdots\!11}a^{5}+\frac{10\!\cdots\!31}{11\!\cdots\!37}a^{4}-\frac{16\!\cdots\!27}{34\!\cdots\!11}a^{3}+\frac{21\!\cdots\!55}{11\!\cdots\!37}a^{2}-\frac{52\!\cdots\!15}{34\!\cdots\!11}a-\frac{24\!\cdots\!93}{15\!\cdots\!57}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{349}$, which has order $349$ (assuming GRH)
Relative class number: $349$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{244}{2467506449}a^{11}+\frac{2610}{2467506449}a^{10}-\frac{28098}{2467506449}a^{9}-\frac{249441}{2467506449}a^{8}+\frac{1336440}{2467506449}a^{7}+\frac{9823418}{2467506449}a^{6}-\frac{31758568}{2467506449}a^{5}-\frac{176535587}{2467506449}a^{4}+\frac{347726016}{2467506449}a^{3}+\frac{1185700715}{2467506449}a^{2}-\frac{1198490624}{2467506449}a+\frac{2204425512}{2467506449}$, $\frac{16508984833484}{34\!\cdots\!11}a^{11}-\frac{598771322495905}{34\!\cdots\!11}a^{10}+\frac{12\!\cdots\!16}{34\!\cdots\!11}a^{9}+\frac{36\!\cdots\!57}{34\!\cdots\!11}a^{8}-\frac{10\!\cdots\!32}{34\!\cdots\!11}a^{7}-\frac{10\!\cdots\!81}{34\!\cdots\!11}a^{6}+\frac{26\!\cdots\!98}{34\!\cdots\!11}a^{5}+\frac{46\!\cdots\!61}{11\!\cdots\!37}a^{4}-\frac{10\!\cdots\!44}{11\!\cdots\!37}a^{3}-\frac{25\!\cdots\!50}{11\!\cdots\!37}a^{2}+\frac{78\!\cdots\!76}{34\!\cdots\!11}a+\frac{95\!\cdots\!58}{15\!\cdots\!57}$, $\frac{269512402444}{50\!\cdots\!19}a^{11}+\frac{29967457173779}{15\!\cdots\!57}a^{10}-\frac{172359495798496}{15\!\cdots\!57}a^{9}-\frac{625492432260913}{50\!\cdots\!19}a^{8}+\frac{80\!\cdots\!56}{15\!\cdots\!57}a^{7}+\frac{17\!\cdots\!81}{50\!\cdots\!19}a^{6}-\frac{54\!\cdots\!70}{50\!\cdots\!19}a^{5}-\frac{68\!\cdots\!87}{15\!\cdots\!57}a^{4}+\frac{14\!\cdots\!36}{15\!\cdots\!57}a^{3}+\frac{23\!\cdots\!94}{15\!\cdots\!57}a^{2}-\frac{89\!\cdots\!52}{50\!\cdots\!19}a+\frac{28\!\cdots\!76}{15\!\cdots\!57}$, $\frac{78721309638092}{34\!\cdots\!11}a^{11}+\frac{320594186562322}{34\!\cdots\!11}a^{10}-\frac{61\!\cdots\!96}{34\!\cdots\!11}a^{9}-\frac{23\!\cdots\!24}{34\!\cdots\!11}a^{8}+\frac{65\!\cdots\!48}{11\!\cdots\!37}a^{7}+\frac{70\!\cdots\!33}{34\!\cdots\!11}a^{6}-\frac{30\!\cdots\!04}{34\!\cdots\!11}a^{5}-\frac{10\!\cdots\!26}{34\!\cdots\!11}a^{4}+\frac{19\!\cdots\!52}{34\!\cdots\!11}a^{3}+\frac{44\!\cdots\!97}{34\!\cdots\!11}a^{2}-\frac{48\!\cdots\!82}{34\!\cdots\!11}a+\frac{67\!\cdots\!81}{50\!\cdots\!19}$, $\frac{33485773538444}{34\!\cdots\!11}a^{11}+\frac{468054866428042}{34\!\cdots\!11}a^{10}-\frac{35\!\cdots\!88}{34\!\cdots\!11}a^{9}-\frac{30\!\cdots\!54}{34\!\cdots\!11}a^{8}+\frac{45\!\cdots\!92}{11\!\cdots\!37}a^{7}+\frac{85\!\cdots\!37}{34\!\cdots\!11}a^{6}-\frac{26\!\cdots\!16}{34\!\cdots\!11}a^{5}-\frac{11\!\cdots\!58}{34\!\cdots\!11}a^{4}+\frac{23\!\cdots\!72}{34\!\cdots\!11}a^{3}+\frac{41\!\cdots\!05}{34\!\cdots\!11}a^{2}-\frac{46\!\cdots\!38}{34\!\cdots\!11}a+\frac{61\!\cdots\!83}{50\!\cdots\!19}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 27056.6931186 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 27056.6931186 \cdot 349}{2\cdot\sqrt{1646753279454715263844352}}\cr\approx \mathstrut & 0.226378453531 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 3.3.3721.1, 4.0.2048.2, 6.6.7089070592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.1.0.1}{1} }^{12}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.33.344 | $x^{12} + 56 x^{10} - 392 x^{9} + 226 x^{8} - 640 x^{7} - 2480 x^{6} + 3968 x^{5} + 1276 x^{4} - 384 x^{3} + 9280 x^{2} + 24224 x + 31544$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
\(61\) | 61.12.8.1 | $x^{12} + 9 x^{10} + 364 x^{9} + 33 x^{8} + 720 x^{7} - 16731 x^{6} - 1002 x^{5} - 64041 x^{4} - 1125646 x^{3} + 428523 x^{2} - 4549998 x + 62837938$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |