Normalized defining polynomial
\( x^{12} + 4x^{10} + 36x^{8} + 72x^{6} + 320x^{4} + 224x^{2} + 64 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(358157744603136\) \(\medspace = 2^{18}\cdot 3^{6}\cdot 37^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(16.32\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}37^{2/3}\approx 54.39681060743917$ | ||
Ramified primes: | \(2\), \(3\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{8}a^{7}$, $\frac{1}{16}a^{8}$, $\frac{1}{16}a^{9}$, $\frac{1}{2464}a^{10}-\frac{1}{308}a^{8}+\frac{3}{56}a^{6}-\frac{5}{44}a^{4}-\frac{1}{154}a^{2}+\frac{13}{77}$, $\frac{1}{2464}a^{11}-\frac{1}{308}a^{9}+\frac{3}{56}a^{7}-\frac{5}{44}a^{5}-\frac{1}{154}a^{3}+\frac{13}{77}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{1}{88} a^{10} - \frac{3}{88} a^{8} - \frac{3}{8} a^{6} - \frac{25}{44} a^{4} - \frac{73}{22} a^{2} - \frac{8}{11} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{1232}a^{10}+\frac{1}{154}a^{8}+\frac{1}{56}a^{6}+\frac{5}{22}a^{4}+\frac{79}{154}a^{2}+\frac{128}{77}$, $\frac{25}{2464}a^{10}+\frac{27}{616}a^{8}+\frac{19}{56}a^{6}+\frac{29}{44}a^{4}+\frac{437}{154}a^{2}+\frac{94}{77}$, $\frac{15}{2464}a^{11}-\frac{1}{88}a^{10}+\frac{17}{1232}a^{9}-\frac{3}{88}a^{8}+\frac{5}{28}a^{7}-\frac{3}{8}a^{6}+\frac{1}{22}a^{5}-\frac{25}{44}a^{4}+\frac{108}{77}a^{3}-\frac{73}{22}a^{2}-\frac{113}{77}a-\frac{19}{11}$, $\frac{3}{616}a^{11}-\frac{1}{2464}a^{10}-\frac{29}{1232}a^{9}+\frac{1}{308}a^{8}-\frac{1}{7}a^{7}+\frac{1}{14}a^{6}-\frac{17}{44}a^{5}-\frac{3}{22}a^{4}-\frac{219}{154}a^{3}+\frac{39}{77}a^{2}-\frac{79}{77}a-\frac{90}{77}$, $\frac{111}{2464}a^{11}-\frac{227}{2464}a^{10}-\frac{249}{1232}a^{9}-\frac{401}{1232}a^{8}-\frac{95}{56}a^{7}-\frac{177}{56}a^{6}-\frac{171}{44}a^{5}-\frac{229}{44}a^{4}-\frac{2353}{154}a^{3}-\frac{4085}{154}a^{2}-\frac{1135}{77}a-\frac{718}{77}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 710.5798149352412 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 710.5798149352412 \cdot 1}{6\cdot\sqrt{358157744603136}}\cr\approx \mathstrut & 0.385038053397700 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 12T18):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_6\times S_3$ |
Character table for $C_6\times S_3$ |
Intermediate fields
\(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 6.0.36963.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 18 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.18.23 | $x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
\(3\) | 3.12.6.2 | $x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
\(37\) | 37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.2.0.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.6.4.1 | $x^{6} + 99 x^{5} + 3273 x^{4} + 36407 x^{3} + 10209 x^{2} + 120831 x + 1323720$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |